summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/typechecker/Infer.scala
blob: e982ac1ba1b4f7a8f22b6659f4c557605a515403 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
/* NSC -- new scala compiler
 * Copyright 2005 LAMP/EPFL
 * @author  Martin Odersky
 */
// $Id$
package scala.tools.nsc.typechecker;

import scala.collection.mutable.ListBuffer;
import symtab.Flags._;

[_trait_] abstract class Infer: Analyzer {
  import global._;
  import definitions._;
  import posAssigner.atPos;

  var normM = 0;
  var normP = 0;
  var normO = 0;

/* -- Type parameter inference utility functions -------------------------------------- */

  /** The formal parameter types corresponding to `formals'.
   *  If `formals' has a repeated last parameter, a list of
   *  (nargs - params.length + 1) copies of its type is returned. */
  def formalTypes(formals: List[Type], nargs: int): List[Type] = {
    val formals1 = formals map {
      case TypeRef(_, sym, List(arg)) if (sym == ByNameParamClass) => arg
      case formal => formal
    }
    if (!formals1.isEmpty && (formals1.last.symbol == RepeatedParamClass)) {
      val ft = formals1.last.typeArgs.head;
      formals1.init ::: (for (val i <- List.range(formals1.length - 1, nargs)) yield ft)
    } else formals1
  }

  /** A fresh type varable with given type parameter as origin. */
  def freshVar(tparam: Symbol): TypeVar = new TypeVar(tparam.tpe, new TypeConstraint);

  //todo: remove comments around following privates; right now they cause an IllegalAccess
  // error when built with scalac

  /*private*/ class NoInstance(msg: String) extends RuntimeException(msg);

  /*private*/ class DeferredNoInstance(getmsg: () => String) extends NoInstance("") {
    override def getMessage(): String = getmsg()
  }

  /*private*/ object instantiateMap extends TypeMap {
    def apply(t: Type): Type = instantiate(t)
  }

  /** map every TypeVar to its constraint.inst field.
   *  throw a NoInstance exception if a NoType or WildcardType is encountered.
   *  @throws   NoInstance
   */
  def instantiate(tp: Type): Type = tp match {
    case WildcardType | NoType =>
      throw new NoInstance("undetermined type");
    case TypeVar(origin, constr) =>
      assert(constr.inst != null);//debug
      if (constr.inst != NoType) instantiate(constr.inst)
      else throw new DeferredNoInstance(() =>
	"no unique instantiation of type variable " + origin + " could be found");
    case _ =>
      instantiateMap.mapOver(tp)
  }

  /** Is type fully defined, i.e. no embedded anytypes or wildcards in it? */
  def isFullyDefined(tp: Type): boolean = try {
    instantiate(tp); true
  } catch {
    case ex: NoInstance => false
  }

  /** Do type arguments `targs' conform to formal parameters `tparams'? */
  private def isWithinBounds(tparams: List[Symbol], targs: List[Type]): boolean = {
    val bounds = tparams map (.info.subst(tparams, targs).bounds);
    List.map2(bounds, targs)((bound, targ) => bound containsType targ) forall (x => x)
  }

  /** Solve constraint collected in types `tvars'
   *  @param tvars      All type variables to be instantiated.
   *  @param tparams    The type parameters corresponding to `tvars'
   *  @param variances  The variances of type parameters; need to reverse
   *                    solution direction for all contravariant variables.
   *  @param upper      When `true' search for max solution else min.
   *  @throws NoInstance
   */
  private def solve(tvars: List[TypeVar], tparams: List[Symbol], variances: List[int],
		    upper: boolean): List[Type] = {
    val config = tvars zip (tparams zip variances);

