summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/typechecker/Infer.scala
blob: c118df8a5416573156103293f83baa91064881ba (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
/* NSC -- new Scala compiler
 * Copyright 2005-2008 LAMP/EPFL
 * @author  Martin Odersky
 */
// $Id$

package scala.tools.nsc.typechecker
import scala.tools.nsc.util.{Position, NoPosition}
import scala.collection.mutable.ListBuffer
import symtab.Flags._

/** This trait ...
 *
 *  @author Martin Odersky
 *  @version 1.0
 */
trait Infer {
  self: Analyzer =>
  import global._
  import definitions._
  import posAssigner.atPos

  // statistics
  var normM = 0
  var normP = 0
  var normO = 0

  private final val inferInfo = false

/* -- Type parameter inference utility functions --------------------------- */

  private def assertNonCyclic(tvar: TypeVar) =
    assert(tvar.constr.inst != tvar, tvar.origin)

  def isVarArgs(formals: List[Type]) =
    !formals.isEmpty && (formals.last.typeSymbol == RepeatedParamClass)

  /** The formal parameter types corresponding to <code>formals</code>.
   *  If <code>formals</code> has a repeated last parameter, a list of
   *  (nargs - params.length + 1) copies of its type is returned.
   *
   *  @param formals ...
   *  @param nargs ...
   */
  def formalTypes(formals: List[Type], nargs: Int): List[Type] = {
    val formals1 = formals map {
      case TypeRef(_, sym, List(arg)) if (sym == ByNameParamClass) => arg
      case formal => formal
    }
    if (isVarArgs(formals1)) {
      val ft = formals1.last.normalize.typeArgs.head
      formals1.init ::: (for (i <- List.range(formals1.length - 1, nargs)) yield ft)
    } else formals1
  }

  def actualTypes(actuals: List[Type], nformals: Int): List[Type] =
    if (nformals == 1 && actuals.length != 1)
      List(if (actuals.length == 0) UnitClass.tpe else tupleType(actuals))
    else actuals

  def actualArgs(pos: Position, actuals: List[Tree], nformals: Int): List[Tree] =
    if (nformals == 1 && actuals.length != 1) List(atPos(pos)(gen.mkTuple(actuals))) else actuals

  /** A fresh type varable with given type parameter as origin.
   *
   *  @param tparam ...
   *  @return       ...
   */
  private def freshVar(tparam: Symbol): TypeVar =
    new TypeVar(tparam.tpe, new TypeConstraint)  //@M TODO: might be affected by change to tpe in Symbol

  //todo: remove comments around following privates; right now they cause an IllegalAccess
  // error when built with scalac

  /*private*/ class NoInstance(msg: String) extends RuntimeException(msg)

  /*private*/ class DeferredNoInstance(getmsg: () => String) extends NoInstance("") {
    override def getMessage(): String = getmsg()
  }

  /** map every TypeVar to its constraint.inst field.
   *  throw a NoInstance exception if a NoType or WildcardType is encountered.
   *
   *  @param  tp ...
   *  @return    ...
   *  @throws    NoInstance
   */
  object instantiate extends TypeMap {
    private var excludedVars = scala.collection.immutable.Set[TypeVar]()
    def apply(tp: Type): Type = tp match {
      case WildcardType | NoType =>
        throw new NoInstance("undetermined type")
      case tv @ TypeVar(origin, constr) =>
        if (constr.inst == NoType) {
          throw new DeferredNoInstance(() =>
            "no unique instantiation of type variable " + origin + " could be found")
        } else if (excludedVars contains tv) {
          throw new NoInstance("cyclic instantiation")
        } else {
          excludedVars += tv
          val res = apply(constr.inst)
          excludedVars -= tv
          res
        }
      case _ =>
        mapOver(tp)
    }
  }

  /** Is type fully defined, i.e. no embedded anytypes or wildcards in it?
   *
   *  @param tp ...
   *  @return   ...
   */
  private[typechecker] def isFullyDefined(tp: Type): Boolean = tp match {
    case WildcardType | NoType =>
      false
    case NoPrefix | ThisType(_) | ConstantType(_) =>
      true
    case TypeRef(pre, sym, args) =>
      isFullyDefined(pre) && (args.isEmpty || (args forall isFullyDefined))
    case SingleType(pre, sym) =>
      isFullyDefined(pre)
    case RefinedType(ts, decls) =>
      ts forall isFullyDefined
    case TypeVar(origin, constr) if (constr.inst == NoType) =>
      false
    case _ =>
      try {
        instantiate(tp); true
      } catch {
        case ex: NoInstance => false
      }
  }

  /** Solve constraint collected in types <code>tvars</code>.
   *
   *  @param tvars      All type variables to be instantiated.
   *  @param tparams    The type parameters corresponding to <code>tvars</code>
   *  @param variances  The variances of type parameters; need to reverse
   *                    solution direction for all contravariant variables.
   *  @param upper      When <code>true</code> search for max solution else min.
   *  @throws NoInstance
   */
  private def solvedTypes(tvars: List[TypeVar], tparams: List[Symbol],
                          variances: List[Int], upper: Boolean): List[Type] = {
    def boundsString(tvar: TypeVar) =
      "\n  "+
      ((tvar.constr.lobounds map (_ + " <: " + tvar.origin.typeSymbol.name)) :::
       (tvar.constr.hibounds map (tvar.origin.typeSymbol.name + " <: " + _)) mkString ", ")
    if (!solve(tvars, tparams, variances, upper)) {
//    no panic, it's good enough to just guess a solution, we'll find out
//    later whether it works.
//      throw new DeferredNoInstance(() =>
//        "no solution exists for constraints"+(tvars map boundsString))
    }
    for (tvar <- tvars)
      if (tvar.constr.inst == tvar)
        if (tvar.origin.typeSymbol.info eq ErrorType) {
          // this can happen if during solving a cyclic type paramater
          // such as T <: T gets completed. See #360
          tvar.constr.inst = ErrorType
        } else assert(false, tvar.origin)
    tvars map instantiate
  }

  def skipImplicit(tp: Type) =
    if (tp.isInstanceOf[ImplicitMethodType]) tp.resultType else tp

  /** Automatically perform the following conversions on expression types:
   *  A method type becomes the corresponding function type.
   *  A nullary method type becomes its result type.
   *  Implicit parameters are skipped.
   *
   *  @param tp ...
   *  @return   ...
   */
  def normalize(tp: Type): Type = skipImplicit(tp) match {
    case MethodType(formals, restpe) if (!restpe.isDependent) =>
      if (util.Statistics.enabled) normM += 1
      functionType(formals, normalize(restpe))
    case PolyType(List(), restpe) =>
      if (util.Statistics.enabled) normP += 1
      normalize(restpe)
    case ExistentialType(tparams, qtpe) =>
      ExistentialType(tparams, normalize(qtpe))
    case tp1 =>
      if (util.Statistics.enabled) normO += 1
      tp1 // @MAT aliases already handled by subtyping
  }

  private val stdErrorClass = RootClass.newErrorClass(nme.ERROR.toTypeName)
  private val stdErrorValue = stdErrorClass.newErrorValue(nme.ERROR)

  /** The context-dependent inferencer part */
  class Inferencer(context: Context) {

