summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/typechecker/Duplicators.scala
blob: 4a966f1fca08f8adcca43c1f3c2e1f376f66e090 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
package scala.tools.nsc
package typechecker

import scala.tools.nsc.symtab.Flags

import scala.collection.{ mutable, immutable }

/** Duplicate trees and re-type check them, taking care to replace
 *  and create fresh symbols for new local definitions.
 */
abstract class Duplicators extends Analyzer {
  import global._

  def retyped(context: Context, tree: Tree): Tree = {
    resetClassOwners
    (new BodyDuplicator(context)).typed(tree)
  }

  /** Retype the given tree in the given context. Use this method when retyping
   *  a method in a different class. The typer will replace references to the this of
   *  the old class with the new class, and map symbols through the given 'env'. The
   *  environment is a map from type skolems to concrete types (see SpecializedTypes).
   */
  def retyped(context: Context, tree: Tree, oldThis: Symbol, newThis: Symbol, env: collection.Map[Symbol, Type]): Tree = {
    if (oldThis ne newThis) {
      oldClassOwner = oldThis
      newClassOwner = newThis
    } else resetClassOwners

    envSubstitution = new SubstSkolemsTypeMap(env.keysIterator.toList, env.valuesIterator.toList)
    log("retyped with env: " + env)
    (new BodyDuplicator(context)).typed(tree)
  }

  def retypedMethod(context: Context, tree: Tree, oldThis: Symbol, newThis: Symbol): Tree =
    (new BodyDuplicator(context)).retypedMethod(tree.asInstanceOf[DefDef], oldThis, newThis)

  /** Return the special typer for duplicate method bodies. */
  override def newTyper(context: Context): Typer =
    new BodyDuplicator(context)

  private def resetClassOwners() {
    oldClassOwner = null
    newClassOwner = null
  }

  private var oldClassOwner: Symbol = _
  private var newClassOwner: Symbol = _
  private var envSubstitution: SubstTypeMap = _

  private class SubstSkolemsTypeMap(from: List[Symbol], to: List[Type]) extends SubstTypeMap(from, to) {
    protected override def matches(sym1: Symbol, sym2: Symbol) =
      if (sym2.isTypeSkolem) sym2.deSkolemize eq sym1
      else sym1 eq sym2
  }

  private val invalidSyms: mutable.Map[Symbol, Tree] = mutable.HashMap.empty[Symbol, Tree]

  /** A typer that creates new symbols for all definitions in the given tree
   *  and updates references to them while re-typechecking. All types in the
   *  tree, except for TypeTrees, are erased prior to type checking. TypeTrees
   *  are fixed by substituting invalid symbols for the new ones.
   */
  class BodyDuplicator(context: Context) extends Typer(context: Context) {

    class FixInvalidSyms extends TypeMap {

      def apply(tpe: Type): Type = {
        mapOver(tpe)
      }

      override def mapOver(tpe: Type): Type = tpe match {
        case TypeRef(NoPrefix, sym, args) if sym.isTypeParameterOrSkolem =>
          val sym1 = context.scope.lookup(sym.name)
//          assert(sym1 ne NoSymbol, tpe)
          if ((sym1 ne NoSymbol) && (sym1 ne sym)) {
            log("fixing " + sym + " -> " + sym1)
            typeRef(NoPrefix, sym1, mapOverArgs(args, sym1.typeParams))
          } else super.mapOver(tpe)

        case TypeRef(pre, sym, args) =>
          val newsym = updateSym(sym)
          if (newsym ne sym) {
            log("fixing " + sym + " -> " + newsym)
            typeRef(mapOver(pre), newsym, mapOverArgs(args, newsym.typeParams))
          } else
            super.mapOver(tpe)

        case SingleType(pre, sym) =>
          val sym1 = updateSym(sym)
          if (sym1 ne sym) {
            log("fixing " + sym + " -> " + sym1)
            singleType(mapOver(pre), sym1)
          } else
            super.mapOver(tpe)

        case ThisType(sym) =>
          val sym1 = updateSym(sym)
          if (sym1 ne sym) {
            log("fixing " + sym + " -> " + sym1)
            ThisType(sym1)
          } else
            super.mapOver(tpe)


        case _ =>
          super.mapOver(tpe)
      }
    }

    /** Fix the given type by replacing invalid symbols with the new ones. */
    def fixType(tpe: Type): Type = {
      val tpe1 = envSubstitution(tpe)
      val tpe2: Type = (new FixInvalidSyms)(tpe1)
      val tpe3 = if (newClassOwner ne null) {
        tpe2.asSeenFrom(newClassOwner.thisType, oldClassOwner)
      } else tpe2
      tpe3
    }