    def solveOne(tvar: TypeVar, tparam: Symbol, variance: int): unit = {
      if (tvar.constr.inst == NoType) {
	val up = if (variance != CONTRAVARIANT) upper else !upper;
	tvar.constr.inst = null;
	val bound: Type = if (up) tparam.info.bounds.hi else tparam.info.bounds.lo;
	var cyclic = false;
	for (val Pair(tvar2, Pair(tparam2, variance2)) <- config) {
	  if (tparam2 != tparam &&
              ((bound contains tparam2) ||
	       up && (tparam2.info.bounds.lo =:= tparam.tpe) ||
	       !up && (tparam2.info.bounds.hi =:= tparam.tpe))) {
	    if (tvar2.constr.inst == null) cyclic = true;
	    solveOne(tvar2, tparam2, variance2);
          }
	}
	if (!cyclic) {
	  if (up) {
	    if (bound.symbol != AnyClass) {
	      tvar.constr.hibounds =
		bound.subst(tparams, tvars) :: tvar.constr.hibounds;
	    }
	    for (val tparam2 <- tparams)
	      if (tparam2.info.bounds.lo =:= tparam.tpe)
		tvar.constr.hibounds =
		  tparam2.tpe.subst(tparams, tvars) :: tvar.constr.hibounds;
	  } else {
	    if (bound.symbol != AllClass && bound.symbol != tparam) {
	      tvar.constr.lobounds =
		bound.subst(tparams, tvars) :: tvar.constr.lobounds;
	    }
	    for (val tparam2 <- tparams)
	      if (tparam2.info.bounds.hi =:= tparam.tpe)
		tvar.constr.lobounds =
		  tparam2.tpe.subst(tparams, tvars) :: tvar.constr.lobounds;
	  }
	}
	tvar.constr.inst = if (up) glb(tvar.constr.hibounds) else lub(tvar.constr.lobounds)
      }
    }
    for (val Pair(tvar, Pair(tparam, variance)) <- config) solveOne(tvar, tparam, variance);
    tvars map instantiate;
  }

  def skipImplicit(tp: Type) = if (tp.isInstanceOf[ImplicitMethodType]) tp.resultType else tp;

  /** Automatically perform the following conversions on expression types:
   *  A method type becomes the corresponding function type.
   *  A nullary method type becomes its result type.
   *  Implicit parameters are skipped.
   */
  def normalize(tp: Type): Type = skipImplicit(tp) match {
    case MethodType(formals, restpe) =>
      if (util.Statistics.enabled) normM = normM + 1;
      functionType(formals, normalize(restpe))
    case PolyType(List(), restpe) =>
      if (util.Statistics.enabled) normP = normP + 1;
      normalize(restpe);
    case tp1 =>
      if (util.Statistics.enabled) normO = normO + 1;
      tp1
  }

  /** The context-dependent inferencer part */
  class Inferencer(context: Context) {

    /* -- Error Messages ----------------------------------------------------- */

    def setError[T <: Tree](tree: T): T = {
      val name = newTermName("<error: " + tree + ">");
      if (tree.hasSymbol)
	tree.setSymbol(
	  if (tree.isType) context.owner.newErrorClass(name.toTypeName)
	  else context.owner.newErrorValue(name));
      tree.setType(ErrorType)
    }

    def decode(name: Name): String =
      (if (name.isTypeName) "type " else "value ") + name.decode;

    def treeSymTypeMsg(tree: Tree): String =
      if (tree.symbol == null)
	"expression of type " + tree.tpe
      else if (tree.symbol.hasFlag(OVERLOADED))
	"overloaded method " + tree.symbol + " with alternatives " + tree.tpe
      else (
	tree.symbol.toString() +
        (if (tree.tpe.paramSectionCount > 0) ": " else " of type ") +
        tree.tpe
      );

    def applyErrorMsg(tree: Tree, msg: String, argtpes: List[Type], pt: Type) = (
      treeSymTypeMsg(tree) + msg + argtpes.mkString("(", ",", ")") +
       (if (pt == WildcardType) "" else " with expected result type " + pt)
    );

    def foundReqMsg(found: Type, req: Type): String =
      ";\n found   : " + found.toLongString + "\n required: " + req;

    def error(pos: int, msg: String): unit =
      context.error(pos, msg);

    def errorTree(tree: Tree, msg: String): Tree = {
      error(tree.pos, msg);
      setError(tree)
    }

    def typeError(pos: int, found: Type, req: Type): unit =
      if (!found.isError && !req.isError) {
	error(pos,
          "type mismatch" + foundReqMsg(found, req) +
   	  (if (!(found.resultType eq found) && isCompatible(found.resultType, req))
	    "\n possible cause: missing arguments for method or constructor"
	   else ""));
	if (settings.explaintypes.value)
	  explainTypes(found, req);
      }

    def typeErrorTree(tree: Tree, found: Type, req: Type): Tree = {
      typeError(tree.pos, found, req);
      setError(tree)
    }