    /* -- Error Messages --------------------------------------------------- */

    def setError[T <: Tree](tree: T): T = {
      if (tree.hasSymbol)
        if (context.reportGeneralErrors) {
          val name = newTermName("<error: " + tree.symbol + ">")
          tree.setSymbol(
            if (tree.isType) context.owner.newErrorClass(name.toTypeName)
            else context.owner.newErrorValue(name))
        } else {
          tree.setSymbol(if (tree.isType) stdErrorClass else stdErrorValue)
        }
      tree.setType(ErrorType)
    }

    def decode(name: Name): String =
      (if (name.isTypeName) "type " else "value ") + name.decode

    def treeSymTypeMsg(tree: Tree): String =
      if (tree.symbol eq null)
        "expression of type " + tree.tpe
      else if (tree.symbol.hasFlag(OVERLOADED))
        "overloaded method " + tree.symbol + " with alternatives " + tree.tpe
      else
        tree.symbol.toString() +
        (if (tree.symbol.isModule) ""
         else if (tree.tpe.paramSectionCount > 0) ": "+tree.tpe
         else " of type "+tree.tpe) +
        (if (tree.symbol.name == nme.apply) tree.symbol.locationString else "")

    def applyErrorMsg(tree: Tree, msg: String, argtpes: List[Type], pt: Type) =
      treeSymTypeMsg(tree) + msg + argtpes.mkString("(", ",", ")") +
       (if (pt == WildcardType) "" else " with expected result type " + pt)

    // todo: use also for other error messages
    private def existentialContext(tp: Type) = tp.existentialSkolems match {
      case List() => ""
      case skolems =>
        def disambiguate(ss: List[String]) = ss match {
          case List() => ss
          case s :: ss1 => s :: (ss1 map (s1 => if (s1 == s) "(some other)"+s1 else s1))
        }
      " where "+(disambiguate(skolems map (_.existentialToString)) mkString ", ")
    }

    def foundReqMsg(found: Type, req: Type): String =
      withDisambiguation(found, req) {
        ";\n found   : " + found.toLongString + existentialContext(found) +
         "\n required: " + req + existentialContext(req)
      }

    def typeErrorMsg(found: Type, req: Type) =
      "type mismatch" + foundReqMsg(found, req) +
      (if ((found.resultApprox ne found) && isWeaklyCompatible(found.resultApprox, req))
        "\n possible cause: missing arguments for method or constructor"
       else "")

    def error(pos: Position, msg: String) {
      context.error(pos, msg)
    }

    def errorTree(tree: Tree, msg: String): Tree = {
      if (!tree.isErroneous) error(tree.pos, msg)
      setError(tree)
    }

    def typeError(pos: Position, found: Type, req: Type) {
      if (!found.isErroneous && !req.isErroneous) {
        error(pos, typeErrorMsg(found, req))
        if (settings.explaintypes.value) explainTypes(found, req)
      }
    }

    def typeErrorTree(tree: Tree, found: Type, req: Type): Tree = {
      typeError(tree.pos, found, req)
      setError(tree)
    }

    def explainTypes(tp1: Type, tp2: Type) =
      withDisambiguation(tp1, tp2) { global.explainTypes(tp1, tp2) }

    /** If types `tp1' `tp2' contain different type variables with same name
     *  differentiate the names by including owner information
     */
    private def withDisambiguation[T](tp1: Type, tp2: Type)(op: => T): T = {

      def explainName(sym: Symbol) = {
        if (!sym.name.toString.endsWith(")") && !inIDE) {
          sym.name = newTypeName(sym.name.toString+"(in "+sym.owner+")")
        }
      }

      val patches = new ListBuffer[(Symbol, Symbol, Name)]
      for {
        t1 @ TypeRef(_, sym1, _) <- tp1
        t2 @ TypeRef(_, sym2, _) <- tp2
        if sym1 != sym2 && t1.toString == t2.toString
      } {
        val name = sym1.name
        explainName(sym1)
        explainName(sym2)
        if (sym1.owner == sym2.owner && !inIDE) sym2.name = newTypeName("(some other)"+sym2.name)
        patches += (sym1, sym2, name)
      }

      val result = op

      for ((sym1, sym2, name) <- patches) {
        sym1.name = name
        sym2.name = name
      }

      result
    }

    /* -- Tests & Checks---------------------------------------------------- */

    /** Check that <code>sym</code> is defined and accessible as a member of
     *  tree <code>site</code> with type <code>pre</code> in current context.
     *
     *  @param tree ...
     *  @param sym  ...
     *  @param pre  ...
     *  @param site ...
     *  @return     ...
     */
    def checkAccessible(tree: Tree, sym: Symbol, pre: Type, site: Tree): Tree =
      if (sym.isError) {
        tree setSymbol sym setType ErrorType
      } else {
        def accessError(explanation: String): Tree =
          errorTree(tree, underlying(sym).toString() + " cannot be accessed in " +
                    (if (sym.isClassConstructor) context.enclClass.owner else pre.widen) +
                    explanation)

        if (context.unit != null)
          context.unit.depends += sym.toplevelClass

        val sym1 = sym filter (alt => context.isAccessible(alt, pre, site.isInstanceOf[Super]))
        if (sym1 == NoSymbol) {
          if (settings.debug.value) {
            Console.println(context)
            Console.println(tree)
            Console.println("" + pre + " " + sym.owner + " " + context.owner + " " + context.outer.enclClass.owner + " " + sym.owner.thisType + (pre =:= sym.owner.thisType))
          }
          accessError("")
        } else {
          // Modify symbol's type so that raw types C
          // are converted to existentials C[T] forSome { type T }.
          // We can't do this on class loading because it would result
          // in infinite cycles.
          def cook(sym: Symbol) {
            val tpe1 = rawToExistential(sym.tpe)
            if (tpe1 ne sym.tpe) {
              if (settings.debug.value) println("cooked: "+sym+":"+sym.tpe)
              sym.setInfo(tpe1)
            }
          }
          if (sym1.isTerm) {
            if (sym1 hasFlag JAVA)
              cook(sym1)
            else if (sym1 hasFlag OVERLOADED)
              for (sym2 <- sym1.alternatives)
                if (sym2 hasFlag JAVA)
                  cook(sym2)
          }
          //Console.println("check acc " + sym1 + ":" + sym1.tpe + " from " + pre);//DEBUG
          var owntype = try{
            pre.memberType(sym1)
          } catch {
            case ex: MalformedType =>
              if (settings.debug.value) ex.printStackTrace
              val sym2 = underlying(sym1)
              val itype = withoutMalformedChecks(pre.memberType(sym2))
              accessError("\n because its instance type "+itype+
                          (if ("malformed type: "+itype.toString==ex.msg) " is malformed"
                           else " contains a "+ex.msg))
              ErrorType
          }
          if (pre.isInstanceOf[SuperType])
            owntype = owntype.substSuper(pre, site.symbol.thisType)
          tree setSymbol sym1 setType owntype
        }
      }

