summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/transform/Constructors.scala
blob: fbd0ad63850bfc66960e16ed94c5efc625b8045a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/* NSC -- new Scala compiler
 * Copyright 2005-2009 LAMP/EPFL
 * @author
 */
// $Id$

package scala.tools.nsc.transform

import scala.collection.mutable.ListBuffer
import symtab.Flags._
import util.TreeSet

/** This phase converts classes with parameters into Java-like classes with
 *  fields, which are assigned to from constructors.
 */
abstract class Constructors extends Transform {
  import global._
  import definitions._
  import posAssigner.atPos

  /** the following two members override abstract members in Transform */
  val phaseName: String = "constructors"

  protected def newTransformer(unit: CompilationUnit): Transformer =
    new ConstructorTransformer(unit)

  class ConstructorTransformer(unit: CompilationUnit) extends Transformer {

    def transformClassTemplate(impl: Template): Template = {
      val clazz = impl.symbol.owner  // the transformed class
      val stats = impl.body          // the transformed template body
      val localTyper = typer.atOwner(impl, clazz)

      var constr: DefDef = null      // The primary constructor
      var constrParams: List[Symbol] = null // ... and its parameters
      var constrBody: Block = null   // ... and its body

      // decompose primary constructor into the three entities above.
      for (stat <- stats) {
        stat match {
          case ddef @ DefDef(_, _, _, List(vparams), _, rhs @ Block(_, Literal(_))) =>
            if (ddef.symbol.isPrimaryConstructor) {
              constr = ddef
              constrParams = vparams map (_.symbol)
              constrBody = rhs
            }
          case _ =>
        }
      }
      assert((constr ne null) && (constrBody ne null), impl)

      // The parameter accessor fields which are members of the class
      val paramAccessors = clazz.constrParamAccessors

      // The constructor parameter corresponding to an accessor
      def parameter(acc: Symbol): Symbol =
        parameterNamed(nme.getterName(acc.originalName))

      // The constructor parameter with given name. This means the parameter
      // has given name, or starts with given name, and continues with a `$' afterwards.
      def parameterNamed(name: Name): Symbol = {
        def matchesName(param: Symbol) =
          param.name == name ||
          param.name.startsWith(name) && param.name(name.length) == '$'
        val ps = constrParams filter matchesName
        if (ps.isEmpty) assert(false, "" + name + " not in " + constrParams)
        ps.head
      }

      var thisRefSeen: Boolean = false

      // A transformer for expressions that go into the constructor
      val intoConstructorTransformer = new Transformer {
        override def transform(tree: Tree): Tree = tree match {
          case Apply(Select(This(_), _), List()) =>
            // references to parameter accessor methods of own class become references to parameters
            // outer accessors become references to $outer parameter
            if ((tree.symbol hasFlag PARAMACCESSOR) && tree.symbol.owner == clazz)
              gen.mkAttributedIdent(parameter(tree.symbol.accessed)) setPos tree.pos
            else if (tree.symbol.outerSource == clazz && !clazz.isImplClass)
              gen.mkAttributedIdent(parameterNamed(nme.OUTER)) setPos tree.pos
            else
              super.transform(tree)
          case Select(This(_), _)
          if ((tree.symbol hasFlag PARAMACCESSOR) && !tree.symbol.isSetter && tree.symbol.owner == clazz) =>
            // references to parameter accessor field of own class become references to parameters
            gen.mkAttributedIdent(parameter(tree.symbol)) setPos tree.pos
          case Select(_, _) =>
            thisRefSeen = true
            super.transform(tree)
          case This(_) =>
            thisRefSeen = true
            super.transform(tree)
          case Super(_, _) =>
            thisRefSeen = true
            super.transform(tree)
          case _ =>
            super.transform(tree)
        }
      }

      // Move tree into constructor, take care of changing owner from `oldowner' to constructor symbol
      def intoConstructor(oldowner: Symbol, tree: Tree) =
        intoConstructorTransformer.transform(
          new ChangeOwnerTraverser(oldowner, constr.symbol)(tree))

