summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/typechecker/Infer.scala
blob: 9e371dd2ddb2ced63c6a8c971a1d592b8c36a517 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
/* NSC -- new Scala compiler
 * Copyright 2005-2011 LAMP/EPFL
 * @author  Martin Odersky
 */

package scala.tools.nsc
package typechecker

import scala.collection.{ mutable, immutable }
import scala.collection.mutable.ListBuffer
import scala.util.control.ControlThrowable
import symtab.Flags._
import scala.annotation.tailrec

/** This trait ...
 *
 *  @author Martin Odersky
 *  @version 1.0
 */
trait Infer {
  self: Analyzer =>

  import global._
  import definitions._
  import typer.printInference
  import typeDebug.ptBlock

/* -- Type parameter inference utility functions --------------------------- */

  private def assertNonCyclic(tvar: TypeVar) =
    assert(tvar.constr.inst != tvar, tvar.origin)

  /** The formal parameter types corresponding to <code>formals</code>.
   *  If <code>formals</code> has a repeated last parameter, a list of
   *  (nargs - params.length + 1) copies of its type is returned.
   *  By-name types are replaced with their underlying type.
   *
   *  @param removeByName allows keeping ByName parameters. Used in NamesDefaults.
   *  @param removeRepeated allows keeping repeated parameter (if there's one argument). Used in NamesDefaults.
   */
  def formalTypes(formals: List[Type], nargs: Int, removeByName: Boolean = true, removeRepeated: Boolean = true): List[Type] = {
    val formals1 = if (removeByName) formals mapConserve {
      case TypeRef(_, ByNameParamClass, List(arg)) => arg
      case formal => formal
    } else formals
    if (isVarArgTypes(formals1) && (removeRepeated || formals.length != nargs)) {
      val ft = formals1.last.normalize.typeArgs.head
      formals1.init ::: (for (i <- List.range(formals1.length - 1, nargs)) yield ft)
    } else formals1
  }

  def actualTypes(actuals: List[Type], nformals: Int): List[Type] =
    if (nformals == 1 && !hasLength(actuals, 1))
      List(if (actuals.isEmpty) UnitClass.tpe else tupleType(actuals))
    else actuals

  def actualArgs(pos: Position, actuals: List[Tree], nformals: Int): List[Tree] = {
    val inRange = nformals == 1 && !hasLength(actuals, 1) && actuals.lengthCompare(MaxTupleArity) <= 0
    if (inRange && !phase.erasedTypes) List(atPos(pos)(gen.mkTuple(actuals)))
    else actuals
  }

  /** A fresh type variable with given type parameter as origin.
   *
   *  @param tparam ...
   *  @return       ...
   */
  def freshVar(tparam: Symbol): TypeVar = TypeVar(tparam)

  class NoInstance(msg: String) extends Throwable(msg) with ControlThrowable { }
  private class DeferredNoInstance(getmsg: () => String) extends NoInstance("") {
    override def getMessage(): String = getmsg()
  }
  private def ifNoInstance[T](f: String => T): PartialFunction[Throwable, T] = {
    case x: NoInstance  => f(x.getMessage)
  }

  /** Map every TypeVar to its constraint.inst field.
   *  throw a NoInstance exception if a NoType or WildcardType is encountered.
   */
  object instantiate extends TypeMap {
    private var excludedVars = immutable.Set[TypeVar]()
    def apply(tp: Type): Type = tp match {
      case WildcardType | BoundedWildcardType(_) | NoType =>
        throw new NoInstance("undetermined type")
      case tv @ TypeVar(origin, constr) if !tv.untouchable =>
        if (constr.inst == NoType) {
          throw new DeferredNoInstance(() =>
            "no unique instantiation of type variable " + origin + " could be found")
        } else if (excludedVars(tv)) {
          throw new NoInstance("cyclic instantiation")
        } else {
          excludedVars += tv
          val res = apply(constr.inst)
          excludedVars -= tv
          res
        }
      case _ =>
        mapOver(tp)
    }
  }

  /** Is type fully defined, i.e. no embedded anytypes or wildcards in it?
   *
   *  @param tp ...
   *  @return   ...
   */
  private[typechecker] def isFullyDefined(tp: Type): Boolean = tp match {
    case WildcardType | BoundedWildcardType(_) | NoType =>
      false
    case NoPrefix | ThisType(_) | ConstantType(_) =>
      true
    case TypeRef(pre, sym, args) =>
      isFullyDefined(pre) && (args forall isFullyDefined)
    case SingleType(pre, sym) =>
      isFullyDefined(pre)
    case RefinedType(ts, decls) =>
      ts forall isFullyDefined
    case TypeVar(origin, constr) if (constr.inst == NoType) =>
      false
    case _ =>
      try {
        instantiate(tp); true
      } catch {
        case ex: NoInstance => false
      }
  }

  /** Solve constraint collected in types `tvars`.
   *
   *  @param tvars      All type variables to be instantiated.
   *  @param tparams    The type parameters corresponding to `tvars`
   *  @param variances  The variances of type parameters; need to reverse
   *                    solution direction for all contravariant variables.
   *  @param upper      When `true` search for max solution else min.
   *  @throws NoInstance
   */
  def solvedTypes(tvars: List[TypeVar], tparams: List[Symbol],
                  variances: List[Int], upper: Boolean, depth: Int): List[Type] = {

    if (tvars.nonEmpty)
      printInference("[solve types] solving for " + tparams.map(_.name).mkString(", ") + " in " + tvars.mkString(", "))

    if (!solve(tvars, tparams, variances, upper, depth)) {
      // no panic, it's good enough to just guess a solution, we'll find out
      // later whether it works.  *ZAP* @M danger, Will Robinson! this means
      // that you should never trust inferred type arguments!
      //
      // Need to call checkBounds on the args/typars or type1 on the tree
      // for the expression that results from type inference see e.g., #2421:
      // implicit search had been ignoring this caveat
      // throw new DeferredNoInstance(() =>
      //   "no solution exists for constraints"+(tvars map boundsString))
    }
    for (tvar <- tvars ; if tvar.constr.inst == tvar) {
      if (tvar.origin.typeSymbol.info eq ErrorType)
        // this can happen if during solving a cyclic type parameter
        // such as T <: T gets completed. See #360
        tvar.constr.inst = ErrorType
      else
        assert(false, tvar.origin+" at "+tvar.origin.typeSymbol.owner)
    }
    tvars map instantiate
  }

  def skipImplicit(tp: Type) = tp match {
    case mt: MethodType if mt.isImplicit  => mt.resultType
    case _                                => tp
  }

  /** Automatically perform the following conversions on expression types:
   *  A method type becomes the corresponding function type.
   *  A nullary method type becomes its result type.
   *  Implicit parameters are skipped.
   *  This method seems to be performance critical.
   */
  def normalize(tp: Type): Type = tp match {
    case mt @ MethodType(params, restpe) if mt.isImplicit =>
      normalize(restpe)
    case mt @ MethodType(params, restpe) if !restpe.isDependent =>
      functionType(params map (_.tpe), normalize(restpe))
    case NullaryMethodType(restpe) =>
      normalize(restpe)
    case ExistentialType(tparams, qtpe) =>
      newExistentialType(tparams, normalize(qtpe))
    case tp1 =>
      tp1 // @MAT aliases already handled by subtyping
  }

  private val stdErrorClass = rootMirror.RootClass.newErrorClass(tpnme.ERROR)
  private val stdErrorValue = stdErrorClass.newErrorValue(nme.ERROR)

  /** The context-dependent inferencer part */
  class Inferencer(context: Context) extends InferencerContextErrors {
    import InferErrorGen._

    /* -- Error Messages --------------------------------------------------- */
    def setError[T <: Tree](tree: T): T = {
      debuglog("set error: "+ tree)
      // this breaks -Ydebug pretty radically
      // if (settings.debug.value) { // DEBUG
      //   println("set error: "+tree);
      //   throw new Error()
      // }
      def name        = newTermName("<error: " + tree.symbol + ">")
      def errorClass  = if (context.reportErrors) context.owner.newErrorClass(name.toTypeName) else stdErrorClass
      def errorValue  = if (context.reportErrors) context.owner.newErrorValue(name) else stdErrorValue
      def errorSym    = if (tree.isType) errorClass else errorValue

      if (tree.hasSymbol)
        tree setSymbol errorSym

      tree setType ErrorType
    }

    def getContext = context

    def issue(err: AbsTypeError): Unit = context.issue(err)

    def isPossiblyMissingArgs(found: Type, req: Type) = (found.resultApprox ne found) && isWeaklyCompatible(found.resultApprox, req)

    def explainTypes(tp1: Type, tp2: Type) =
      withDisambiguation(List(), tp1, tp2)(global.explainTypes(tp1, tp2))