    def isPlausiblyCompatible(tp: Type, pt: Type): Boolean = tp match {
      case PolyType(_, restpe) =>
        isPlausiblyCompatible(restpe, pt)
      case mt: ImplicitMethodType =>
        isPlausiblyCompatible(mt.resultType, pt)
      case ExistentialType(tparams, qtpe) =>
        isPlausiblyCompatible(qtpe, pt)
      case MethodType(formals, _) =>
        pt.normalize match {
          case TypeRef(pre, sym, args) =>
            !sym.isClass || {
              val l = args.length - 1
              l == formals.length &&
              sym == FunctionClass(l) &&
              List.forall2(args, formals) (isPlausiblySubType) &&
              isPlausiblySubType(tp.resultApprox, args.last)
            }
          case _ =>
            true
        }
      case _ =>
        true
    }

    private def isPlausiblySubType(tp1: Type, tp2: Type): Boolean = tp1.normalize match {
      case TypeRef(_, sym1, _) =>
        !sym1.isClass || {
          tp2.normalize match {
            case TypeRef(_, sym2, _) => !sym2.isClass || (sym1 isSubClass sym2)
            case _ => true
          }
        }
      case _ =>
        true
    }

    def isCompatible(tp: Type, pt: Type): Boolean = {
      val tp1 = normalize(tp)
      (tp1 <:< pt) || isCoercible(tp, pt)
    }

    def isWeaklyCompatible(tp: Type, pt: Type): Boolean =
      pt.typeSymbol == UnitClass || isCompatible(tp, pt)

    def isCoercible(tp: Type, pt: Type): Boolean = false

    def isCompatible(tps: List[Type], pts: List[Type]): Boolean =
      List.map2(tps, pts)((tp, pt) => isCompatible(tp, pt)) forall (x => x)

    /* -- Type instantiation------------------------------------------------ */

    /** Return inferred type arguments of polymorphic expression, given
     *  its type parameters and result type and a prototype <code>pt</code>.
     *  If no minimal type variables exist that make the
     *  instantiated type a subtype of <code>pt</code>, return null.
     *
     *  @param tparams ...
     *  @param restpe  ...
     *  @param pt      ...
     *  @return        ...
     */
    private def exprTypeArgs(tparams: List[Symbol], restpe: Type, pt: Type): List[Type] = {
      val tvars = tparams map freshVar
      if (isCompatible(restpe.instantiateTypeParams(tparams, tvars), pt)) {
        try {
          solvedTypes(tvars, tparams, tparams map varianceInType(restpe), false)
        } catch {
          case ex: NoInstance => null
        }
      } else null
    }

    /** Return inferred proto-type arguments of function, given
    *  its type and value parameters and result type, and a
    *  prototype <code>pt</code> for the function result.
    *  Type arguments need to be either determined precisely by
    *  the prototype, or they are maximized, if they occur only covariantly
    *  in the value parameter list.
    *  If instantiation of a type parameter fails,
    *  take WildcardType for the proto-type argument.
    *
    *  @param tparams ...
    *  @param formals ...
    *  @param restype ...
    *  @param pt      ...
    *  @return        ...
    */
    def protoTypeArgs(tparams: List[Symbol], formals: List[Type], restpe: Type,
                      pt: Type): List[Type] = {
      /** Map type variable to its instance, or, if `variance' is covariant/contravariant,
       *  to its upper/lower bound */
      def instantiateToBound(tvar: TypeVar, variance: Int): Type = try {
        //Console.println("instantiate "+tvar+tvar.constr+" variance = "+variance);//DEBUG
        if (tvar.constr.inst != NoType) {
          instantiate(tvar.constr.inst)
        } else if ((variance & COVARIANT) != 0 && !tvar.constr.hibounds.isEmpty) {
          tvar.constr.inst = glb(tvar.constr.hibounds)
          assertNonCyclic(tvar)//debug
          instantiate(tvar.constr.inst)
        } else if ((variance & CONTRAVARIANT) != 0 && !tvar.constr.lobounds.isEmpty) {
          tvar.constr.inst = lub(tvar.constr.lobounds)
          assertNonCyclic(tvar)//debug
          instantiate(tvar.constr.inst)
        } else if (!tvar.constr.hibounds.isEmpty && !tvar.constr.lobounds.isEmpty &&
                   glb(tvar.constr.hibounds) <:< lub(tvar.constr.lobounds)) {
          tvar.constr.inst = glb(tvar.constr.hibounds)
          assertNonCyclic(tvar)//debug
          instantiate(tvar.constr.inst)
        } else {
          WildcardType
        }
      } catch {
        case ex: NoInstance => WildcardType
      }
      val tvars = tparams map freshVar
      if (isWeaklyCompatible(restpe.instantiateTypeParams(tparams, tvars), pt))
        List.map2(tparams, tvars) ((tparam, tvar) =>
          instantiateToBound(tvar, varianceInTypes(formals)(tparam)))
      else
        tvars map (tvar => WildcardType)
    }

    /** Return inferred type arguments, given type parameters, formal parameters,
    *  argument types, result type and expected result type.
    *  If this is not possible, throw a <code>NoInstance</code> exception.
    *  Undetermined type arguments are represented by `definitions.AllClass.tpe'.
    *  No check that inferred parameters conform to their bounds is made here.
    *
    *  @param   tparams         the type parameters of the method
    *  @param   formals         the value parameter types of the method
    *  @param   restp           the result type of the method
    *  @param   argtpes         the argument types of the application
    *  @param   pt              the expected return type of the application
    *  @param   uninstantiated  a listbuffer receiving all uninstantiated type parameters
    *                           (type parameters mapped by the constraint solver to `scala.All'
    *                           and not covariant in <code>restpe</code> are taken to be
    *                           uninstantiated. Maps all those type arguments to their
    *                           corresponding type parameters).
    *  @return                  ...
    *  @throws                  NoInstance
    */
    // bq: was private, but need it for unapply checking
    def methTypeArgs(tparams: List[Symbol], formals: List[Type], restpe: Type,
                             argtpes: List[Type], pt: Type,
                             uninstantiated: ListBuffer[Symbol]): List[Type] = {
      val tvars = tparams map freshVar
      if (formals.length != argtpes.length) {
        throw new NoInstance("parameter lists differ in length")
      }
      // check first whether type variables can be fully defined from
      // expected result type.
      if (!isWeaklyCompatible(restpe.instantiateTypeParams(tparams, tvars), pt)) {
//      just wait and instantiate form the arguments.
//      that way, we can try to apply an implicit conversion afterwards.
//      This case could happen if restpe is not fully defined, so that
//      search for an implicit from it to pt fails because of an ambiguity.
//      See #0347. Therefore, the following two lines are commented out.
//        throw new DeferredNoInstance(() =>
//          "result type " + normalize(restpe) + " is incompatible with expected type " + pt)
      }
      for (tvar <- tvars)
        if (!isFullyDefined(tvar)) tvar.constr.inst = NoType