    /* -- Tests & Checks-------------------------------------------------------- */

    /** Check that `sym' is defined and accessible as a member of tree `site' with type `pre'
     *  in current context. */
    def checkAccessible(tree: Tree, sym: Symbol, pre: Type, site: Tree): Tree =
      if (sym.isError) {
	tree setSymbol sym setType ErrorType
      } else {
        sym.toplevelClass match {
	case clazz : ClassSymbol =>
	  // System.err.println("TOP: " + clazz + " " + clazz.sourceFile);
	  if (clazz.sourceFile != null)
	    global.currentRun.currentUnit.depends += clazz.sourceFile;

	case _ =>
	}
	val sym1 = sym filter (alt => context.isAccessible(alt, pre, site.isInstanceOf[Super]));
	if (sym1 == NoSymbol) {
	  if (settings.debug.value) {
	    System.out.println(context);//debug
            System.out.println(tree);//debug
            System.out.println("" + pre + " " + sym.owner + " " + context.owner + " " + context.outer.enclClass.owner + " " + sym.owner.thisType + (pre =:= sym.owner.thisType));//debug
	  }
	  errorTree(tree, sym.toString() + " cannot be accessed in " +
		    (if (sym.isClassConstructor) context.enclClass.owner else pre.widen))
	} else {
          var owntype = pre.memberType(sym1);
          if (pre.isInstanceOf[SuperType])
            owntype = owntype.substSuper(pre, site.symbol.thisType);
	  tree setSymbol sym1 setType owntype
	}
      }

    def isCompatible(tp: Type, pt: Type): boolean = {
      val tp1 = normalize(tp);
      (tp1 <:< pt) || isCoercible(tp, pt)
    }

    def isCoercible(tp: Type, pt: Type): boolean = false;

    def isCompatible(tps: List[Type], pts: List[Type]): boolean =
      List.map2(tps, pts)((tp, pt) => isCompatible(tp, pt)) forall (x => x);

    /* -- Type instantiation------------------------------------------------------------ */

    /** Return inferred type arguments of polymorphic expression, given
     *  its type parameters and result type and a prototype `pt'.
     *  If no minimal type variables exist that make the
     *  instantiated type a subtype of `pt', return null.
     */
    private def exprTypeArgs(tparams: List[Symbol], restpe: Type, pt: Type): List[Type] = {
      val tvars = tparams map freshVar;
      if (isCompatible(restpe.subst(tparams, tvars), pt)) {
	try {
	  solve(tvars, tparams, tparams map varianceInType(restpe), false);
	} catch {
	  case ex: NoInstance => null
	}
      } else null
    }

    /** Return inferred proto-type arguments of function, given
    *  its type and value parameters and result type, and a
    *  prototype `pt' for the function result.
    *  Type arguments need to be either determined precisely by
    *  the prototype, or they are maximized, if they occur only covariantly
    *  in the value parameter list.
    *  If instantiation of a type parameter fails,
    *  take WildcardType for the proto-type argument. */
    def protoTypeArgs(tparams: List[Symbol], formals: List[Type], restpe: Type,
		      pt: Type): List[Type] = {
      /** Map type variable to its instance, or, if `variance' is covariant/contravariant,
       *  to its upper/lower bound; */
      def instantiateToBound(tvar: TypeVar, variance: int): Type = try {
	if (tvar.constr.inst != NoType) {
	  instantiate(tvar.constr.inst)
	} else if ((variance & COVARIANT) != 0 && !tvar.constr.hibounds.isEmpty) {
	  tvar.constr.inst = glb(tvar.constr.hibounds);
	  instantiate(tvar.constr.inst)
	} else if ((variance & CONTRAVARIANT) != 0 && !tvar.constr.lobounds.isEmpty) {
	  tvar.constr.inst = lub(tvar.constr.lobounds);
	  instantiate(tvar.constr.inst)
	} else {
	  WildcardType
	}
      } catch {
	case ex: NoInstance => WildcardType
      }
      val tvars = tparams map freshVar;
      if (isCompatible(restpe.subst(tparams, tvars), pt))
	List.map2(tparams, tvars) ((tparam, tvar) =>
	  instantiateToBound(tvar, varianceInTypes(formals)(tparam)))
      else
	tvars map (tvar => WildcardType)
    }