    /* -- Tests & Checks---------------------------------------------------- */

    /** Check that <code>sym</code> is defined and accessible as a member of
     *  tree <code>site</code> with type <code>pre</code> in current context.
     *
     * Note: pre is not refchecked -- moreover, refchecking the resulting tree may not refcheck pre,
     *       since pre may not occur in its type (callers should wrap the result in a TypeTreeWithDeferredRefCheck)
     */
    def checkAccessible(tree: Tree, sym: Symbol, pre: Type, site: Tree): Tree =
      if (sym.isError) {
        tree setSymbol sym setType ErrorType
      } else {
        val topClass = context.owner.enclosingTopLevelClass
        if (context.unit.exists)
          context.unit.depends += sym.enclosingTopLevelClass

        var sym1 = sym filter (alt => context.isAccessible(alt, pre, site.isInstanceOf[Super]))
        // Console.println("check acc " + (sym, sym1) + ":" + (sym.tpe, sym1.tpe) + " from " + pre);//DEBUG
        if (sym1 == NoSymbol && sym.isJavaDefined && context.unit.isJava) // don't try to second guess Java; see #4402
          sym1 = sym

        if (sym1 == NoSymbol) {
          if (settings.debug.value) {
            Console.println(context)
            Console.println(tree)
            Console.println("" + pre + " " + sym.owner + " " + context.owner + " " + context.outer.enclClass.owner + " " + sym.owner.thisType + (pre =:= sym.owner.thisType))
          }
          ErrorUtils.issueTypeError(AccessError(tree, sym, pre, context.enclClass.owner,
            if (settings.check.isDefault)
              analyzer.lastAccessCheckDetails
            else
              ptBlock("because of an internal error (no accessible symbol)",
                "sym.ownerChain"                -> sym.ownerChain,
                "underlyingSymbol(sym)"         -> underlyingSymbol(sym),
                "pre"                           -> pre,
                "site"                          -> site,
                "tree"                          -> tree,
                "sym.accessBoundary(sym.owner)" -> sym.accessBoundary(sym.owner),
                "context.owner"                 -> context.owner,
                "context.outer.enclClass.owner" -> context.outer.enclClass.owner
              )
          ))(context)
          setError(tree)
        }
        else {
          if (context.owner.isTermMacro && (sym1 hasFlag LOCKED)) {
            // we must not let CyclicReference to be thrown from sym1.info
            // because that would mark sym1 erroneous, which it is not
            // but if it's a true CyclicReference then macro def will report it
            // see comments to TypeSigError for an explanation of this special case
            // [Eugene] is there a better way?
            val dummy = new TypeCompleter { val tree = EmptyTree; override def complete(sym: Symbol) {} }
            throw CyclicReference(sym1, dummy)
          }

          if (sym1.isTerm)
            sym1.cookJavaRawInfo() // xform java rawtypes into existentials

          val owntype = {
            try pre.memberType(sym1)
            catch {
              case ex: MalformedType =>
                if (settings.debug.value) ex.printStackTrace
                val sym2 = underlyingSymbol(sym1)
                val itype = pre.memberType(sym2)
                ErrorUtils.issueTypeError(
                  AccessError(tree, sym, pre, context.enclClass.owner,
                          "\n because its instance type "+itype+
                          (if ("malformed type: "+itype.toString==ex.msg) " is malformed"
                           else " contains a "+ex.msg)))(context)
                ErrorType
            }
          }
          tree setSymbol sym1 setType {
            pre match {
              case _: SuperType => owntype map (tp => if (tp eq pre) site.symbol.thisType else tp)
              case _            => owntype
            }
          }
        }
      }


    /** "Compatible" means conforming after conversions.
     *  "Raising to a thunk" is not implicit; therefore, for purposes of applicability and
     *  specificity, an arg type `A` is considered compatible with cbn formal parameter type `=>A`.
     *  For this behavior, the type `pt` must have cbn params preserved; for instance, `formalTypes(removeByName = false)`.
     *
     *  `isAsSpecific` no longer prefers A by testing applicability to A for both m(A) and m(=>A)
     *  since that induces a tie between m(=>A) and m(=>A,B*) [SI-3761]
     */
    private def isCompatible(tp: Type, pt: Type): Boolean = {
      def isCompatibleByName(tp: Type, pt: Type): Boolean = pt match {
        case TypeRef(_, ByNameParamClass, List(res)) if !isByNameParamType(tp) => isCompatible(tp, res)
        case _ => false
      }
      val tp1 = normalize(tp)
      (tp1 weak_<:< pt) || isCoercible(tp1, pt) || isCompatibleByName(tp, pt)
    }
    def isCompatibleArgs(tps: List[Type], pts: List[Type]) =
      (tps corresponds pts)(isCompatible)

    def isWeaklyCompatible(tp: Type, pt: Type): Boolean =
      pt.typeSymbol == UnitClass || // can perform unit coercion
      isCompatible(tp, pt) ||
      tp.isInstanceOf[MethodType] && // can perform implicit () instantiation
      tp.params.isEmpty && isCompatible(tp.resultType, pt)

    /** Like weakly compatible but don't apply any implicit conversions yet.
     *  Used when comparing the result type of a method with its prototype.
     *  [Martin] I think Infer is also created by Erasure, with the default
     *  implementation of isCoercible
     */
    def isConservativelyCompatible(tp: Type, pt: Type): Boolean =
      context.withImplicitsDisabled(isWeaklyCompatible(tp, pt))

    /** This is overridden in the Typer.infer with some logic, but since
     *  that's the only place in the compiler an Inferencer is ever created,
     *  I suggest this should either be abstract or have the implementation.
     */
    def isCoercible(tp: Type, pt: Type): Boolean = false

    /* -- Type instantiation------------------------------------------------ */

    /** Replace any (possibly bounded) wildcard types in type `tp`
     *  by existentially bound variables.
     */
    def makeFullyDefined(tp: Type): Type = {
      val tparams = new ListBuffer[Symbol]
      def addTypeParam(bounds: TypeBounds): Type = {
        val tparam = context.owner.newExistential(newTypeName("_"+tparams.size), context.tree.pos.focus) setInfo bounds
        tparams += tparam
        tparam.tpe
      }
      val tp1 = tp map {
        case WildcardType =>
          addTypeParam(TypeBounds.empty)
        case BoundedWildcardType(bounds) =>
          addTypeParam(bounds)
        case t => t
      }
      existentialAbstraction(tparams.toList, tp1)
    }

    /** Return inferred type arguments of polymorphic expression, given
     *  its type parameters and result type and a prototype <code>pt</code>.
     *  If no minimal type variables exist that make the
     *  instantiated type a subtype of <code>pt</code>, return null.
     *
     *  @param tparams ...
     *  @param restpe  ...
     *  @param pt      ...
     *  @return        ...
     */
    private def exprTypeArgs(tparams: List[Symbol], restpe: Type, pt: Type, useWeaklyCompatible: Boolean = false): (List[Type], List[TypeVar]) = {
      val tvars = tparams map freshVar
      val instResTp = restpe.instantiateTypeParams(tparams, tvars)
      if ( if (useWeaklyCompatible) isWeaklyCompatible(instResTp, pt) else isCompatible(instResTp, pt) ) {
        try {
          // If the restpe is an implicit method, and the expected type is fully defined
          // optimize type variables wrt to the implicit formals only; ignore the result type.
          // See test pos/jesper.scala
          val varianceType = restpe match {
            case mt: MethodType if mt.isImplicit && isFullyDefined(pt) =>
              MethodType(mt.params, AnyClass.tpe)
            case _ =>
              restpe
          }
          //println("try to solve "+tvars+" "+tparams)
          (solvedTypes(tvars, tparams, tparams map varianceInType(varianceType),
                      false, lubDepth(List(restpe, pt))), tvars)
        } catch {
          case ex: NoInstance => (null, null)
        }
      } else (null, null)
    }

    /** Return inferred proto-type arguments of function, given
    *  its type and value parameters and result type, and a
    *  prototype <code>pt</code> for the function result.
    *  Type arguments need to be either determined precisely by
    *  the prototype, or they are maximized, if they occur only covariantly
    *  in the value parameter list.
    *  If instantiation of a type parameter fails,
    *  take WildcardType for the proto-type argument.
    *
    *  @param tparams ...
    *  @param formals ...
    *  @param restype ...
    *  @param pt      ...
    *  @return        ...
    */
    def protoTypeArgs(tparams: List[Symbol], formals: List[Type], restpe: Type,
                      pt: Type): List[Type] = {
      /** Map type variable to its instance, or, if `variance` is covariant/contravariant,
       *  to its upper/lower bound */
      def instantiateToBound(tvar: TypeVar, variance: Int): Type = try {
        lazy val hiBounds = tvar.constr.hiBounds
        lazy val loBounds = tvar.constr.loBounds
        lazy val upper = glb(hiBounds)
        lazy val lower = lub(loBounds)
        def setInst(tp: Type): Type = {
          tvar setInst tp
          assertNonCyclic(tvar)//debug
          instantiate(tvar.constr.inst)
        }
        //Console.println("instantiate "+tvar+tvar.constr+" variance = "+variance);//DEBUG
        if (tvar.constr.inst != NoType)
          instantiate(tvar.constr.inst)
        else if ((variance & COVARIANT) != 0 && hiBounds.nonEmpty)
          setInst(upper)
        else if ((variance & CONTRAVARIANT) != 0 && loBounds.nonEmpty)
          setInst(lower)
        else if (hiBounds.nonEmpty && loBounds.nonEmpty && upper <:< lower)
          setInst(upper)
        else
          WildcardType
      } catch {
        case ex: NoInstance => WildcardType
      }
      val tvars = tparams map freshVar
      if (isConservativelyCompatible(restpe.instantiateTypeParams(tparams, tvars), pt))
        map2(tparams, tvars)((tparam, tvar) =>
          instantiateToBound(tvar, varianceInTypes(formals)(tparam)))
      else
        tvars map (tvar => WildcardType)
    }