      // Then define remaining type variables from argument types.
      List.map2(argtpes, formals) {(argtpe, formal) =>
        if (!isCompatible(argtpe.deconst.instantiateTypeParams(tparams, tvars),
                          formal.instantiateTypeParams(tparams, tvars))) {
          if (settings.explaintypes.value)
            explainTypes(argtpe.deconst.instantiateTypeParams(tparams, tvars), formal.instantiateTypeParams(tparams, tvars))
          throw new DeferredNoInstance(() =>
            "argument expression's type is not compatible with formal parameter type" +
            foundReqMsg(argtpe.deconst.instantiateTypeParams(tparams, tvars), formal.instantiateTypeParams(tparams, tvars)))
        }
        ()
      }
      val targs = solvedTypes(tvars, tparams, tparams map varianceInTypes(formals), false)
//      val res =
      List.map2(tparams, targs) {(tparam, targ) =>
        if (targ.typeSymbol == AllClass && (varianceInType(restpe)(tparam) & COVARIANT) == 0) {
          uninstantiated += tparam
          tparam.tpe  //@M TODO: might be affected by change to tpe in Symbol
        } else if (targ.typeSymbol == RepeatedParamClass) {
          targ.baseType(SeqClass)
        } else {
          targ.widen
        }
      }
//      println("meth type args "+", tparams = "+tparams+", formals = "+formals+", restpe = "+restpe+", argtpes = "+argtpes+", underlying = "+(argtpes map (_.widen))+", pt = "+pt+", uninstantiated = "+uninstantiated.toList+", result = "+res) //DEBUG
//      res
    }

    private[typechecker] def followApply(tp: Type): Type = tp match {
      case PolyType(List(), restp) =>
        val restp1 = followApply(restp)
        if (restp1 eq restp) tp else restp1
      case _ =>
        val appmeth = tp.nonPrivateMember(nme.apply) filter (_.isPublic)
        if (appmeth == NoSymbol) tp
        else OverloadedType(tp, appmeth.alternatives)
    }

    def hasExactlyNumParams(tp: Type, n: Int): Boolean = tp match {
      case OverloadedType(pre, alts) =>
        alts exists (alt => hasExactlyNumParams(pre.memberType(alt), n))
      case _ =>
        formalTypes(tp.paramTypes, n).length == n
    }

    /** Is there an instantiation of free type variables <code>undetparams</code>
     *  such that function type <code>ftpe</code> is applicable to
     *  <code>argtpes</code> and its result conform to <code>pt</code>?
     *
     *  @param undetparams ...
     *  @param ftpe        ...
     *  @param argtpes     ...
     *  @param pt          ...
     *  @return            ...
     */
    private def isApplicable(undetparams: List[Symbol], ftpe: Type,
                             argtpes0: List[Type], pt: Type): Boolean =
      ftpe match {
        case OverloadedType(pre, alts) =>
          alts exists (alt => isApplicable(undetparams, pre.memberType(alt), argtpes0, pt))
        case ExistentialType(tparams, qtpe) =>
          isApplicable(undetparams, qtpe, argtpes0, pt)
        case MethodType(formals0, _) =>
          val formals = formalTypes(formals0, argtpes0.length)
          val argtpes = actualTypes(argtpes0, formals.length)
          val restpe = ftpe.resultType(argtpes)
          if (undetparams.isEmpty) {
            (formals.length == argtpes.length &&
             isCompatible(argtpes, formals) &&
             isWeaklyCompatible(restpe, pt))
          } else {
            try {
              val uninstantiated = new ListBuffer[Symbol]
              val targs = methTypeArgs(undetparams, formals, restpe, argtpes, pt, uninstantiated)
              (exprTypeArgs(uninstantiated.toList, restpe.instantiateTypeParams(undetparams, targs), pt) ne null) &&
              isWithinBounds(NoPrefix, NoSymbol, undetparams, targs)
            } catch {
              case ex: NoInstance => false
            }
          }
        case PolyType(tparams, restpe) =>
          val tparams1 = cloneSymbols(tparams)
          isApplicable(tparams1 ::: undetparams, restpe.substSym(tparams, tparams1), argtpes0, pt)
        case ErrorType =>
          true
        case _ =>
          false
      }

    private[typechecker] def isApplicableSafe(undetparams: List[Symbol], ftpe: Type, argtpes0: List[Type], pt: Type): Boolean = {
      val reportAmbiguousErrors = context.reportAmbiguousErrors
      context.reportAmbiguousErrors = false
      try {
        isApplicable(undetparams, ftpe, argtpes0, pt)
      } catch {
        case ex: TypeError =>
          false
      } finally {
        context.reportAmbiguousErrors = reportAmbiguousErrors
      }
    }

    /** Is type <code>ftpe1</code> strictly more specific than type <code>ftpe2</code>
     *  when both are alternatives in an overloaded function?
     *  @see SLS (sec:overloading-resolution)
     *
     *  @param ftpe1 ...
     *  @param ftpe2 ...
     *  @return      ...
     */
    def isMoreSpecific(ftpe1: Type, ftpe2: Type): Boolean = ftpe1 match {
      case OverloadedType(pre, alts) =>
        alts exists (alt => isMoreSpecific(pre.memberType(alt), ftpe2))
      case et: ExistentialType =>
        et.withTypeVars(isStrictlyMoreSpecific(_, ftpe2))
      case MethodType(formals @ (x :: xs), _) =>
        isApplicable(List(), ftpe2, formals, WildcardType)
      case PolyType(_, MethodType(formals @ (x :: xs), _)) =>
        isApplicable(List(), ftpe2, formals, WildcardType)
      case ErrorType =>
        true
      case _ =>
        ftpe2 match {
          case OverloadedType(pre, alts) =>
            alts forall (alt => isMoreSpecific(ftpe1, pre.memberType(alt)))
          case et: ExistentialType =>
            et.withTypeVars(isStrictlyMoreSpecific(ftpe1, _))
          case MethodType(_, _) | PolyType(_, MethodType(_, _)) =>
            true
          case _ =>
            isMoreSpecificValueType(ftpe1, ftpe2, List(), List())
        }
    }

    def isStrictlyMoreSpecific(ftpe1: Type, ftpe2: Type): Boolean =
      ftpe1.isError || isMoreSpecific(ftpe1, ftpe2) &&
      (!isMoreSpecific(ftpe2, ftpe1) ||
       !ftpe1.isInstanceOf[OverloadedType] && ftpe2.isInstanceOf[OverloadedType] ||
       phase.erasedTypes && covariantReturnOverride(ftpe1, ftpe2))

    private def covariantReturnOverride(ftpe1: Type, ftpe2: Type): Boolean = (ftpe1, ftpe2) match {
      case (MethodType(_, rtpe1), MethodType(_, rtpe2)) =>
        rtpe1 <:< rtpe2 || rtpe2.typeSymbol == ObjectClass
      case _ =>
        false
    }

    private def isMoreSpecificValueType(tpe1: Type, tpe2: Type, undef1: List[Symbol], undef2: List[Symbol]): Boolean = (tpe1, tpe2) match {
      case (PolyType(tparams1, rtpe1), _) =>
        isMoreSpecificValueType(rtpe1, tpe2, undef1 ::: tparams1, undef2)
      case (_, PolyType(tparams2, rtpe2)) =>
        isMoreSpecificValueType(tpe1, rtpe2, undef1, undef2 ::: tparams2)
      case _ =>
        existentialAbstraction(undef1, tpe1) <:< existentialAbstraction(undef2, tpe2)
    }