    /** Return inferred type arguments, given type parameters, formal parameters,
    *  argument types, result type and expected result type.
    *  If this is not possible, throw a `NoInstance' exception.
    *  Undetermined type arguments are represented by `definitions.AllClass.tpe'.
    *  No check that inferred parameters conform to their bounds is made here.
    *  @param   tparams         the type parameters of the method
    *  @param   formals         the value parameter types of the method
    *  @param   restp           the result type of the method
    *  @param   argtpes         the argument types of the application
    *  @param   pt              the expected return type of the application
    *  @param   uninstantiated  a listbuffer receiving all uninstantiated type parameters
    *                           (type parameters mapped by the constraint solver to `scala.All'
    *                            and not covariant in `restpe' are taken to be uninstantiated.
    *                            Maps all those type arguments to their corresponding type
    *                            parameters).
    */
    private def methTypeArgs(tparams: List[Symbol], formals: List[Type], restpe: Type,
			     argtpes: List[Type], pt: Type,
			     uninstantiated: ListBuffer[Symbol]): List[Type] = {
      val tvars = tparams map freshVar;
      if (formals.length != argtpes.length) {
	throw new NoInstance("parameter lists differ in length");
      }
      // check first whether type variables can be fully defined from
      // expected result type.
      if (!isCompatible(restpe.subst(tparams, tvars), pt)) {
	throw new DeferredNoInstance(() =>
	  "result type " + normalize(restpe) + " is incompatible with expected type " + pt)
      }
      for (val tvar <- tvars)
	if (!isFullyDefined(tvar)) tvar.constr.inst = NoType;

      // Then define remaining type variables from argument types.
      List.map2(argtpes, formals) {(argtpe, formal) =>
	if (!isCompatible(argtpe.deconst.subst(tparams, tvars),
			  formal.subst(tparams, tvars))) {
	  if (settings.explaintypes.value)
	    explainTypes(argtpe.deconst.subst(tparams, tvars), formal.subst(tparams, tvars));
	  throw new DeferredNoInstance(() =>
	    "argument expression's type is not compatible with formal parameter type" +
	    foundReqMsg(argtpe.deconst.subst(tparams, tvars), formal.subst(tparams, tvars)))
	}
	()
      }
      val targs = solve(tvars, tparams, tparams map varianceInTypes(formals), false);
      List.map2(tparams, targs) {(tparam, targ) =>
	if (targ.symbol == AllClass && (varianceInType(restpe)(tparam) & COVARIANT) == 0) {
	  uninstantiated += tparam;
	  tparam.tpe
	} else targ}
    }


    /** Is there an instantiation of free type variables `undetparams' such that
     *  function type `ftpe' is applicable to `argtpes' and its result conform to `pt'? */
    def isApplicable(undetparams: List[Symbol], ftpe: Type, argtpes: List[Type], pt: Type): boolean =
      ftpe match {
	case MethodType(formals0, restpe) =>
	  val formals = formalTypes(formals0, argtpes.length);
	  if (undetparams.isEmpty) {
	    (formals.length == argtpes.length &&
	     isCompatible(argtpes, formals) &&
	     isCompatible(restpe, pt))
	  } else {
	    try {
	      val uninstantiated = new ListBuffer[Symbol];
	      val targs = methTypeArgs(undetparams, formals, restpe, argtpes, pt, uninstantiated);
	      val result = (
		exprTypeArgs(uninstantiated.toList, restpe.subst(undetparams, targs), pt) != null &&
		isWithinBounds(undetparams, targs)
              );
	      result
	    } catch {
	      case ex: NoInstance => false
	    }
	  }
	case PolyType(tparams, restpe) =>
	  val tparams1 = cloneSymbols(tparams);
	  isApplicable(tparams1 ::: undetparams, restpe.substSym(tparams, tparams1), argtpes, pt)
	case ErrorType =>
	  true
	case _ =>
	  false
      }

    /** Does type `ftpe1' specialize type `ftpe2'
     *  when both are alternatives in an overloaded function? */
    def specializes(ftpe1: Type, ftpe2: Type): boolean = ftpe1 match {
      case MethodType(formals, _) =>
	isApplicable(List(), ftpe2, formals, WildcardType)
      case PolyType(tparams, MethodType(formals, _)) =>
	isApplicable(List(), ftpe2, formals, WildcardType)
      case ErrorType =>
	true
      case _ =>
	false
    }