    /** [Martin] Can someone comment this please? I have no idea what it's for
     *  and the code is not exactly readable.
     */
    object AdjustedTypeArgs {
      val Result = collection.mutable.LinkedHashMap
      type Result = collection.mutable.LinkedHashMap[Symbol, Option[Type]]

      def unapply(m: Result): Some[(List[Symbol], List[Type])] = Some(toLists(
        (m collect {case (p, Some(a)) => (p, a)}).unzip  ))

      object Undets {
        def unapply(m: Result): Some[(List[Symbol], List[Type], List[Symbol])] = Some(toLists{
          val (ok, nok) = m.map{case (p, a) => (p, a.getOrElse(null))}.partition(_._2 ne null)
          val (okArgs, okTparams) = ok.unzip
          (okArgs, okTparams, nok.keys)
        })
      }

      object AllArgsAndUndets {
        def unapply(m: Result): Some[(List[Symbol], List[Type], List[Type], List[Symbol])] = Some(toLists{
          val (ok, nok) = m.map{case (p, a) => (p, a.getOrElse(null))}.partition(_._2 ne null)
          val (okArgs, okTparams) = ok.unzip
          (okArgs, okTparams, m.values.map(_.getOrElse(NothingClass.tpe)), nok.keys)
        })
      }

      @inline private def toLists[A1, A2](pxs: (Iterable[A1], Iterable[A2])) = (pxs._1.toList, pxs._2.toList)
      @inline private def toLists[A1, A2, A3](pxs: (Iterable[A1], Iterable[A2], Iterable[A3])) = (pxs._1.toList, pxs._2.toList, pxs._3.toList)
      @inline private def toLists[A1, A2, A3, A4](pxs: (Iterable[A1], Iterable[A2], Iterable[A3], Iterable[A4])) = (pxs._1.toList, pxs._2.toList, pxs._3.toList, pxs._4.toList)
    }

    /** Retract arguments that were inferred to Nothing because inference failed. Correct types for repeated params.
     *
     * We detect Nothing-due-to-failure by only retracting a parameter if either:
     *  - it occurs in an invariant/contravariant position in `restpe`
     *  - `restpe == WildcardType`
     *
     * Retracted parameters are mapped to None.
     *  TODO:
     *    - make sure the performance hit of storing these in a map is acceptable (it's going to be a small map in 90% of the cases, I think)
     *    - refactor further up the callstack so that we don't have to do this post-factum adjustment?
     *
     * Rewrite for repeated param types:  Map T* entries to Seq[T].
     *  @return map from tparams to inferred arg, if inference was successful, tparams that map to None are considered left undetermined
     *    type parameters that are inferred as `scala.Nothing` and that are not covariant in <code>restpe</code> are taken to be undetermined
     */
    def adjustTypeArgs(tparams: List[Symbol], tvars: List[TypeVar], targs: List[Type], restpe: Type = WildcardType): AdjustedTypeArgs.Result  = {
      val buf = AdjustedTypeArgs.Result.newBuilder[Symbol, Option[Type]]

      foreach3(tparams, tvars, targs) { (tparam, tvar, targ) =>
        val retract = (
              targ.typeSymbol == NothingClass                                         // only retract Nothings
          && (restpe.isWildcard || (varianceInType(restpe)(tparam) & COVARIANT) == 0) // don't retract covariant occurrences
        )

        // checks opt.virtPatmat directly so one need not run under -Xexperimental to use virtpatmat
        buf += ((tparam,
          if (retract) None
          else Some(
            if (targ.typeSymbol == RepeatedParamClass)     targ.baseType(SeqClass)
            else if (targ.typeSymbol == JavaRepeatedParamClass) targ.baseType(ArrayClass)
            // this infers Foo.type instead of "object Foo" (see also widenIfNecessary)
            else if (targ.typeSymbol.isModuleClass || ((opt.experimental || opt.virtPatmat) && tvar.constr.avoidWiden)) targ
            else targ.widen
          )
        ))
      }
      buf.result
    }

    /** Return inferred type arguments, given type parameters, formal parameters,
    *  argument types, result type and expected result type.
    *  If this is not possible, throw a <code>NoInstance</code> exception.
    *  Undetermined type arguments are represented by `definitions.NothingClass.tpe`.
    *  No check that inferred parameters conform to their bounds is made here.
    *
    *  @param   tparams         the type parameters of the method
    *  @param   formals         the value parameter types of the method
    *  @param   restp           the result type of the method
    *  @param   argtpes         the argument types of the application
    *  @param   pt              the expected return type of the application
    *  @return  @see adjustTypeArgs
    *
    *  @throws                  NoInstance
    */
    def methTypeArgs(tparams: List[Symbol], formals: List[Type], restpe: Type,
                     argtpes: List[Type], pt: Type): AdjustedTypeArgs.Result = {
      val tvars = tparams map freshVar
      if (!sameLength(formals, argtpes))
        throw new NoInstance("parameter lists differ in length")

      val restpeInst = restpe.instantiateTypeParams(tparams, tvars)

      // first check if typevars can be fully defined from the expected type.
      // The return value isn't used so I'm making it obvious that this side
      // effects, because a function called "isXXX" is not the most obvious
      // side effecter.
      isConservativelyCompatible(restpeInst, pt)

      // Return value unused with the following explanation:
      //
      // Just wait and instantiate from the arguments.  That way,
      // we can try to apply an implicit conversion afterwards.
      // This case could happen if restpe is not fully defined, so the
      // search for an implicit from restpe => pt fails due to ambiguity.
      // See #347.  Therefore, the following two lines are commented out.
      //
      // throw new DeferredNoInstance(() =>
      //   "result type " + normalize(restpe) + " is incompatible with expected type " + pt)

      for (tvar <- tvars)
        if (!isFullyDefined(tvar)) tvar.constr.inst = NoType

      // Then define remaining type variables from argument types.
      map2(argtpes, formals) { (argtpe, formal) =>
        val tp1 = argtpe.deconst.instantiateTypeParams(tparams, tvars)
        val pt1 = formal.instantiateTypeParams(tparams, tvars)

        // Note that isCompatible side-effects: subtype checks involving typevars
        // are recorded in the typevar's bounds (see TypeConstraint)
        if (!isCompatible(tp1, pt1)) {
          throw new DeferredNoInstance(() =>
            "argument expression's type is not compatible with formal parameter type" + foundReqMsg(tp1, pt1))
        }
      }
      val targs = solvedTypes(
        tvars, tparams, tparams map varianceInTypes(formals),
        false, lubDepth(formals) max lubDepth(argtpes)
      )
      adjustTypeArgs(tparams, tvars, targs, restpe)
    }

    private[typechecker] def followApply(tp: Type): Type = tp match {
      case NullaryMethodType(restp) =>
        val restp1 = followApply(restp)
        if (restp1 eq restp) tp else restp1
      case _ =>
        val appmeth = tp.nonPrivateMember(nme.apply) filter (_.isPublic)
        if (appmeth == NoSymbol) tp
        else OverloadedType(tp, appmeth.alternatives)
    }

    def hasExactlyNumParams(tp: Type, n: Int): Boolean = tp match {
      case OverloadedType(pre, alts) =>
        alts exists (alt => hasExactlyNumParams(pre.memberType(alt), n))
      case _ =>
        val len = tp.params.length
        len == n || isVarArgsList(tp.params) && len <= n + 1
    }

    /**
     * Verifies whether the named application is valid. The logic is very
     * similar to the one in NamesDefaults.removeNames.
     *
     * @return a triple (argtpes1, argPos, namesOk) where
     *  - argtpes1 the argument types in named application (assignments to
     *    non-parameter names are treated as assignments, i.e. type Unit)
     *  - argPos a Function1[Int, Int] mapping arguments from their current
     *    to the corresponding position in params
     *  - namesOK is false when there's an invalid use of named arguments
     */
    private def checkNames(argtpes: List[Type], params: List[Symbol]) = {
      val argPos = Array.fill(argtpes.length)(-1)
      var positionalAllowed, namesOK = true
      var index = 0
      val argtpes1 = argtpes map {
        case NamedType(name, tp) => // a named argument
          var res = tp
          val pos = params.indexWhere(p => paramMatchesName(p, name) && !p.isSynthetic)

          if (pos == -1) {
            if (positionalAllowed) { // treat assignment as positional argument
              argPos(index) = index
              res = UnitClass.tpe
            } else                   // unknown parameter name
              namesOK = false
          } else if (argPos.contains(pos)) { // parameter specified twice
            namesOK = false
          } else {
            if (index != pos)
              positionalAllowed = false
            argPos(index) = pos
          }
          index += 1
          res
        case tp => // a positional argument
          argPos(index) = index
          if (!positionalAllowed)
            namesOK = false // positional after named
          index += 1
          tp
      }
      (argtpes1, argPos, namesOK)
    }

    /** don't do a () to (()) conversion for methods whose second parameter
     * is a varargs. This is a fairly kludgey way to address #3224.
     * We'll probably find a better way to do this by identifying
     * tupled and n-ary methods, but thiws is something for a future major revision.
     */
    def isUnitForVarArgs(args: List[AnyRef], params: List[Symbol]): Boolean =
      args.isEmpty && hasLength(params, 2) && isVarArgsList(params)