/*
    /** Is type `tpe1' a strictly better expression alternative than type `tpe2'?
     */
    def isStrictlyBetterExpr(tpe1: Type, tpe2: Type) = {
      isMethod(tpe2) && !isMethod(tpe1) ||
      isNullary(tpe1) && !isNullary(tpe2) ||
      isStrictlyBetter(tpe1, tpe2)
    }

    /** Is type `tpe1' a strictly better alternative than type `tpe2'?
     *  non-methods are always strictly better than methods
     *  nullary methods are always strictly better than non-nullary
     *  if both are non-nullary methods, then tpe1 is strictly better than tpe2 if
     *   - tpe1 specializes tpe2 and tpe2 does not specialize tpe1
     *   - tpe1 and tpe2 specialize each other and tpe1 has a strictly better resulttype than
     *     tpe2
     */
    def isStrictlyBetter(tpe1: Type, tpe2: Type) = {
      def isNullary(tpe: Type): Boolean = tpe match {
        case tp: RewrappingTypeProxy => isNullary(tp.underlying)
        case _ => tpe.paramSectionCount == 0 || tpe.paramTypes.isEmpty
      }
      def isMethod(tpe: Type): Boolean = tpe match {
        case tp: RewrappingTypeProxy => isMethod(tp.underlying)
        case MethodType(_, _) | PolyType(_, _) => true
        case _ => false
      }
      def hasStrictlyBetterResult =
        resultIsBetter(tpe1, tpe2, List(), List()) && !resultIsBetter(tpe2, tpe1, List(), List())
      if (!isMethod(tpe1))
        isMethod(tpe2) || hasStrictlyBetterResult

      isNullary(tpe1) && !isNullary(tpe2) ||
      is

      else if (isNullary(tpe1))
        isMethod(tpe2) && (!isNullary(tpe2) || hasStrictlyBetterResult)
      else
        specializes(tpe1, tpe2) && (!specializes(tpe2, tpe1) || hasStrictlyBetterResult)
    }

*/
    /** error if arguments not within bounds. */
    def checkBounds(pos: Position, pre: Type, owner: Symbol,
                    tparams: List[Symbol], targs: List[Type], prefix: String) = {
      //@M validate variances & bounds of targs wrt variances & bounds of tparams
      //@M TODO: better place to check this?
      //@M TODO: errors for getters & setters are reported separately
      val kindErrors = checkKindBounds(tparams, targs, pre, owner)

      if(!kindErrors.isEmpty)
        error(pos,
          prefix + "the kinds of the type arguments " + targs.mkString("(", ",", ")") +
          " do not conform to the expected kinds of the type parameters "+ tparams.mkString("(", ",", ")") + tparams.head.locationString+ "." +
          kindErrors.toList.mkString("\n", ", ", ""))
      else if (!isWithinBounds(pre, owner, tparams, targs)) {
        if (!(targs exists (_.isErroneous)) && !(tparams exists (_.isErroneous))) {
          error(pos,
                prefix + "type arguments " + targs.mkString("[", ",", "]") +
                " do not conform to " + tparams.head.owner + "'s type parameter bounds " +
                (tparams map (_.defString)).mkString("[", ",", "]"))
        }
        if (settings.explaintypes.value) {
          val bounds = tparams map (tp => tp.info.instantiateTypeParams(tparams, targs).bounds)
          List.map2(targs, bounds)((targ, bound) => explainTypes(bound.lo, targ))
          List.map2(targs, bounds)((targ, bound) => explainTypes(targ, bound.hi))
          ()
        }
      }
    }

    /** Check whether <arg>sym1</arg>'s variance conforms to <arg>sym2</arg>'s variance
     *
     * If <arg>sym2</arg> is invariant, <arg>sym1</arg>'s variance is irrelevant. Otherwise they must be equal.
     */
    def variancesMatch(sym1: Symbol, sym2: Symbol): Boolean = (sym2.variance==0 || sym1.variance==sym2.variance)

    /** Check well-kindedness of type application (assumes arities are already checked) -- @M
     *
     * This check is also performed when abstract type members become concrete (aka a "type alias") -- then tparams.length==1
     * (checked one type member at a time -- in that case, prefix is the name of the type alias)
     *
     * Type application is just like value application: it's "contravariant" in the sense that
     * the type parameters of the supplied type arguments must conform to the type parameters of
     * the required type parameters:
     *   - their bounds must be less strict
     *   - variances must match (here, variances are absolute, the variance of a type parameter does not influence the variance of its higher-order parameters)
     *   - @M TODO: are these conditions correct,sufficient&necessary?
     *
     *  e.g. class Iterable[t, m[+x <: t]] --> the application Iterable[Int, List] is okay, since
     *       List's type parameter is also covariant and its bounds are weaker than <: Int
     */
    def checkKindBounds(tparams: List[Symbol], targs: List[Type], pre: Type, owner: Symbol): List[String] = {
      def transform(tp: Type, clazz: Symbol): Type = tp.asSeenFrom(pre, clazz) // instantiate type params that come from outside the abstract type we're currently checking

      // check that the type parameters <arg>hkargs</arg> to a higher-kinded type conform to the expected params <arg>hkparams</arg>
      def checkKindBoundsHK(hkargs: List[Symbol], arg: Symbol, param: Symbol, paramowner: Symbol): (List[(Symbol, Symbol)], List[(Symbol, Symbol)], List[(Symbol, Symbol)]) = {
// NOTE: sometimes hkargs != arg.typeParams, the symbol and the type may have very different type parameters
        val hkparams = param.typeParams

        if(hkargs.length != hkparams.length) {
          if(arg == AnyClass || arg == AllClass) (Nil, Nil, Nil) // Any and Nothing are kind-overloaded
          else (List((arg, param)), Nil, Nil)
        } else {
          val _arityMismatches = new ListBuffer[(Symbol, Symbol)]
          val _varianceMismatches = new ListBuffer[(Symbol, Symbol)]
          val _stricterBounds = new ListBuffer[(Symbol, Symbol)]
          def varianceMismatch(a: Symbol, p: Symbol) { _varianceMismatches += (a, p) }
          def stricterBound(a: Symbol, p: Symbol) { _stricterBounds += (a, p) }
          def arityMismatches(as: Iterable[(Symbol, Symbol)]) { _arityMismatches ++= as }
          def varianceMismatches(as: Iterable[(Symbol, Symbol)]) { _varianceMismatches ++= as }
          def stricterBounds(as: Iterable[(Symbol, Symbol)]) { _stricterBounds ++= as }

          for ((hkarg, hkparam) <- hkargs zip hkparams) {
            if (hkparam.typeParams.isEmpty) { // base-case: kind *
              if (!variancesMatch(hkarg, hkparam))
                varianceMismatch(hkarg, hkparam)

              // instantiateTypeParams(tparams, targs) --> higher-order bounds may contain references to type arguments
              // substSym(hkparams, hkargs) --> these types are going to be compared as types of kind *
              //    --> their arguments use different symbols, but are conceptually the same
              //        (could also replace the types by polytypes, but can't just strip the symbols, as ordering is lost then)
              if (!(transform(hkparam.info.instantiateTypeParams(tparams, targs).bounds.substSym(hkparams, hkargs), paramowner) <:< transform(hkarg.info.bounds, owner)))
                stricterBound(hkarg, hkparam)
            } else {
              val (am, vm, sb) = checkKindBoundsHK(hkarg.typeParams, hkarg, hkparam, paramowner)
              arityMismatches(am)
              varianceMismatches(vm)
              stricterBounds(sb)
            }
          }