      // Should tree be moved in front of super constructor call?
      def canBeMoved(tree: Tree) = tree match {
        //todo: eliminate thisRefSeen
        case ValDef(mods, _, _, _) =>
          if (settings.Xwarninit.value)
            if (!(mods hasFlag PRESUPER | PARAMACCESSOR) && !thisRefSeen &&
                { val g = tree.symbol.getter(tree.symbol.owner);
                 g != NoSymbol && !g.allOverriddenSymbols.isEmpty
               })
              unit.warning(tree.pos, "the semantics of this definition has changed;\nthe initialization is no longer be executed before the superclass is called")
          (mods hasFlag PRESUPER | PARAMACCESSOR)// || !thisRefSeen && (!settings.future.value && !settings.checkInit.value)
        case _ => false
      }

      // Create an assignment to class field `to' with rhs `from'
      def mkAssign(to: Symbol, from: Tree): Tree =
        localTyper.typed {
          atPos(to.pos) {
            Assign(Select(This(clazz), to), from)
          }
        }

      // Create code to copy parameter to parameter accessor field.
      // If parameter is $outer, check that it is not null.
      def copyParam(to: Symbol, from: Symbol): Tree = {
        var result = mkAssign(to, Ident(from))
        if (from.name == nme.OUTER)
          result =
            atPos(to.pos) {
              localTyper.typed {
                If(
                  Apply(
                    Select(Ident(from), nme.eq),
                    List(Literal(Constant(null)))),
                  Throw(New(TypeTree(NullPointerExceptionClass.tpe), List(List()))),
                  result)
              }
            }
        result
      }

      // The list of definitions that go into class
      val defBuf = new ListBuffer[Tree]

      // The list of statements that go into constructor after superclass constructor call
      val constrStatBuf = new ListBuffer[Tree]

      // The list of statements that go into constructor before superclass constructor call
      val constrPrefixBuf = new ListBuffer[Tree]

      // The early initialized field definitions of the class (these are the class members)
      val presupers = treeInfo.preSuperFields(stats)

      // generate code to copy pre-initialized fields
      for (stat <- constrBody.stats) {
        constrStatBuf += stat
        stat match {
          case ValDef(mods, name, _, _) if (mods hasFlag PRESUPER) =>
            // stat is the constructor-local definition of the field value
            val fields = presupers filter (
              vdef => nme.localToGetter(vdef.name) == name)
            assert(fields.length == 1)
            constrStatBuf += mkAssign(fields.head.symbol, Ident(stat.symbol))
          case _ =>
        }
      }

      // Triage all template definitions to go into defBuf, constrStatBuf, or constrPrefixBuf.
      for (stat <- stats) stat match {
        case DefDef(mods, name, tparams, vparamss, tpt, rhs) =>
          // methods with constant result type get literals as their body
          // all methods except the primary constructor go into template
          stat.symbol.tpe match {
            case MethodType(List(), tp @ ConstantType(c)) =>
              defBuf += copy.DefDef(
                stat, mods, name, tparams, vparamss, tpt,
                Literal(c) setPos rhs.pos setType tp)
            case _ =>
              if (!stat.symbol.isPrimaryConstructor) defBuf += stat
          }
        case ValDef(mods, name, tpt, rhs) =>
          // val defs with constant right-hand sides are eliminated.
          // for all other val defs, an empty valdef goes into the template and
          // the initializer goes as an assignment into the constructor
          // if the val def is an early initialized or a parameter accessor, it goes
          // before the superclass constructor call, otherwise it goes after.
          // Lazy vals don't get the assignment in the constructor.
          if (!stat.symbol.tpe.isInstanceOf[ConstantType]) {
            if (rhs != EmptyTree && !stat.symbol.hasFlag(LAZY)) {
              val rhs1 = intoConstructor(stat.symbol, rhs);
              (if (canBeMoved(stat)) constrPrefixBuf else constrStatBuf) += mkAssign(
                stat.symbol, rhs1)
            }
            defBuf += copy.ValDef(stat, mods, name, tpt, EmptyTree)
          }
        case ClassDef(_, _, _, _) =>
          // classes are treated recursively, and left in the template
          defBuf += new ConstructorTransformer(unit).transform(stat)
        case _ =>
          // all other statements go into the constructor
          constrStatBuf += intoConstructor(impl.symbol, stat)
      }