    /** Is there an instantiation of free type variables <code>undetparams</code>
     *  such that function type <code>ftpe</code> is applicable to
     *  <code>argtpes</code> and its result conform to <code>pt</code>?
     *
     *  @param undetparams ...
     *  @param ftpe        the type of the function (often a MethodType)
     *  @param argtpes     the argument types; a NamedType(name, tp) for named
     *    arguments. For each NamedType, if `name` does not exist in `ftpe`, that
     *    type is set to `Unit`, i.e. the corresponding argument is treated as
     *    an assignment expression (@see checkNames).
     *  @param pt          ...
     *  @return            ...
     */
    private def isApplicable(undetparams: List[Symbol], ftpe: Type,
                             argtpes0: List[Type], pt: Type): Boolean =
      ftpe match {
        case OverloadedType(pre, alts) =>
          alts exists (alt => isApplicable(undetparams, pre.memberType(alt), argtpes0, pt))
        case ExistentialType(tparams, qtpe) =>
          isApplicable(undetparams, qtpe, argtpes0, pt)
        case MethodType(params, _) =>
          val formals = formalTypes(params map { _.tpe }, argtpes0.length, removeByName = false)

          def tryTupleApply: Boolean = {
            // if 1 formal, 1 argtpe (a tuple), otherwise unmodified argtpes0
            val tupleArgTpes = actualTypes(argtpes0 map {
                // no assignment is treated as named argument here
              case NamedType(name, tp) => UnitClass.tpe
              case tp => tp
              }, formals.length)

            !sameLength(argtpes0, tupleArgTpes) &&
            !isUnitForVarArgs(argtpes0, params) &&
            isApplicable(undetparams, ftpe, tupleArgTpes, pt)
          }
          def typesCompatible(argtpes: List[Type]) = {
            val restpe = ftpe.resultType(argtpes)
            if (undetparams.isEmpty) {
              isCompatibleArgs(argtpes, formals) && isWeaklyCompatible(restpe, pt)
            } else {
              try {
                val AdjustedTypeArgs.Undets(okparams, okargs, leftUndet) = methTypeArgs(undetparams, formals, restpe, argtpes, pt)
                // #2665: must use weak conformance, not regular one (follow the monomorphic case above)
                (exprTypeArgs(leftUndet, restpe.instantiateTypeParams(okparams, okargs), pt, useWeaklyCompatible = true)._1 ne null) &&
                isWithinBounds(NoPrefix, NoSymbol, okparams, okargs)
              } catch {
                case ex: NoInstance => false
              }
            }
          }

          // very similar logic to doTypedApply in typechecker
          val lencmp = compareLengths(argtpes0, formals)
          if (lencmp > 0) tryTupleApply
          else if (lencmp == 0) {
            if (!argtpes0.exists(_.isInstanceOf[NamedType])) {
              // fast track if no named arguments are used
              typesCompatible(argtpes0)
            }
            else {
              // named arguments are used
              val (argtpes1, argPos, namesOK) = checkNames(argtpes0, params)
              // when using named application, the vararg param has to be specified exactly once
              ( namesOK && (isIdentity(argPos) || sameLength(formals, params)) &&
              // nb. arguments and names are OK, check if types are compatible
                typesCompatible(reorderArgs(argtpes1, argPos))
              )
            }
          }
          else {
            // not enough arguments, check if applicable using defaults
            val missing = missingParams[Type](argtpes0, params, {
              case NamedType(name, _) => Some(name)
              case _ => None
            })._1
            if (missing forall (_.hasDefault)) {
              // add defaults as named arguments
              val argtpes1 = argtpes0 ::: (missing map (p => NamedType(p.name, p.tpe)))
              isApplicable(undetparams, ftpe, argtpes1, pt)
            }
            else tryTupleApply
          }

        case NullaryMethodType(restpe) => // strip nullary method type, which used to be done by the polytype case below
          isApplicable(undetparams, restpe, argtpes0, pt)
        case PolyType(tparams, restpe) =>
          createFromClonedSymbols(tparams, restpe)((tps1, restpe1) => isApplicable(tps1 ::: undetparams, restpe1, argtpes0, pt))
        case ErrorType =>
          true
        case _ =>
          false
      }

    /**
     * Todo: Try to make isApplicable always safe (i.e. not cause TypeErrors).
     * The chance of TypeErrors should be reduced through context errors
     */
    private[typechecker] def isApplicableSafe(undetparams: List[Symbol], ftpe: Type,
                                              argtpes0: List[Type], pt: Type): Boolean = {
      val silentContext = context.makeSilent(false)
      val typer0 = newTyper(silentContext)
      val res1 = typer0.infer.isApplicable(undetparams, ftpe, argtpes0, pt)
      if (pt != WildcardType && silentContext.hasErrors) {
        silentContext.flushBuffer()
        val res2 = typer0.infer.isApplicable(undetparams, ftpe, argtpes0, WildcardType)
        if (silentContext.hasErrors) false else res2
      } else res1
    }

    /** Is type <code>ftpe1</code> strictly more specific than type <code>ftpe2</code>
     *  when both are alternatives in an overloaded function?
     *  @see SLS (sec:overloading-resolution)
     *
     *  @param ftpe1 ...
     *  @param ftpe2 ...
     *  @return      ...
     */
    def isAsSpecific(ftpe1: Type, ftpe2: Type): Boolean = ftpe1 match {
      case OverloadedType(pre, alts) =>
        alts exists (alt => isAsSpecific(pre.memberType(alt), ftpe2))
      case et: ExistentialType =>
        isAsSpecific(ftpe1.skolemizeExistential, ftpe2)
        //et.withTypeVars(isAsSpecific(_, ftpe2))
      case NullaryMethodType(res) =>
        isAsSpecific(res, ftpe2)
      case mt: MethodType if mt.isImplicit =>
        isAsSpecific(ftpe1.resultType, ftpe2)
      case MethodType(params, _) if params.nonEmpty =>
        var argtpes = params map (_.tpe)
        if (isVarArgsList(params) && isVarArgsList(ftpe2.params))
          argtpes = argtpes map (argtpe =>
            if (isRepeatedParamType(argtpe)) argtpe.typeArgs.head else argtpe)
        isApplicable(List(), ftpe2, argtpes, WildcardType)
      case PolyType(tparams, NullaryMethodType(res)) =>
        isAsSpecific(PolyType(tparams, res), ftpe2)
      case PolyType(tparams, mt: MethodType) if mt.isImplicit =>
        isAsSpecific(PolyType(tparams, mt.resultType), ftpe2)
      case PolyType(_, MethodType(params, _)) if params.nonEmpty =>
        isApplicable(List(), ftpe2, params map (_.tpe), WildcardType)
      // case NullaryMethodType(res) =>
      //   isAsSpecific(res, ftpe2)
      case ErrorType =>
        true
      case _ =>
        ftpe2 match {
          case OverloadedType(pre, alts) =>
            alts forall (alt => isAsSpecific(ftpe1, pre.memberType(alt)))
          case et: ExistentialType =>
            et.withTypeVars(isAsSpecific(ftpe1, _))
          case mt: MethodType =>
            !mt.isImplicit || isAsSpecific(ftpe1, mt.resultType)
          case NullaryMethodType(res) =>
            isAsSpecific(ftpe1, res)
          case PolyType(tparams, NullaryMethodType(res)) =>
            isAsSpecific(ftpe1, PolyType(tparams, res))
          case PolyType(tparams, mt: MethodType) =>
            !mt.isImplicit || isAsSpecific(ftpe1, PolyType(tparams, mt.resultType))
          case _ =>
            isAsSpecificValueType(ftpe1, ftpe2, List(), List())
        }
    }
    private def isAsSpecificValueType(tpe1: Type, tpe2: Type, undef1: List[Symbol], undef2: List[Symbol]): Boolean = (tpe1, tpe2) match {
      case (PolyType(tparams1, rtpe1), _) =>
        isAsSpecificValueType(rtpe1, tpe2, undef1 ::: tparams1, undef2)
      case (_, PolyType(tparams2, rtpe2)) =>
        isAsSpecificValueType(tpe1, rtpe2, undef1, undef2 ::: tparams2)
      case _ =>
        existentialAbstraction(undef1, tpe1) <:< existentialAbstraction(undef2, tpe2)
    }


/*
    def isStrictlyMoreSpecific(ftpe1: Type, ftpe2: Type): Boolean =
      ftpe1.isError || isAsSpecific(ftpe1, ftpe2) &&
      (!isAsSpecific(ftpe2, ftpe1) ||
       !ftpe1.isInstanceOf[OverloadedType] && ftpe2.isInstanceOf[OverloadedType] ||
       phase.erasedTypes && covariantReturnOverride(ftpe1, ftpe2))
*/
    /** Is sym1 (or its companion class in case it is a module) a subclass of
     *  sym2 (or its companion class in case it is a module)?
     */
    def isProperSubClassOrObject(sym1: Symbol, sym2: Symbol): Boolean =
      sym1 != sym2 && sym1 != NoSymbol && (sym1 isSubClass sym2) ||
      sym1.isModuleClass && isProperSubClassOrObject(sym1.linkedClassOfClass, sym2) ||
      sym2.isModuleClass && isProperSubClassOrObject(sym1, sym2.linkedClassOfClass)