          (_arityMismatches.toList, _varianceMismatches.toList, _stricterBounds.toList)
        }
      }

      // @M TODO this method is duplicated all over the place (varianceString)
      def varStr(s: Symbol): String =
        if (s.isCovariant) "covariant"
        else if (s.isContravariant) "contravariant"
        else "invariant";

      def qualify(a0: Symbol, b0: Symbol): String = if (a0.toString != b0.toString) "" else {
        assert((a0 ne b0) && (a0.owner ne b0.owner));
        var a = a0; var b = b0
        while (a.owner.name == b.owner.name) { a = a.owner; b = b.owner}
        if (a.locationString ne "") " (" + a.locationString.trim + ")" else ""
      }

      val errors = new ListBuffer[String]
      (tparams zip targs).foreach{ case (tparam, targ) if(targ.isHigherKinded || !tparam.typeParams.isEmpty) => //println("check: "+(tparam, targ))
        val (arityMismatches, varianceMismatches, stricterBounds) =
          checkKindBoundsHK(targ.typeParams, targ.typeSymbolDirect, tparam, tparam.owner) // NOTE: *not* targ.typeSymbol, which normalizes
            // NOTE 2: must use the typeParams of the type targ, not the typeParams of the symbol of targ!!

        if (!(arityMismatches.isEmpty && varianceMismatches.isEmpty && stricterBounds.isEmpty)){
          errors += (targ+"'s type parameters do not match "+tparam+"'s expected parameters: "+
            (for ((a, p) <- arityMismatches)
             yield a+qualify(a,p)+ " has "+reporter.countElementsAsString(a.typeParams.length, "type parameter")+", but "+
              p+qualify(p,a)+" has "+reporter.countAsString(p.typeParams.length)).toList.mkString(", ") +
            (for ((a, p) <- varianceMismatches)
             yield a+qualify(a,p)+ " is "+varStr(a)+", but "+
              p+qualify(p,a)+" is declared "+varStr(p)).toList.mkString(", ") +
            (for ((a, p) <- stricterBounds)
              yield a+qualify(a,p)+"'s bounds "+a.info+" are stricter than "+
              p+qualify(p,a)+"'s declared bounds "+p.info).toList.mkString(", "))
        }
       // case (tparam, targ) => println("no check: "+(tparam, targ, tparam.typeParams.isEmpty))
       case _ =>
      }

      errors.toList
    }

    /** Substitite free type variables `undetparams' of polymorphic argument
     *  expression `tree', given two prototypes `strictPt', and `lenientPt'.
     *  `strictPt' is the first attempt prototype where type parameters
     *  are left unchanged. `lenientPt' is the fall-back prototype where type
     *  parameters are replaced by `WildcardType's. We try to instantiate
     *  first to `strictPt' and then, if this fails, to `lenientPt'. If both
     *  attempts fail, an error is produced.
     */
    def inferArgumentInstance(tree: Tree, undetparams: List[Symbol],
                              strictPt: Type, lenientPt: Type) {
      if (inferInfo)
        println("infer argument instance "+tree+":"+tree.tpe+"\n"+
                "  undetparams = "+undetparams+"\n"+
                "  strict pt = "+strictPt+"\n"+
                "  lenient pt = "+lenientPt)
      var targs = exprTypeArgs(undetparams, tree.tpe, strictPt)
      if ((targs eq null) || !(tree.tpe.subst(undetparams, targs) <:< strictPt)) {
        targs = exprTypeArgs(undetparams, tree.tpe, lenientPt)
      }
      substExpr(tree, undetparams, targs, lenientPt)
    }

    /** Substitute free type variables `undetparams; of polymorphic expression
     *  <code>tree</code>, given prototype <code>pt</code>.
     *
     *  @param tree ...
     *  @param undetparams ...
     *  @param pt ...
     */
    def inferExprInstance(tree: Tree, undetparams: List[Symbol], pt: Type) {
      if (inferInfo)
        println("infer expr instance "+tree+"\n"+
                "  undetparams = "+undetparams+"\n"+
                "  pt = "+pt)
      substExpr(tree, undetparams, exprTypeArgs(undetparams, tree.tpe, pt), pt)
    }

    /** Substitite free type variables `undetparams' of polymorphic argument
     *  expression <code>tree</code> to `targs', Error if `targs' is null
     *
     *  @param tree ...
     *  @param undetparams ...
     *  @param targs ...
     *  @param pt ...
     */
    private def substExpr(tree: Tree, undetparams: List[Symbol],
                          targs: List[Type], pt: Type) {
      if (targs eq null) {
        if (!tree.tpe.isErroneous && !pt.isErroneous)
          error(tree.pos, "polymorphic expression cannot be instantiated to expected type" +
                foundReqMsg(PolyType(undetparams, skipImplicit(tree.tpe)), pt))
      } else {
        new TreeTypeSubstituter(undetparams, targs).traverse(tree)
      }
    }

    /** Substitite free type variables <code>undetparams</code> of application
     *  <code>fn(args)</code>, given prototype <code>pt</code>.
     *
     *  @param fn          ...
     *  @param undetparams ...
     *  @param args        ...
     *  @param pt          ...
     *  @return            Return the list of type parameters that remain uninstantiated.
     */
    def inferMethodInstance(fn: Tree, undetparams: List[Symbol],
                            args: List[Tree], pt: Type): List[Symbol] = fn.tpe match {
      case MethodType(formals0, _) =>
        if (inferInfo)
          println("infer method instance "+fn+"\n"+
                  "  undetparams = "+undetparams+"\n"+
                  "  args = "+args+"\n"+
                  "  pt = "+pt)
        try {
          val formals = formalTypes(formals0, args.length)
          val argtpes = actualTypes(args map (_.tpe.deconst), formals.length)
          val restpe = fn.tpe.resultType(argtpes)
          val uninstantiated = new ListBuffer[Symbol]
          val targs = methTypeArgs(undetparams, formals, restpe, argtpes, pt, uninstantiated)
          checkBounds(fn.pos, NoPrefix, NoSymbol, undetparams, targs, "inferred ")
          //Console.println("UNAPPLY subst type "+undetparams+" to "+targs+" in "+fn+" ( "+args+ ")")
          val treeSubst = new TreeTypeSubstituter(undetparams, targs)
          treeSubst.traverse(fn)
          treeSubst.traverseTrees(args)
          //Console.println("UNAPPLY gives "+fn+" ( "+args+ "), argtpes = "+argtpes+", pt = "+pt)
          uninstantiated.toList
        } catch {
          case ex: NoInstance =>
            errorTree(fn,
              "no type parameters for " +
              applyErrorMsg(
                fn, " exist so that it can be applied to arguments ",
                args map (_.tpe.widen), WildcardType) +
              "\n --- because ---\n" + ex.getMessage())
            List()
        }
    }