    /** Return the new symbol corresponding to `sym'. */
    private def updateSym(sym: Symbol): Symbol =
      if (invalidSyms.isDefinedAt(sym))
        invalidSyms(sym).symbol
      else
        sym

    private def invalidate(tree: Tree) {
      if (tree.isDef && tree.symbol != NoSymbol) {
        log("invalid " + tree.symbol)
        invalidSyms(tree.symbol) = tree

        tree match {
          case ldef @ LabelDef(name, params, rhs) =>
            log("LabelDef " + name + " sym.info: " + ldef.symbol.info)
            invalidSyms(ldef.symbol) = ldef
          //          breakIf(true, this, ldef, context)
            val newsym = ldef.symbol.cloneSymbol(context.owner)
            newsym.setInfo(fixType(ldef.symbol.info))
            ldef.symbol = newsym
            log("newsym: " + newsym + " info: " + newsym.info)

          case DefDef(_, name, tparams, vparamss, _, rhs) =>
            // invalidate parameters
            invalidate(tparams ::: vparamss.flatten)
            tree.symbol = NoSymbol

          case _ =>
            tree.symbol = NoSymbol
        }
      }
    }

    private def invalidate(stats: List[Tree]) {
      stats foreach invalidate
    }


    def retypedMethod(ddef: DefDef, oldThis: Symbol, newThis: Symbol): Tree = {
      oldClassOwner = oldThis
      newClassOwner = newThis
      invalidate(ddef.tparams)
      for (vdef <- ddef.vparamss.flatten) {
        invalidate(vdef)
        vdef.tpe = null
      }
      ddef.symbol = NoSymbol
      enterSym(context, ddef)
      log("remapping this of " + oldClassOwner + " to " + newClassOwner)
      typed(ddef)
    }

    private def inspectTpe(tpe: Type) = {
      tpe match {
        case MethodType(_, res) =>
          res + ", " + res.bounds.hi + ", " + (res.bounds.hi match {
            case TypeRef(_, _, args) if (args.length > 0) => args(0) + ", " + args(0).bounds.hi
            case _ => "non-tref: " + res.bounds.hi.getClass
          })
        case _ =>
      }
    }

    /** Special typer method for re-type checking trees. It expects a typed tree.
     *  Returns a typed tree that has fresh symbols for all definitions in the original tree.
     *
     *  Each definition tree is visited and its symbol added to the invalidSyms map (except LabelDefs),
     *  then cleared (forcing the namer to create fresh symbols).
     *  All invalid symbols found in trees are cleared (except for LabelDefs), forcing the
     *  typechecker to look for fresh ones in the context.
     *
     *  Type trees are typed by substituting old symbols for new ones (@see fixType).
     *
     *  LabelDefs are not typable from trees alone, unless they have the type ()Unit. Therefore,
     *  their symbols are recreated ad-hoc and their types are fixed inline, instead of letting the
     *  namer/typer handle them, or Idents that refer to them.
     */
    override def typed(tree: Tree, mode: Int, pt: Type): Tree = {
      if (settings.debug.value) log("typing " + tree + ": " + tree.tpe)
      if (tree.hasSymbol && tree.symbol != NoSymbol
          && !tree.symbol.isLabel  // labels cannot be retyped by the type checker as LabelDef has no ValDef/return type trees
          && invalidSyms.isDefinedAt(tree.symbol)) {
        if (settings.debug.value) log("removed symbol " + tree.symbol)
        tree.symbol = NoSymbol
      }

      tree match {
        case ttree @ TypeTree() =>
          log("fixing tpe: " + tree.tpe + " with sym: " + tree.tpe.typeSymbol)
          ttree.tpe = fixType(ttree.tpe)
          ttree
        case Block(stats, res) =>
          log("invalidating block")
          invalidate(stats)
          invalidate(res)
          tree.tpe = null
          super.typed(tree, mode, pt)