    /** is symbol `sym1` defined in a proper subclass of symbol `sym2`?
     */
    def isInProperSubClassOrObject(sym1: Symbol, sym2: Symbol) =
      sym2 == NoSymbol || isProperSubClassOrObject(sym1.owner, sym2.owner)

    def isStrictlyMoreSpecific(ftpe1: Type, ftpe2: Type, sym1: Symbol, sym2: Symbol): Boolean = {
      // ftpe1 / ftpe2 are OverloadedTypes (possibly with one single alternative) if they
      // denote the type of an "apply" member method (see "followApply")
      ftpe1.isError || {
        val specificCount = (if (isAsSpecific(ftpe1, ftpe2)) 1 else 0) -
                            (if (isAsSpecific(ftpe2, ftpe1) &&
                                 // todo: move to isAsSpecific test
//                                 (!ftpe2.isInstanceOf[OverloadedType] || ftpe1.isInstanceOf[OverloadedType]) &&
                                 (!phase.erasedTypes || covariantReturnOverride(ftpe1, ftpe2))) 1 else 0)
        val subClassCount = (if (isInProperSubClassOrObject(sym1, sym2)) 1 else 0) -
                            (if (isInProperSubClassOrObject(sym2, sym1)) 1 else 0)
//        println("is more specific? "+sym1+":"+ftpe1+sym1.locationString+"/"+sym2+":"+ftpe2+sym2.locationString+":"+
//                specificCount+"/"+subClassCount)
        specificCount + subClassCount > 0
      }
    }
/*
      ftpe1.isError || {
        if (isAsSpecific(ftpe1, ftpe2))
          (!isAsSpecific(ftpe2, ftpe1) ||
           isProperSubClassOrObject(sym1.owner, sym2.owner) ||
           !ftpe1.isInstanceOf[OverloadedType] && ftpe2.isInstanceOf[OverloadedType] ||
           phase.erasedTypes && covariantReturnOverride(ftpe1, ftpe2))
        else
          !isAsSpecific(ftpe2, ftpe1) &&
          isProperSubClassOrObject(sym1.owner, sym2.owner)
      }
*/
    private def covariantReturnOverride(ftpe1: Type, ftpe2: Type): Boolean = (ftpe1, ftpe2) match {
      case (MethodType(_, rtpe1), MethodType(_, rtpe2)) =>
        rtpe1 <:< rtpe2 || rtpe2.typeSymbol == ObjectClass
      case _ =>
        false
    }
/*
    /** Is type `tpe1` a strictly better expression alternative than type `tpe2`?
     */
    def isStrictlyBetterExpr(tpe1: Type, tpe2: Type) = {
      isMethod(tpe2) && !isMethod(tpe1) ||
      isNullary(tpe1) && !isNullary(tpe2) ||
      isStrictlyBetter(tpe1, tpe2)
    }

    /** Is type `tpe1` a strictly better alternative than type `tpe2`?
     *  non-methods are always strictly better than methods
     *  nullary methods are always strictly better than non-nullary
     *  if both are non-nullary methods, then tpe1 is strictly better than tpe2 if
     *   - tpe1 specializes tpe2 and tpe2 does not specialize tpe1
     *   - tpe1 and tpe2 specialize each other and tpe1 has a strictly better resulttype than
     *     tpe2
     */
    def isStrictlyBetter(tpe1: Type, tpe2: Type) = {
      def isNullary(tpe: Type): Boolean = tpe match {
        case tp: RewrappingTypeProxy => isNullary(tp.underlying)
        case _ => tpe.paramSectionCount == 0 || tpe.params.isEmpty
      }
      def isMethod(tpe: Type): Boolean = tpe match {
        case tp: RewrappingTypeProxy => isMethod(tp.underlying)
        case MethodType(_, _) | PolyType(_, _) => true
        case _ => false
      }
      def hasStrictlyBetterResult =
        resultIsBetter(tpe1, tpe2, List(), List()) && !resultIsBetter(tpe2, tpe1, List(), List())
      if (!isMethod(tpe1))
        isMethod(tpe2) || hasStrictlyBetterResult

      isNullary(tpe1) && !isNullary(tpe2) ||
      is

      else if (isNullary(tpe1))
        isMethod(tpe2) && (!isNullary(tpe2) || hasStrictlyBetterResult)
      else
        specializes(tpe1, tpe2) && (!specializes(tpe2, tpe1) || hasStrictlyBetterResult)
    }

*/
    /** error if arguments not within bounds. */
    def checkBounds(tree: Tree, pre: Type, owner: Symbol,
                    tparams: List[Symbol], targs: List[Type], prefix: String): Boolean = {
      //@M validate variances & bounds of targs wrt variances & bounds of tparams
      //@M TODO: better place to check this?
      //@M TODO: errors for getters & setters are reported separately
      val kindErrors = checkKindBounds(tparams, targs, pre, owner)

      if(!kindErrors.isEmpty) {
        if (targs contains WildcardType) true
        else { KindBoundErrors(tree, prefix, targs, tparams, kindErrors); false }
      } else if (!isWithinBounds(pre, owner, tparams, targs)) {
        if (!(targs exists (_.isErroneous)) && !(tparams exists (_.isErroneous))) {
          NotWithinBounds(tree, prefix, targs, tparams, kindErrors)
          false
        } else true
      } else true
    }

    def checkKindBounds(tparams: List[Symbol], targs: List[Type], pre: Type, owner: Symbol): List[String] = {
      checkKindBounds0(tparams, targs, pre, owner, true) map {
        case (targ, tparam, kindErrors) =>
          kindErrors.errorMessage(targ, tparam)
      }
    }

    /** Substitute free type variables `undetparams` of polymorphic argument
     *  expression `tree`, given two prototypes `strictPt`, and `lenientPt`.
     *  `strictPt` is the first attempt prototype where type parameters
     *  are left unchanged. `lenientPt` is the fall-back prototype where type
     *  parameters are replaced by `WildcardType`s. We try to instantiate
     *  first to `strictPt` and then, if this fails, to `lenientPt`. If both
     *  attempts fail, an error is produced.
     */
    def inferArgumentInstance(tree: Tree, undetparams: List[Symbol], strictPt: Type, lenientPt: Type) {
      printInference(
        ptBlock("inferArgumentInstance",
          "tree"        -> tree,
          "tree.tpe"    -> tree.tpe,
          "undetparams" -> undetparams,
          "strictPt"    -> strictPt,
          "lenientPt"   -> lenientPt
        )
      )
      var targs = exprTypeArgs(undetparams, tree.tpe, strictPt)._1
      if ((targs eq null) || !(tree.tpe.subst(undetparams, targs) <:< strictPt))
        targs = exprTypeArgs(undetparams, tree.tpe, lenientPt)._1

      substExpr(tree, undetparams, targs, lenientPt)
      printInference("[inferArgumentInstance] finished, targs = " + targs)
    }

    /** Infer type arguments `targs` for `tparams` of polymorphic expression in `tree`, given prototype `pt`.
     *
     * Substitute `tparams` to `targs` in `tree`, after adjustment by `adjustTypeArgs`, returning the type parameters that were not determined
     * If passed, infers against specified type `treeTp` instead of `tree.tp`.
     */
    def inferExprInstance(tree: Tree, tparams: List[Symbol], pt: Type = WildcardType, treeTp0: Type = null, keepNothings: Boolean = true, useWeaklyCompatible: Boolean = false): List[Symbol] = {
      val treeTp = if(treeTp0 eq null) tree.tpe else treeTp0 // can't refer to tree in default for treeTp0
      printInference(
        ptBlock("inferExprInstance",
          "tree"    -> tree,
          "tree.tpe"-> tree.tpe,
          "tparams" -> tparams,
          "pt"      -> pt
        )
      )
      val (targs, tvars) = exprTypeArgs(tparams, treeTp, pt, useWeaklyCompatible)

      if (keepNothings || (targs eq null)) { //@M: adjustTypeArgs fails if targs==null, neg/t0226
        substExpr(tree, tparams, targs, pt)
        List()
      } else {
        val AdjustedTypeArgs.Undets(okParams, okArgs, leftUndet) = adjustTypeArgs(tparams, tvars, targs)
        printInference(
          ptBlock("inferExprInstance/AdjustedTypeArgs",
            "okParams" -> okParams,
            "okArgs" -> okArgs,
            "leftUndet" -> leftUndet
          )
        )
        substExpr(tree, okParams, okArgs, pt)
        leftUndet
      }
    }

    /** Substitute free type variables `undetparams` of polymorphic argument
     *  expression `tree` to `targs`, Error if `targs` is null.
     *
     *  @param tree ...
     *  @param undetparams ...
     *  @param targs ...
     *  @param pt ...
     */
    private def substExpr(tree: Tree, undetparams: List[Symbol],
                          targs: List[Type], pt: Type) {
      if (targs eq null) {
        if (!tree.tpe.isErroneous && !pt.isErroneous)
          PolymorphicExpressionInstantiationError(tree, undetparams, pt)
      } else {
        new TreeTypeSubstituter(undetparams, targs).traverse(tree)
        notifyUndetparamsInferred(undetparams, targs)
      }
    }