    /** error if arguments not within bounds. */
    def checkBounds(pos: int, tparams: List[Symbol], targs: List[Type], prefix: String): unit =
      if (!isWithinBounds(tparams, targs)) {
	error(pos,
	      prefix + "type arguments " + targs.mkString("[", ",", "]") +
	      " do not conform to " + tparams.head.owner + "'s type parameter bounds " +
	      (tparams map (.defString)).mkString("[", ",", "]"));
        if (settings.explaintypes.value) {
          val bounds = tparams map (.info.subst(tparams, targs).bounds);
          List.map2(targs, bounds)((targ, bound) => explainTypes(bound.lo, targ));
          List.map2(targs, bounds)((targ, bound) => explainTypes(targ, bound.hi));
          ()
        }
      }

    /** Substitite free type variables `undetparams' of polymorphic argument expression `tree',
     *  given two prototypes `strictPt', and `lenientPt'.
     *  `strictPt' is the first attempt prototype where type parameters
     *  are left unchanged. `lenientPt' is the fall-back prototype where type parameters
     *  are replaced by `WildcardType's. We try to instantiate first to `strictPt' and then,
     *  if this fails, to `lenientPt'. If both attempts fail, an error is produced.
     */
    def inferArgumentInstance(tree: Tree, undetparams: List[Symbol], strictPt: Type, lenientPt: Type): unit = {
      var targs = exprTypeArgs(undetparams, tree.tpe, strictPt);
      if (targs == null) targs = exprTypeArgs(undetparams, tree.tpe, lenientPt);
      substExpr(tree, undetparams, targs, lenientPt)
    }

    /** Substitite free type variables `undetparams; of polymorphic expression `tree',
     *  given prototype `pt'. */
    def inferExprInstance(tree: Tree, undetparams: List[Symbol], pt: Type): unit =
      substExpr(tree, undetparams, exprTypeArgs(undetparams, tree.tpe, pt), pt);

    /** Substitite free type variables `undetparams' of polymorphic argument expression `tree' to
     *  `targs', Error if `targs' is null */
    private def substExpr(tree: Tree, undetparams: List[Symbol], targs: List[Type], pt: Type): unit =
      if (targs == null) {
	error(tree.pos, "polymorphic expression cannot be instantiated to expected type" +
	      foundReqMsg(PolyType(undetparams, skipImplicit(tree.tpe)), pt));
      } else {
	checkBounds(tree.pos, undetparams, targs, "inferred ");
	new TreeTypeSubstituter(undetparams, targs).traverse(tree);
      }

    /** Substitite free type variables `undetparams' of application `fn(args)', given prototype `pt'.
     *  Return the list of type parameters that remain uninstantiated. */
    def inferMethodInstance(fn: Tree, undetparams: List[Symbol], args: List[Tree], pt: Type): List[Symbol] = fn.tpe match {
      case MethodType(formals, restpe) =>
	try {
	  val argtpes = args map (.tpe.deconst);
	  val uninstantiated = new ListBuffer[Symbol];
	  val targs = methTypeArgs(
	    undetparams, formalTypes(formals, argtpes.length), restpe, argtpes, pt, uninstantiated);
	  checkBounds(fn.pos, undetparams, targs, "inferred ");
	  val treeSubst = new TreeTypeSubstituter(undetparams, targs);
	  treeSubst.traverse(fn);
	  treeSubst.traverseTrees(args);
	  uninstantiated.toList;
	} catch {
	  case ex: NoInstance =>
	    errorTree(fn,
	      "no type parameters for " +
	      applyErrorMsg(
		fn, " exist so that it can be applied to arguments ",
		args map (.tpe.widen), WildcardType) +
	      "\n --- because ---\n" + ex.getMessage());
	    List()
	}
    }