    /** Type with all top-level occurrences of abstract types replaced by their bounds */
    def widen(tp: Type): Type = tp match { // @M don't normalize here (compiler loops on pos/bug1090.scala )
      case TypeRef(_, sym, _) if sym.isAbstractType =>
        widen(tp.bounds.hi)
      case TypeRef(_, sym, _) if sym.isAliasType =>
        widen(tp.normalize)
      case rtp @ RefinedType(parents, decls) =>
        copyRefinedType(rtp, List.mapConserve(parents)(widen), decls)
      case AnnotatedType(_, underlying, _) =>
        widen(underlying)
      case _ =>
        tp
    }

    /** Substitite free type variables <code>undetparams</code> of type constructor
     *  <code>tree</code> in pattern, given prototype <code>pt</code>.
     *
     *  @param tree        ...
     *  @param undetparams ...
     *  @param pt          ...
     */
    def inferConstructorInstance(tree: Tree, undetparams: List[Symbol], pt0: Type) {
      val pt = widen(pt0)
      //println("infer constr inst "+tree+"/"+undetparams+"/"+pt0)
      var restpe = tree.tpe.finalResultType
      var tvars = undetparams map freshVar

      /** Compute type arguments for undetermined params and substitute them in given tree.
       */
      def computeArgs =
        try {
          val targs = solvedTypes(tvars, undetparams, undetparams map varianceInType(restpe), true)
//          checkBounds(tree.pos, NoPrefix, NoSymbol, undetparams, targs, "inferred ")
//          no checkBounds here. If we enable it, test bug602 fails.
          new TreeTypeSubstituter(undetparams, targs).traverse(tree)
        } catch {
          case ex: NoInstance =>
            errorTree(tree, "constructor of type " + restpe +
                      " cannot be uniquely instantiated to expected type " + pt +
                      "\n --- because ---\n" + ex.getMessage())
        }
      def instError = {
        if (settings.debug.value) Console.println("ici " + tree + " " + undetparams + " " + pt)
        if (settings.explaintypes.value) explainTypes(restpe.instantiateTypeParams(undetparams, tvars), pt)
        errorTree(tree, "constructor cannot be instantiated to expected type" +
                  foundReqMsg(restpe, pt))
      }
      if (restpe.instantiateTypeParams(undetparams, tvars) <:< pt) {
        computeArgs
      } else if (isFullyDefined(pt)) {
        if (settings.debug.value) log("infer constr " + tree + ":" + restpe + ", pt = " + pt)
        var ptparams = freeTypeParamsOfTerms.collect(pt)
        if (settings.debug.value) log("free type params = " + ptparams)
        val ptWithWildcards = pt.instantiateTypeParams(ptparams, ptparams map (ptparam => WildcardType))
        tvars = undetparams map freshVar
        if (restpe.instantiateTypeParams(undetparams, tvars) <:< ptWithWildcards) {
          computeArgs
          restpe = skipImplicit(tree.tpe.resultType)
          if (settings.debug.value) log("new tree = " + tree + ":" + restpe)
          val ptvars = ptparams map freshVar
          val pt1 = pt.instantiateTypeParams(ptparams, ptvars)
          if (isPopulated(restpe, pt1)) {
            ptvars foreach instantiateTypeVar
          } else { if (settings.debug.value) Console.println("no instance: "); instError }
        } else { if (settings.debug.value) Console.println("not a subtype " + restpe.instantiateTypeParams(undetparams, tvars) + " of " + ptWithWildcards); instError }
      } else { if (settings.debug.value) Console.println("not fuly defined: " + pt); instError }
    }

    def instantiateTypeVar(tvar: TypeVar) = {
      val tparam = tvar.origin.typeSymbol
      if (false &&
          tvar.constr.inst != NoType &&
          isFullyDefined(tvar.constr.inst) &&
          (tparam.info.bounds containsType tvar.constr.inst)) {
        context.nextEnclosing(_.tree.isInstanceOf[CaseDef]).pushTypeBounds(tparam)
        tparam setInfo tvar.constr.inst
        tparam resetFlag DEFERRED
        if (settings.debug.value) log("new alias of " + tparam + " = " + tparam.info)
      } else {
        val instType = toOrigin(tvar.constr.inst)
        val (loBounds, hiBounds) =
          if (instType != NoType && isFullyDefined(instType)) (List(instType), List(instType))
          else (tvar.constr.lobounds, tvar.constr.hibounds)
        val lo = lub(tparam.info.bounds.lo :: loBounds map toOrigin)
        val hi = glb(tparam.info.bounds.hi :: hiBounds map toOrigin)
        if (!(lo <:< hi)) {
          if (settings.debug.value) log("inconsistent: "+tparam+" "+lo+" "+hi)
        } else if (!((lo <:< tparam.info.bounds.lo) && (tparam.info.bounds.hi <:< hi))) {
          context.nextEnclosing(_.tree.isInstanceOf[CaseDef]).pushTypeBounds(tparam)
          tparam setInfo mkTypeBounds(lo, hi)
          if (settings.debug.value) log("new bounds of " + tparam + " = " + tparam.info)
        } else {
          if (settings.debug.value) log("redundant: "+tparam+" "+tparam.info+"/"+lo+" "+hi)
        }
      }
    }

    def checkCheckable(pos: Position, tp: Type, kind: String) {
      def patternWarning(tp: Type, prefix: String) = {
        context.unit.uncheckedWarning(pos, prefix+tp+" in type"+kind+" is unchecked since it is eliminated by erasure")
      }
      def check(tp: Type, bound: List[Symbol]) {
        def isLocalBinding(sym: Symbol) =
          sym.isAbstractType &&
          ((bound contains sym) ||
           sym.name == nme.WILDCARD.toTypeName || {
            val e = context.scope.lookupEntry(sym.name)
            (e ne null) && e.sym == sym && e.owner == context.scope
          })
        tp match {
          case SingleType(pre, _) =>
            check(pre, bound)
          case TypeRef(pre, sym, args) =>
            if (sym.isAbstractType)
              patternWarning(tp, "abstract type ")
            else if (sym.isAliasType)
              check(tp.normalize, bound)
            else if (sym == AllClass || sym == AllRefClass)
              error(pos, "this type cannot be used in a type pattern")
            else
              for (arg <- args) {
                if (sym == ArrayClass) check(arg, bound)
                else arg match {
                  case TypeRef(_, sym, _) if isLocalBinding(sym) =>
                    ;
                  case _ =>
                    patternWarning(arg, "non variable type-argument ")
                }
              }
            check(pre, bound)
          case RefinedType(parents, decls) =>
            if (decls.isEmpty) for (p <- parents) check(p, bound)
            else patternWarning(tp, "refinement ")
          case ExistentialType(quantified, tp1) =>
            check(tp1, bound ::: quantified)
          case ThisType(_) =>
            ;
          case NoPrefix =>
            ;
          case _ =>
            patternWarning(tp, "type ")
        }
      }
      check(tp, List())
    }