    /** Substitute free type variables <code>undetparams</code> of application
     *  <code>fn(args)</code>, given prototype <code>pt</code>.
     *
     *  @param fn          fn: the function that needs to be instantiated.
     *  @param undetparams the parameters that need to be determined
     *  @param args        the actual arguments supplied in the call.
     *  @param pt          the expected type of the function application
     *  @return            The type parameters that remain uninstantiated,
     *                     and that thus have not been substituted.
     */
    def inferMethodInstance(fn: Tree, undetparams: List[Symbol],
                            args: List[Tree], pt0: Type): List[Symbol] = fn.tpe match {
      case MethodType(params0, _) =>
        try {
          val pt      = if (pt0.typeSymbol == UnitClass) WildcardType else pt0
          val formals = formalTypes(params0 map (_.tpe), args.length)
          val argtpes = actualTypes(args map (x => elimAnonymousClass(x.tpe.deconst)), formals.length)
          val restpe  = fn.tpe.resultType(argtpes)

          val AdjustedTypeArgs.AllArgsAndUndets(okparams, okargs, allargs, leftUndet) =
            methTypeArgs(undetparams, formals, restpe, argtpes, pt)

          printInference("[infer method] solving for %s in %s based on (%s)%s (%s)".format(
            undetparams.map(_.name).mkString(", "),
            fn.tpe,
            argtpes.mkString(", "),
            restpe,
            (okparams map (_.name), okargs).zipped.map(_ + "=" + _).mkString("solved: ", ", ", "")
          ))

          if (checkBounds(fn, NoPrefix, NoSymbol, undetparams, allargs, "inferred ")) {
            val treeSubst = new TreeTypeSubstituter(okparams, okargs)
            treeSubst traverseTrees fn :: args
            notifyUndetparamsInferred(okparams, okargs)

            leftUndet match {
              case Nil  => Nil
              case xs   =>
                // #3890
                val xs1 = treeSubst.typeMap mapOver xs
                if (xs ne xs1)
                  new TreeSymSubstTraverser(xs, xs1) traverseTrees fn :: args

                xs1
            }
          } else Nil
        }
        catch ifNoInstance { msg =>
          NoMethodInstanceError(fn, args, msg); List()
        }
    }

    def widen(tp: Type): Type = abstractTypesToBounds(tp)

    /** Substitute free type variables <code>undetparams</code> of type constructor
     *  <code>tree</code> in pattern, given prototype <code>pt</code>.
     *
     *  @param tree        the constuctor that needs to be instantiated
     *  @param undetparams the undetermined type parameters
     *  @param pt          the expected result type of the instance
     */
    def inferConstructorInstance(tree: Tree, undetparams: List[Symbol], pt0: Type) {
      val pt       = widen(pt0)
      val ptparams = freeTypeParamsOfTerms(pt)
      val ctorTp   = tree.tpe
      val resTp    = ctorTp.finalResultType

      debuglog("infer constr inst "+ tree +"/"+ undetparams +"/ pt= "+ pt +" pt0= "+ pt0 +" resTp: "+ resTp)

      /** Compute type arguments for undetermined params
       */
      def inferFor(pt: Type): Option[List[Type]] = {
        val tvars   = undetparams map freshVar
        val resTpV  = resTp.instantiateTypeParams(undetparams, tvars)

        if (resTpV <:< pt) {
          try {
            // debuglog("TVARS "+ (tvars map (_.constr)))
            // look at the argument types of the primary constructor corresponding to the pattern
            val variances  = undetparams map varianceInType(ctorTp.paramTypes.headOption getOrElse ctorTp)
            val targs      = solvedTypes(tvars, undetparams, variances, true, lubDepth(List(resTp, pt)))
            // checkBounds(tree, NoPrefix, NoSymbol, undetparams, targs, "inferred ")
            // no checkBounds here. If we enable it, test bug602 fails.
            // TODO: reinstate checkBounds, return params that fail to meet their bounds to undetparams
            Some(targs)
          } catch ifNoInstance { msg =>
            debuglog("NO INST "+ (tvars, tvars map (_.constr)))
            NoConstructorInstanceError(tree, resTp, pt, msg)
            None
          }
        } else {
          debuglog("not a subtype: "+ resTpV +" </:< "+ pt)
          None
        }
      }

      def inferForApproxPt =
        if (isFullyDefined(pt)) {
          inferFor(pt.instantiateTypeParams(ptparams, ptparams map (x => WildcardType))) flatMap { targs =>
            val ctorTpInst = tree.tpe.instantiateTypeParams(undetparams, targs)
            val resTpInst  = skipImplicit(ctorTpInst.finalResultType)
            val ptvars     =
              ptparams map {
                // since instantiateTypeVar wants to modify the skolem that corresponds to the method's type parameter,
                // and it uses the TypeVar's origin to locate it, deskolemize the existential skolem to the method tparam skolem
                // (the existential skolem was created by adaptConstrPattern to introduce the type slack necessary to soundly deal with variant type parameters)
                case skolem if skolem.isGADTSkolem => freshVar(skolem.deSkolemize.asInstanceOf[TypeSymbol])
                case p => freshVar(p)
              }

            val ptV        = pt.instantiateTypeParams(ptparams, ptvars)

            if (isPopulated(resTpInst, ptV)) {
              ptvars foreach instantiateTypeVar
              debuglog("isPopulated "+ resTpInst +", "+ ptV +" vars= "+ ptvars)
              Some(targs)
            } else None
          }
        } else None

      (inferFor(pt) orElse inferForApproxPt) map { targs =>
        new TreeTypeSubstituter(undetparams, targs).traverse(tree)
        notifyUndetparamsInferred(undetparams, targs)
      } getOrElse {
        debugwarn("failed inferConstructorInstance for "+ tree  +" : "+ tree.tpe +" under "+ undetparams +" pt = "+ pt +(if(isFullyDefined(pt)) " (fully defined)" else " (not fully defined)"))
        // if (settings.explaintypes.value) explainTypes(resTp.instantiateTypeParams(undetparams, tvars), pt)
        ConstrInstantiationError(tree, resTp, pt)
      }
    }


    def instBounds(tvar: TypeVar): (Type, Type) = {
      val tparam = tvar.origin.typeSymbol
      val instType = toOrigin(tvar.constr.inst)
      val (loBounds, hiBounds) =
        if (instType != NoType && isFullyDefined(instType)) (List(instType), List(instType))
        else (tvar.constr.loBounds, tvar.constr.hiBounds)
      val lo = lub(tparam.info.bounds.lo :: loBounds map toOrigin)
      val hi = glb(tparam.info.bounds.hi :: hiBounds map toOrigin)
      (lo, hi)
    }

    def isInstantiatable(tvars: List[TypeVar]) = {
      val tvars1 = tvars map (_.cloneInternal)
      // Note: right now it's not clear that solving is complete, or how it can be made complete!
      // So we should come back to this and investigate.
      solve(tvars1, tvars1 map (_.origin.typeSymbol), tvars1 map (x => COVARIANT), false)
    }

    // this is quite nasty: it destructively changes the info of the syms of e.g., method type params (see #3692, where the type param T's bounds were set to >: T <: T, so that parts looped)
    // the changes are rolled back by restoreTypeBounds, but might be unintentially observed in the mean time
    def instantiateTypeVar(tvar: TypeVar) {
      val tparam = tvar.origin.typeSymbol
      if (false &&
          tvar.constr.inst != NoType &&
          isFullyDefined(tvar.constr.inst) &&
          (tparam.info.bounds containsType tvar.constr.inst)) {
        context.nextEnclosing(_.tree.isInstanceOf[CaseDef]).pushTypeBounds(tparam)
        tparam setInfo tvar.constr.inst
        tparam resetFlag DEFERRED
        debuglog("new alias of " + tparam + " = " + tparam.info)
      } else {
        val (lo, hi) = instBounds(tvar)
        if (lo <:< hi) {
          if (!((lo <:< tparam.info.bounds.lo) && (tparam.info.bounds.hi <:< hi)) // bounds were improved
             && tparam != lo.typeSymbolDirect && tparam != hi.typeSymbolDirect) { // don't create illegal cycles
            context.nextEnclosing(_.tree.isInstanceOf[CaseDef]).pushTypeBounds(tparam)
            tparam setInfo TypeBounds(lo, hi)
            debuglog("new bounds of " + tparam + " = " + tparam.info)
          } else {
            debuglog("redundant: "+tparam+" "+tparam.info+"/"+lo+" "+hi)
          }
        } else {
          debuglog("inconsistent: "+tparam+" "+lo+" "+hi)
        }
      }
    }

    /** Does `tp` contain any types that cannot be checked at run-time (i.e., after erasure, will isInstanceOf[erased(tp)] imply conceptualIsInstanceOf[tp]?)
     * we should find a way to ask erasure: hey, is `tp` going to make it through you with all of its isInstanceOf resolving powers intact?
     * TODO: at the very least, reduce duplication wrt checkCheckable
     */
    def containsUnchecked(tp: Type): Boolean = {
      def check(tp: Type, bound: List[Symbol]): Boolean = {
        def isSurroundingTypeParam(sym: Symbol) = {
          val e = context.scope.lookupEntry(sym.name)
            (    (e ne null)
              && (e.sym == sym )
              && !e.sym.isTypeParameterOrSkolem
              && (e.owner == context.scope)
            )
        }
        def isLocalBinding(sym: Symbol) = (
          sym.isAbstractType && (
               (bound contains sym)
            || (sym.name == tpnme.WILDCARD)
            || isSurroundingTypeParam(sym)
          )
        )
        tp.normalize match {
          case SingleType(pre, _) =>
            check(pre, bound)
          case TypeRef(_, ArrayClass, arg :: _) =>
            check(arg, bound)
          case tp @ TypeRef(pre, sym, args) =>
            (  (sym.isAbstractType && !isLocalBinding(sym))
            || (args exists (x => !isLocalBinding(x.typeSymbol)))
            || check(pre, bound)
            )
          // case RefinedType(_, decls) if decls.nonEmpty =>
          //   patternWarning(tp, "refinement ")
          case RefinedType(parents, _) =>
            parents exists (p => check(p, bound))
          case ExistentialType(quantified, tp1) =>
            check(tp1, bound ::: quantified)
          case _ =>
            false
        }
      }
      check(tp, Nil)
    }