    /** Substitite free type variables `undetparams' of type constructor `tree' in pattern,
     *  given prototype `pt'.
     *  return type substitution for type parameters.
     */
    def inferConstructorInstance(tree: Tree, undetparams: List[Symbol], pt: Type): unit = {
      var restpe = skipImplicit(tree.tpe.resultType);
      var tvars = undetparams map freshVar;
      def computeArgs =
	try {
	  val targs = solve(tvars, undetparams, undetparams map varianceInType(restpe), true);
          checkBounds(tree.pos, undetparams, targs, "inferred ");
	  new TreeTypeSubstituter(undetparams, targs).traverse(tree)
	} catch {
	  case ex: NoInstance =>
            errorTree(tree, "constructor of type " + restpe +
		      " can be instantiated in more than one way to expected type " + pt +
		      "\n --- because ---\n" + ex.getMessage());
	}
      def instError = {
	System.out.println("ici " + tree + " " + undetparams + " " + pt);//debug
	if (settings.explaintypes.value) explainTypes(restpe.subst(undetparams, tvars), pt);
        errorTree(tree, "constructor cannot be instantiated to expected type" +
                  foundReqMsg(restpe, pt))
      }
      if (restpe.subst(undetparams, tvars) <:< pt) {
	computeArgs
      } else if (isFullyDefined(pt)) {
	System.out.println("infer constr " + tree + ":" + restpe + ", pt = " + pt);//debug
	val ptparams = freeTypeParams.collect(pt);
	System.out.println("free type params = " + ptparams);//debug
	val ptWithWildcards = pt.subst(ptparams, ptparams map (ptparam => WildcardType));
        tvars = undetparams map freshVar;
	if (restpe.subst(undetparams, tvars) <:< ptWithWildcards) {
	  computeArgs;
	  restpe = skipImplicit(tree.tpe.resultType);
	  System.out.println("new tree = " + tree + ":" + restpe);//debug
	  val ptvars = ptparams map freshVar;
	  if (restpe <:< pt.subst(ptparams, ptvars)) {
	    for (val tvar <- ptvars) {
	      val tparam = tvar.origin.symbol;
	      val Pair(loBounds, hiBounds) =
 		if (tvar.constr.inst != NoType && isFullyDefined(tvar.constr.inst))
		  Pair(List(tvar.constr.inst), List(tvar.constr.inst))
		else
		  Pair(tvar.constr.lobounds, tvar.constr.hibounds);
	      if (!loBounds.isEmpty || !hiBounds.isEmpty) {
                context.nextEnclosing(.tree.isInstanceOf[CaseDef]).pushTypeBounds(tparam);
		tparam setInfo TypeBounds(
		  lub(tparam.info.bounds.lo :: loBounds),
		  glb(tparam.info.bounds.hi :: hiBounds));
		System.out.println("new bounds of " + tparam + " = " + tparam.info);//debug
	      }
	    }
	  } else { System.out.println("no instance: "); instError }
	} else { System.out.println("not a subtype " + restpe.subst(undetparams, tvars) + " of " + ptWithWildcards); instError }
      } else { System.out.println("not fuly defined: " + pt); instError }
    }

    /* -- Overload Resolution ----------------------------------------------------------- */

    /** Assign `tree' the symbol and type of the alternative which matches
     *  prototype `pt', if it exists.
     *  If several alternatives match `pt', take parameterless one.
     *  If no alternative matches `pt', take the parameterless one anyway.
     */
    def inferExprAlternative(tree: Tree, pt: Type): unit = tree.tpe match {
      case OverloadedType(pre, alts) => tryTwice {
	var alts1 = alts filter (alt => isCompatible(pre.memberType(alt), pt));
        if (alts1.isEmpty) alts1 = alts;
	def improves(sym1: Symbol, sym2: Symbol): boolean = (
	  sym2 == NoSymbol ||
	  ((sym1.owner isSubClass sym2.owner) &&
	     {val tp1 = pre.memberType(sym1);
	      val tp2 = pre.memberType(sym2);
	      (tp2 == ErrorType ||
	       !global.typer.infer.isCompatible(tp2, pt) && global.typer.infer.isCompatible(tp1, pt) ||
	       (tp2.paramSectionCount > 0) && (tp1.paramSectionCount == 0 || specializes(tp1, tp2))
             )})
        );
	val best = ((NoSymbol: Symbol) /: alts1) ((best, alt) =>
	  if (improves(alt, best)) alt else best);
	val competing = alts1 dropWhile (alt => best == alt || improves(best, alt));
	if (best == NoSymbol) {
	  tree match {//debug
	    case Select(qual, _) =>
	      System.out.println("qual: " + qual + ":" + qual.tpe + " with decls " + qual.tpe.decls + " with members " + qual.tpe.members + " with members " + qual.tpe.member(newTermName("$minus")));
	    case _ =>
	  }
	  typeErrorTree(tree, tree.symbol.tpe, pt)
	} else if (!competing.isEmpty) {
          if (!pt.isError)
	    context.ambiguousError(tree.pos, pre, best, competing.head, "expected type " + pt);
	  setError(tree);
          ()
	} else {
	  tree.setSymbol(best).setType(pre.memberType(best))
	}
      }
    }