      // ----------- avoid making fields for symbols that are not accessed --------------

      // A sorted set of symbols that are known to be accessed outside the primary constructor.
      val accessedSyms = new TreeSet[Symbol]((x, y) => x isLess y)

      // a list of outer accessor symbols and their bodies
      var outerAccessors: List[(Symbol, Tree)] = List()

      // Could symbol's definition be omitted, provided it is not accessed?
      // This is the case if the symbol is defined in the current class, and
      // ( the symbol is an object private parameter accessor field, or
      //   the symbol is an outer accessor of a final class which does not override another outer accesser. )
      def maybeOmittable(sym: Symbol) =
        (sym.owner == clazz &&
         ((sym hasFlag PARAMACCESSOR) && sym.isPrivateLocal ||
          sym.isOuterAccessor && sym.owner.isFinal && sym.allOverriddenSymbols.isEmpty))

      // Is symbol known to be accessed outside of the primary constructor,
      // or is it a symbol whose definition cannot be omitted anyway?
      def mustbeKept(sym: Symbol) =
        !maybeOmittable(sym) || (accessedSyms contains sym)

      // A traverser to set accessedSyms and outerAccessors
      val accessTraverser = new Traverser {
        override def traverse(tree: Tree) = {
          tree match {
            case DefDef(_, _, _, _, _, body)
            if (tree.symbol.isOuterAccessor && tree.symbol.owner == clazz && clazz.isFinal) =>
              outerAccessors ::= (tree.symbol, body)
            case Select(_, _) =>
              if (!mustbeKept(tree.symbol)) accessedSyms addEntry tree.symbol
              super.traverse(tree)
            case _ =>
              super.traverse(tree)
          }
        }
      }

      // first traverse all definitions except outeraccesors
      // (outeraccessors are avoided in accessTraverser)
      for (stat <- defBuf.elements) accessTraverser.traverse(stat)

      // then traverse all bodies of outeraccessors which are accessed themselves
      // note: this relies on the fact that an outer accessor never calls another
      // outer accessor in the same class.
      for ((accSym, accBody) <- outerAccessors)
        if (mustbeKept(accSym)) accessTraverser.traverse(accBody)

      // Initialize all parameters fields that must be kept.
      val paramInits = for (acc <- paramAccessors if mustbeKept(acc))
                       yield copyParam(acc, parameter(acc))

      // Assemble final constructor
      defBuf += copy.DefDef(
        constr, constr.mods, constr.name, constr.tparams, constr.vparamss, constr.tpt,
        copy.Block(
          constrBody,
          paramInits ::: constrPrefixBuf.toList ::: constrStatBuf.toList,
          constrBody.expr));

      // Unlink all fields that can be dropped from class scope
      for (sym <- clazz.info.decls.toList)
        if (!mustbeKept(sym)) clazz.info.decls unlink sym

      // Eliminate all field definitions that can be dropped from template
      copy.Template(impl, impl.parents, impl.self,
                    defBuf.toList filter (stat => mustbeKept(stat.symbol)))
    } // transformClassTemplate

    override def transform(tree: Tree): Tree =
      tree match {
        case ClassDef(mods, name, tparams, impl) if !tree.symbol.hasFlag(INTERFACE) =>
          copy.ClassDef(tree, mods, name, tparams, transformClassTemplate(impl))
        case _ =>
          super.transform(tree)
      }
  } // ConstructorTransformer
}