    // if top-level abstract types can be checked using a classtag extractor, don't warn about them
    def checkCheckable(tree: Tree, tp: Type, inPattern: Boolean, canRemedy: Boolean = false) = {
      val kind = if (inPattern) "pattern " else ""

      def patternWarning(tp0: Type, prefix: String) = {
        context.unit.uncheckedWarning(tree.pos, prefix+tp0+" in type "+kind+tp+" is unchecked since it is eliminated by erasure")
      }
      def check(tp: Type, bound: List[Symbol]) {
        def isLocalBinding(sym: Symbol) =
          sym.isAbstractType &&
          ((bound contains sym) ||
           sym.name == tpnme.WILDCARD || {
            val e = context.scope.lookupEntry(sym.name)
            (e ne null) && e.sym == sym && !e.sym.isTypeParameterOrSkolem && e.owner == context.scope
          })
        tp match {
          case SingleType(pre, _) =>
            check(pre, bound)
          case TypeRef(pre, sym, args) =>
            if (sym.isAbstractType) {
              // we only use the extractor for top-level type tests, type arguments (see below) remain unchecked
              if (!isLocalBinding(sym) && !canRemedy) patternWarning(tp, "abstract type ")
            } else if (sym.isAliasType) {
              check(tp.normalize, bound)
            } else if (sym == NothingClass || sym == NullClass || sym == AnyValClass) {
              TypePatternOrIsInstanceTestError(tree, tp)
            } else {
              for (arg <- args) {
                if (sym == ArrayClass) check(arg, bound)
                else if (arg.typeArgs.nonEmpty) ()   // avoid spurious warnings with higher-kinded types
                else arg match {
                  case TypeRef(_, sym, _) if isLocalBinding(sym) =>
                    ;
                  case _ =>
                    // Want to warn about type arguments, not type parameters. Otherwise we'll
                    // see warnings about "invisible" types, like: val List(x0) = x1 leading to "non
                    // variable type-argument A in type pattern List[A]..."
                    if (!arg.typeSymbol.isTypeParameterOrSkolem)
                      patternWarning(arg, "non variable type-argument ")
                }
              }
            }
            check(pre, bound)
          case RefinedType(parents, decls) =>
            if (decls.isEmpty) for (p <- parents) check(p, bound)
            else patternWarning(tp, "refinement ")
          case ExistentialType(quantified, tp1) =>
            check(tp1, bound ::: quantified)
          case ThisType(_) =>
            ()
          case NoPrefix =>
            ()
          case _ =>
            patternWarning(tp, "type ")
            ()
        }
      }
      check(tp, List())
    }

    /** Type intersection of simple type tp1 with general type tp2.
     *  The result eliminates some redundancies.
     */
    def intersect(tp1: Type, tp2: Type): Type = {
      if (tp1 <:< tp2) tp1
      else if (tp2 <:< tp1) tp2
      else {
        val reduced2 = tp2 match {
          case rtp @ RefinedType(parents2, decls2) =>
            copyRefinedType(rtp, parents2 filterNot (tp1 <:< _), decls2)
          case _ =>
            tp2
        }
        intersectionType(List(tp1, reduced2))
      }
    }

    def inferTypedPattern(tree0: Tree, pattp: Type, pt0: Type, canRemedy: Boolean): Type = {
      val pt        = widen(pt0)
      val ptparams  = freeTypeParamsOfTerms(pt)
      val tpparams  = freeTypeParamsOfTerms(pattp)

      def ptMatchesPattp = pt matchesPattern pattp.widen
      def pattpMatchesPt = pattp matchesPattern pt

      /** If we can absolutely rule out a match we can fail early.
       *  This is the case if the scrutinee has no unresolved type arguments
       *  and is a "final type", meaning final + invariant in all type parameters.
       */
      if (pt.isFinalType && ptparams.isEmpty && !ptMatchesPattp) {
        IncompatibleScrutineeTypeError(tree0, pattp, pt)
        return ErrorType
      }

      checkCheckable(tree0, pattp, inPattern = true, canRemedy)
      if (pattp <:< pt) ()
      else {
        debuglog("free type params (1) = " + tpparams)

        var tvars = tpparams map freshVar
        var tp    = pattp.instantiateTypeParams(tpparams, tvars)

        if ((tp <:< pt) && isInstantiatable(tvars)) ()
        else {
          tvars = tpparams map freshVar
          tp    = pattp.instantiateTypeParams(tpparams, tvars)

          debuglog("free type params (2) = " + ptparams)

          val ptvars = ptparams map freshVar
          val pt1    = pt.instantiateTypeParams(ptparams, ptvars)

          // See ticket #2486 for an example of code which would incorrectly
          // fail if we didn't allow for pattpMatchesPt.
          if (isPopulated(tp, pt1) && isInstantiatable(tvars ++ ptvars) || pattpMatchesPt)
             ptvars foreach instantiateTypeVar
          else {
            PatternTypeIncompatibleWithPtError1(tree0, pattp, pt)
            return ErrorType
          }
        }
        tvars foreach instantiateTypeVar
      }
      /** If the scrutinee has free type parameters but the pattern does not,
       *  we have to flip the arguments so the expected type is treated as more
       *  general when calculating the intersection.  See run/bug2755.scala.
       */
      if (tpparams.isEmpty && ptparams.nonEmpty) intersect(pattp, pt)
      else intersect(pt, pattp)
    }

    def inferModulePattern(pat: Tree, pt: Type) =
      if (!(pat.tpe <:< pt)) {
        val ptparams = freeTypeParamsOfTerms(pt)
        debuglog("free type params (2) = " + ptparams)
        val ptvars = ptparams map freshVar
        val pt1 = pt.instantiateTypeParams(ptparams, ptvars)
        if (pat.tpe <:< pt1)
          ptvars foreach instantiateTypeVar
        else
          PatternTypeIncompatibleWithPtError2(pat, pt1, pt)
      }

    object toOrigin extends TypeMap {
      def apply(tp: Type): Type = tp match {
        case TypeVar(origin, _) => origin
        case _ => mapOver(tp)
      }
    }

    object approximateAbstracts extends TypeMap {
      def apply(tp: Type): Type = tp.normalize match {
        case TypeRef(pre, sym, _) if sym.isAbstractType => WildcardType
        case _ => mapOver(tp)
      }
    }

    /** Collects type parameters referred to in a type.
     */
    def freeTypeParamsOfTerms(tp: Type): List[Symbol] = {
      // An inferred type which corresponds to an unknown type
      // constructor creates a file/declaration order-dependent crasher
      // situation, the behavior of which depends on the state at the
      // time the typevar is created. Until we can deal with these
      // properly, we can avoid it by ignoring type parameters which
      // have type constructors amongst their bounds. See SI-4070.
      def isFreeTypeParamOfTerm(sym: Symbol) = (
        sym.isAbstractType
          && sym.owner.isTerm
          && !sym.info.bounds.exists(_.typeParams.nonEmpty)
        )

      // Intentionally *not* using `Type#typeSymbol` here, which would normalize `tp`
      // and collect symbols from the result type of any resulting `PolyType`s, which 
      // are not free type parameters of `tp`.
      //
      // Contrast with `isFreeTypeParamNoSkolem`.
      val syms = tp collect {
        case TypeRef(_, sym, _) if isFreeTypeParamOfTerm(sym) => sym
      }
      syms.distinct
    }

    /* -- Overload Resolution ---------------------------------------------- */

/*
    def checkNotShadowed(pos: Position, pre: Type, best: Symbol, eligible: List[Symbol]) =
      if (!phase.erasedTypes)
        for (alt <- eligible) {
          if (isProperSubClassOrObject(alt.owner, best.owner))
            error(pos,
                  "erroneous reference to overloaded definition,\n"+
                  "most specific definition is: "+best+best.locationString+" of type "+pre.memberType(best)+
                  ",\nyet alternative definition   "+alt+alt.locationString+" of type "+pre.memberType(alt)+
                  "\nis defined in a subclass")
        }
*/

    /** Assign <code>tree</code> the symbol and type of the alternative which
     *  matches prototype <code>pt</code>, if it exists.
     *  If several alternatives match `pt`, take parameterless one.
     *  If no alternative matches `pt`, take the parameterless one anyway.
     */
    def inferExprAlternative(tree: Tree, pt: Type) = tree.tpe match {
      case OverloadedType(pre, alts) => tryTwice { isSecondTry =>
        val alts0          = alts filter (alt => isWeaklyCompatible(pre.memberType(alt), pt))
        val noAlternatives = alts0.isEmpty 
        val alts1          = if (noAlternatives) alts else alts0