    /** Assign `tree' the type of an alternative which is applicable to `argtpes',
     *  and whose result type is compatible with `pt'.
     *  If several applicable alternatives exist, take the
     *  most specialized one.
     *  If no applicable alternative exists, and pt != WildcardType, try again
     *  with pt = WildcardType.
     *  Otherwise, if there is no best alternative, error.
     */
    def inferMethodAlternative(tree: Tree, undetparams: List[Symbol], argtpes: List[Type], pt: Type): unit = tree.tpe match {
      case OverloadedType(pre, alts) => tryTwice {
	if (settings.debug.value) log("infer method alt " + tree.symbol + " with alternatives " + (alts map pre.memberType) + ", argtpes = " + argtpes + ", pt = " + pt);//debug
	val alts1 = alts filter (alt => isApplicable(undetparams, pre.memberType(alt), argtpes, pt));
	def improves(sym1: Symbol, sym2: Symbol) = (
	  sym2 == NoSymbol || sym2.isError ||
	  ((sym1.owner isSubClass sym2.owner) &&
	   specializes(pre.memberType(sym1), pre.memberType(sym2)))
	);
	val best = ((NoSymbol: Symbol) /: alts1) ((best, alt) =>
	  if (improves(alt, best)) alt else best);
	val competing = alts1 dropWhile (alt => best == alt || improves(best, alt));
	if (best == NoSymbol) {
	  if (pt == WildcardType) {
	    errorTree(tree, applyErrorMsg(tree, " cannot be applied to ", argtpes, pt))
	  } else {
	    inferMethodAlternative(tree, undetparams, argtpes, WildcardType)
	  }
	} else if (!competing.isEmpty) {
          if (!(argtpes exists (.isError)) && !pt.isError)
	    context.ambiguousError(tree.pos, pre, best, competing.head,
				   "argument types " + argtpes.mkString("(", ",", ")") +
				   (if (pt == WildcardType) "" else " and expected result type " + pt));
	  setError(tree);
	  ()
	} else {
	  tree.setSymbol(best).setType(pre.memberType(best))
	}
      }
    }

    /** Try inference twice, once without views and once with views, unless views are already disabled.
     */
    def tryTwice(infer: => unit): unit = {
      if (context.reportGeneralErrors) {
	context.reportGeneralErrors = false;
	try {
	  infer
	} catch {
	  case ex: TypeError =>
	    context.reportGeneralErrors = true;
	    infer
	}
	context.reportGeneralErrors = true
      } else infer
    }

    /** Assign `tree' the type of unique polymorphic alternative with `nparams'
     *  as the number of type parameters, if it exists.
     *  If several or none such polymorphic alternatives exist, error.
     */
    def inferPolyAlternatives(tree: Tree, nparams: int): unit = tree.tpe match {
      case OverloadedType(pre, alts) =>
	val sym = tree.symbol filter (alt => alt.typeParams.length == nparams);
	if (sym == NoSymbol) {
	  errorTree(tree,
		    if (alts exists (alt => alt.typeParams.length > 0))
		      "wrong number of type parameters for " + treeSymTypeMsg(tree)
		    else treeSymTypeMsg(tree) + " does not take type parameters")
	} else if (sym.hasFlag(OVERLOADED)) {
	  val tparams = sym.alternatives.head.typeParams;
	  val tpe =
	    PolyType(tparams,
		     OverloadedType(AntiPolyType(pre, tparams map (.tpe)), sym.alternatives));
	  sym.setInfo(tpe);
	  tree.setSymbol(sym).setType(tpe);
	} else {
	  tree.setSymbol(sym).setType(pre.memberType(sym))
	}
    }
  }
}