        case ClassDef(_, _, _, tmpl @ Template(parents, _, stats)) =>
//          log("invalidating classdef " + tree.tpe)
          tmpl.symbol = tree.symbol.newLocalDummy(tree.pos)
          invalidate(stats)
          tree.tpe = null
          super.typed(tree, mode, pt)

        case ddef @ DefDef(_, _, _, _, tpt, rhs) =>
          ddef.tpt.tpe = fixType(ddef.tpt.tpe)
          ddef.tpe = null
          super.typed(ddef, mode, pt)

        case vdef @ ValDef(_, _, tpt, rhs) =>
//          log("vdef fixing tpe: " + tree.tpe + " with sym: " + tree.tpe.typeSymbol + " and " + invalidSyms)
          vdef.tpt.tpe = fixType(vdef.tpt.tpe)
          vdef.tpe = null
          super.typed(vdef, mode, pt)

        case ldef @ LabelDef(name, params, rhs) =>
          // log("label def: " + ldef)
          ldef.tpe = null
          val params1 = params map { p => Ident(updateSym(p.symbol)) }
          super.typed(treeCopy.LabelDef(tree, name, params1, rhs), mode, pt)

        case Bind(name, _) =>
          // log("bind: " + tree)
          invalidate(tree)
          tree.tpe = null
          super.typed(tree, mode, pt)

        case Ident(_) if tree.symbol.isLabel =>
          log("Ident to labeldef " + tree + " switched to ")
          tree.symbol = updateSym(tree.symbol)
          tree.tpe = null
          super.typed(tree, mode, pt)

        case Select(th @ This(_), sel) if (oldClassOwner ne null) && (th.symbol == oldClassOwner) =>
          // log("selection on this, no type ascription required")
          // we use the symbol name instead of the tree name because the symbol may have been
          // name mangled, rendering the tree name obsolete
          // log(tree)
          val t = super.typed(atPos(tree.pos)(Select(This(newClassOwner), tree.symbol.name)), mode, pt)
          // log("typed to: " + t + "; tpe = " + t.tpe + "; " + inspectTpe(t.tpe))
          t

        case This(_) if (oldClassOwner ne null) && (tree.symbol == oldClassOwner) =>
//          val tree1 = Typed(This(newClassOwner), TypeTree(fixType(tree.tpe.widen)))
          // log("selection on this: " + tree)
          val tree1 = This(newClassOwner)
          // log("tree1: " + tree1)
          if (settings.debug.value) log("mapped " + tree + " to " + tree1)
          super.typed(atPos(tree.pos)(tree1), mode, pt)

        case This(_) =>
          // log("selection on this, plain: " + tree)
          tree.symbol = updateSym(tree.symbol)
          tree.tpe = null
          val tree1 = super.typed(tree, mode, pt)
          // log("plain this typed to: " + tree1)
          tree1
/* no longer needed, because Super now contains a This(...)
        case Super(qual, mix) if (oldClassOwner ne null) && (tree.symbol == oldClassOwner) =>
          val tree1 = Super(qual, mix)
          log("changed " + tree + " to " + tree1)
          super.typed(atPos(tree.pos)(tree1))
*/
        case Match(scrut, cases) =>
          val scrut1 = typed(scrut, EXPRmode | BYVALmode, WildcardType)
          val scrutTpe = scrut1.tpe.widen
          val cases1 = if (scrutTpe.isFinalType) cases filter {
            case CaseDef(Bind(_, pat @ Typed(_, tpt)), EmptyTree, body) =>
              // the typed pattern is not incompatible with the scrutinee type
              scrutTpe.matchesPattern(fixType(tpt.tpe))
            case CaseDef(Typed(_, tpt), EmptyTree, body) =>
              // the typed pattern is not incompatible with the scrutinee type
              scrutTpe.matchesPattern(fixType(tpt.tpe))
            case _ => true
          } else cases

          super.typed(atPos(tree.pos)(Match(scrut, cases1)), mode, pt)

        case EmptyTree =>
          // no need to do anything, in particular, don't set the type to null, EmptyTree.tpe_= asserts
          tree

        case _ =>
          // log("default: " + tree)
          if (tree.hasSymbol && tree.symbol != NoSymbol && (tree.symbol.owner == definitions.AnyClass)) {
            tree.symbol = NoSymbol // maybe we can find a more specific member in a subclass of Any (see AnyVal members, like ==)
          }
          tree.tpe = null
          super.typed(tree, mode, pt)
      }
    }
  }
}