        //println("trying "+alts1+(alts1 map (_.tpe))+(alts1 map (_.locationString))+" for "+pt)
        def improves(sym1: Symbol, sym2: Symbol): Boolean =
          sym2 == NoSymbol || sym2.hasAnnotation(BridgeClass) ||
          { val tp1 = pre.memberType(sym1)
            val tp2 = pre.memberType(sym2)
            (tp2 == ErrorType ||
             !global.typer.infer.isWeaklyCompatible(tp2, pt) && global.typer.infer.isWeaklyCompatible(tp1, pt) ||
             isStrictlyMoreSpecific(tp1, tp2, sym1, sym2)) }

        val best = ((NoSymbol: Symbol) /: alts1) ((best, alt) =>
          if (improves(alt, best)) alt else best)

        val competing = alts1 dropWhile (alt => best == alt || improves(best, alt))

        if (best == NoSymbol) {
          if (settings.debug.value) {
            tree match {
              case Select(qual, _) =>
                Console.println("qual: " + qual + ":" + qual.tpe +
                                   " with decls " + qual.tpe.decls +
                                   " with members " + qual.tpe.members +
                                   " with members " + qual.tpe.member(newTermName("$minus")))
              case _ =>
            }
          }
          // todo: missing test case
          NoBestExprAlternativeError(tree, pt, isSecondTry)
        } else if (!competing.isEmpty) {
          if (noAlternatives) NoBestExprAlternativeError(tree, pt, isSecondTry)
          else if (!pt.isErroneous) AmbiguousExprAlternativeError(tree, pre, best, competing.head, pt, isSecondTry)
        } else {
//          val applicable = alts1 filter (alt =>
//            global.typer.infer.isWeaklyCompatible(pre.memberType(alt), pt))
//          checkNotShadowed(tree.pos, pre, best, applicable)
          tree.setSymbol(best).setType(pre.memberType(best))
        }
      }
    }

    @inline private def inSilentMode(context: Context)(expr: => Boolean): Boolean = {
      val oldState = context.state
      context.setBufferErrors()
      val res = expr
      val contextWithErrors = context.hasErrors
      context.flushBuffer()
      context.restoreState(oldState)
      res && !contextWithErrors
    }

    // Checks against the name of the parameter and also any @deprecatedName.
    private def paramMatchesName(param: Symbol, name: Name) =
      param.name == name || param.deprecatedParamName.exists(_ == name)

    // Check the first parameter list the same way.
    private def methodMatchesName(method: Symbol, name: Name) = method.paramss match {
      case ps :: _  => ps exists (p => paramMatchesName(p, name))
      case _        => false
    }

    private def resolveOverloadedMethod(argtpes: List[Type], eligible: List[Symbol]) = {
      // If there are any foo=bar style arguments, and any of the overloaded
      // methods has a parameter named `foo`, then only those methods are considered.
      val namesOfArgs = argtpes collect { case NamedType(name, _) => name }
      val namesMatch = (
        if (namesOfArgs.isEmpty) Nil
        else eligible filter { m =>
          namesOfArgs forall { name =>
            methodMatchesName(m, name)
          }
        }
      )

      if (namesMatch.nonEmpty) namesMatch
      else if (eligible.isEmpty || eligible.tail.isEmpty) eligible
      else eligible filter { alt =>
        // for functional values, the `apply` method might be overloaded
        val mtypes = followApply(alt.tpe) match {
          case OverloadedType(_, alts) => alts map (_.tpe)
          case t                       => List(t)
        }
        // Drop those that use a default; keep those that use vararg/tupling conversion.
        mtypes exists (t =>
          !t.typeSymbol.hasDefaultFlag && {
            compareLengths(t.params, argtpes) < 0 ||  // tupling (*)
            hasExactlyNumParams(t, argtpes.length)    // same nb or vararg
          }
        )
        // (*) more arguments than parameters, but still applicable: tupling conversion works.
        //     todo: should not return "false" when paramTypes = (Unit) no argument is given
        //     (tupling would work)
      }
    }

    /** Assign <code>tree</code> the type of an alternative which is applicable
     *  to <code>argtpes</code>, and whose result type is compatible with `pt`.
     *  If several applicable alternatives exist, drop the alternatives which use
     *  default arguments, then select the most specialized one.
     *  If no applicable alternative exists, and pt != WildcardType, try again
     *  with pt = WildcardType.
     *  Otherwise, if there is no best alternative, error.
     *
     *  @param argtpes contains the argument types. If an argument is named, as
     *    "a = 3", the corresponding type is `NamedType("a", Int)'. If the name
     *    of some NamedType does not exist in an alternative's parameter names,
     *    the type is replaces by `Unit`, i.e. the argument is treated as an
     *    assignment expression.
     */
    def inferMethodAlternative(tree: Tree, undetparams: List[Symbol],
                               argtpes: List[Type], pt0: Type, varArgsOnly: Boolean = false, lastInferAttempt: Boolean = true): Unit = tree.tpe match {
      case OverloadedType(pre, alts) =>
        val pt = if (pt0.typeSymbol == UnitClass) WildcardType else pt0
        tryTwice { isSecondTry =>
          debuglog("infer method alt "+ tree.symbol +" with alternatives "+
                (alts map pre.memberType) +", argtpes = "+ argtpes +", pt = "+ pt)

          val applicable = resolveOverloadedMethod(argtpes, {
            alts filter { alt =>
              inSilentMode(context)(isApplicable(undetparams, followApply(pre.memberType(alt)), argtpes, pt)) &&
              (!varArgsOnly || isVarArgsList(alt.tpe.params))
            }
          })

          def improves(sym1: Symbol, sym2: Symbol) = {
            // util.trace("improve "+sym1+sym1.locationString+" on "+sym2+sym2.locationString)
            sym2 == NoSymbol || sym2.isError || sym2.hasAnnotation(BridgeClass) ||
            isStrictlyMoreSpecific(followApply(pre.memberType(sym1)),
                                   followApply(pre.memberType(sym2)), sym1, sym2)
          }

          val best = ((NoSymbol: Symbol) /: applicable) ((best, alt) =>
            if (improves(alt, best)) alt else best)
          val competing = applicable.dropWhile(alt => best == alt || improves(best, alt))
          if (best == NoSymbol) {
            if (pt == WildcardType) NoBestMethodAlternativeError(tree, argtpes, pt, isSecondTry && lastInferAttempt)
            else inferMethodAlternative(tree, undetparams, argtpes, WildcardType, lastInferAttempt = isSecondTry)
          } else if (!competing.isEmpty) {
            AmbiguousMethodAlternativeError(tree, pre, best, competing.head, argtpes, pt, isSecondTry && lastInferAttempt)
          } else {
//            checkNotShadowed(tree.pos, pre, best, applicable)
            tree.setSymbol(best).setType(pre.memberType(best))
          }
        }
      case _ =>
    }

    /** Try inference twice, once without views and once with views,
     *  unless views are already disabled.
     *
     *  @param infer ...
     */
    def tryTwice(infer: Boolean => Unit): Unit = {
      if (context.implicitsEnabled) {
        val saved = context.state
        var fallback = false
        context.setBufferErrors()
        try {
          context.withImplicitsDisabled(infer(false))
          if (context.hasErrors) {
            fallback = true
            context.restoreState(saved)
            context.flushBuffer()
            infer(true)
          }
        } catch {
          case ex: CyclicReference  => throw ex
          case ex: TypeError        => // recoverable cyclic references
            context.restoreState(saved)
            if (!fallback) infer(true) else ()
        }
        context.restoreState(saved)
      }
      else infer(true)
    }

    /** Assign <code>tree</code> the type of all polymorphic alternatives
     *  with <code>nparams</code> as the number of type parameters, if it exists.
     *  If no such polymorphic alternative exist, error.
     *
     *  @param tree ...
     *  @param nparams ...
     */
    def inferPolyAlternatives(tree: Tree, argtypes: List[Type]): Unit = {
      val OverloadedType(pre, alts) = tree.tpe
      val sym0 = tree.symbol filter (alt => sameLength(alt.typeParams, argtypes))
      def fail(kind: PolyAlternativeErrorKind.ErrorType) =
        PolyAlternativeError(tree, argtypes, sym0, kind)

      if (sym0 == NoSymbol) return (
        if (alts exists (_.typeParams.nonEmpty))
          fail(PolyAlternativeErrorKind.WrongNumber)
        else fail(PolyAlternativeErrorKind.NoParams))

      val (resSym, resTpe) = {
        if (!sym0.isOverloaded)
          (sym0, pre.memberType(sym0))
        else {
          val sym = sym0 filter (alt => isWithinBounds(pre, alt.owner, alt.typeParams, argtypes))
          if (sym == NoSymbol) {
            if (argtypes forall (x => !x.isErroneous))
              fail(PolyAlternativeErrorKind.ArgsDoNotConform)
            return
          }
          else if (sym.isOverloaded) {
            val xs      = sym.alternatives
            val tparams = new AsSeenFromMap(pre, xs.head.owner) mapOver xs.head.typeParams
            val bounds  = tparams map (_.tpeHK) // see e.g., #1236
            val tpe     = PolyType(tparams, OverloadedType(AntiPolyType(pre, bounds), xs))

            (sym setInfo tpe, tpe)
          }
          else (sym, pre.memberType(sym))
        }
      }
      // Side effects tree with symbol and type
      tree setSymbol resSym setType resTpe
    }
  }
}