    /** Type intersection of simple type <code>tp1</code> with general
     *  type <code>tp2</code>. The result eliminates some redundancies.
     */
    def intersect(tp1: Type, tp2: Type): Type = {
      if (tp1 <:< tp2) tp1
      else if (tp2 <:< tp1) tp2
      else {
        val reduced2 = tp2 match {
          case rtp @ RefinedType(parents2, decls2) =>
            copyRefinedType(rtp, parents2 filter (p2 => !(tp1 <:< p2)), decls2)
          case _ =>
            tp2
        }
        intersectionType(List(tp1, reduced2))
      }
    }

    def inferTypedPattern(pos: Position, pattp: Type, pt0: Type): Type = {
      val pt = widen(pt0)
      checkCheckable(pos, pattp, " pattern")
      if (!(pattp <:< pt)) {
        val tpparams = freeTypeParamsOfTerms.collect(pattp)
        if (settings.debug.value) log("free type params (1) = " + tpparams)
        var tvars = tpparams map freshVar
        var tp = pattp.instantiateTypeParams(tpparams, tvars)
        if (!(tp <:< pt)) {
          tvars = tpparams map freshVar
          tp = pattp.instantiateTypeParams(tpparams, tvars)
          val ptparams = freeTypeParamsOfTerms.collect(pt)
          if (settings.debug.value) log("free type params (2) = " + ptparams)
          val ptvars = ptparams map freshVar
          val pt1 = pt.instantiateTypeParams(ptparams, ptvars)
          if (!isPopulated(tp, pt1)) {
            error(pos, "pattern type is incompatible with expected type"+foundReqMsg(pattp, pt))
            return pattp
          }
          ptvars foreach instantiateTypeVar
        }
        tvars foreach instantiateTypeVar
      }
      intersect(pt, pattp)
    }

    def inferModulePattern(pat: Tree, pt: Type) =
      if (!(pat.tpe <:< pt)) {
        val ptparams = freeTypeParamsOfTerms.collect(pt)
        if (settings.debug.value) log("free type params (2) = " + ptparams)
        val ptvars = ptparams map freshVar
        val pt1 = pt.instantiateTypeParams(ptparams, ptvars)
        if (pat.tpe <:< pt1)
          ptvars foreach instantiateTypeVar
        else
          error(pat.pos, "pattern type is incompatible with expected type"+foundReqMsg(pat.tpe, pt))
      }

    object toOrigin extends TypeMap {
      def apply(tp: Type): Type = tp match {
        case TypeVar(origin, _) => origin
        case _ => mapOver(tp)
      }
    }

    abstract class SymCollector extends TypeTraverser {
      private var result: List[Symbol] = _
      protected def includeCondition(sym: Symbol): Boolean

      override def traverse(tp: Type): TypeTraverser = {
        tp.normalize match {
          case TypeRef(_, sym, _) =>
            if (includeCondition(sym) && !result.contains(sym)) result = sym :: result
          case _ =>
        }
        mapOver(tp)
        this
      }

      /** Collect all abstract type symbols referred to by type <code>tp</code>.
       *
       *  @param tp ...
       *  @return   ...
       */
      def collect(tp: Type): List[Symbol] = {
        result = List()
        traverse(tp)
        result
      }
    }

    object approximateAbstracts extends TypeMap {
      def apply(tp: Type): Type = tp.normalize match {
        case TypeRef(pre, sym, _) if sym.isAbstractType => WildcardType
        case _ => mapOver(tp)
      }
    }

    /** A traverser to collect type parameters referred to in a type
     */
    object freeTypeParamsOfTerms extends SymCollector {
      protected def includeCondition(sym: Symbol): Boolean =
        sym.isAbstractType && sym.owner.isTerm
    }

    object typeRefs extends SymCollector {
      protected def includeCondition(sym: Symbol): Boolean = true
    }

    def checkDead(tree: Tree): Tree = {
      if (settings.Xwarndeadcode.value && tree.tpe.typeSymbol == AllClass)
        context.warning (tree.pos, "dead code following this construct")
      tree
    }

    /* -- Overload Resolution ---------------------------------------------- */

    def checkNotShadowed(pos: Position, pre: Type, best: Symbol, eligible: List[Symbol]) =
      if (!phase.erasedTypes)
        for (alt <- eligible) {
          if (alt.owner != best.owner && alt.owner.isSubClass(best.owner))
            error(pos,
                  "erroneous reference to overloaded definition,\n"+
                  "most specific definition is: "+best+best.locationString+" of type "+pre.memberType(best)+
                  ",\nyet alternative definition   "+alt+alt.locationString+" of type "+pre.memberType(alt)+
                  "\nis defined in a subclass")
        }

    /** Assign <code>tree</code> the symbol and type of the alternative which
     *  matches prototype <code>pt</code>, if it exists.
     *  If several alternatives match `pt', take parameterless one.
     *  If no alternative matches `pt', take the parameterless one anyway.
     */
    def inferExprAlternative(tree: Tree, pt: Type): Unit = tree.tpe match {
      case OverloadedType(pre, alts) => tryTwice {
        var alts1 = alts filter (alt => isWeaklyCompatible(pre.memberType(alt), pt))
        var secondTry = false
        if (alts1.isEmpty) {
          alts1 = alts
          secondTry = true
        }
        def improves(sym1: Symbol, sym2: Symbol): Boolean =
          sym2 == NoSymbol ||
          { val tp1 = pre.memberType(sym1)
            val tp2 = pre.memberType(sym2)
            (tp2 == ErrorType ||
             !global.typer.infer.isWeaklyCompatible(tp2, pt) && global.typer.infer.isWeaklyCompatible(tp1, pt) ||
             isStrictlyMoreSpecific(tp1, tp2)) }
        val best = ((NoSymbol: Symbol) /: alts1) ((best, alt) =>
          if (improves(alt, best)) alt else best)
        val competing = alts1 dropWhile (alt => best == alt || improves(best, alt))
        if (best == NoSymbol) {
          if (settings.debug.value) {
            tree match {
              case Select(qual, _) =>
                Console.println("qual: " + qual + ":" + qual.tpe +
                                   " with decls " + qual.tpe.decls +
                                   " with members " + qual.tpe.members +
                                   " with members " + qual.tpe.member(newTermName("$minus")))
              case _ =>
            }
          }
          typeErrorTree(tree, tree.symbol.tpe, pt)
        } else if (!competing.isEmpty) {
          if (secondTry) {
            typeErrorTree(tree, tree.symbol.tpe, pt)
          } else {
            if (!pt.isErroneous)
              context.ambiguousError(tree.pos, pre, best, competing.head, "expected type " + pt)
            setError(tree)
          }
        } else {
          val applicable = alts1 filter (alt =>
            global.typer.infer.isWeaklyCompatible(pre.memberType(alt), pt))
          checkNotShadowed(tree.pos, pre, best, applicable)
          tree.setSymbol(best).setType(pre.memberType(best))
        }
      }
    }

    /** Assign <code>tree</code> the type of an alternative which is applicable
     *  to <code>argtpes</code>, and whose result type is compatible with `pt'.
     *  If several applicable alternatives exist, take the
     *  most specialized one.
     *  If no applicable alternative exists, and pt != WildcardType, try again
     *  with pt = WildcardType.
     *  Otherwise, if there is no best alternative, error.
     */
    def inferMethodAlternative(tree: Tree, undetparams: List[Symbol], argtpes: List[Type], pt: Type): Unit = tree.tpe match {
      case OverloadedType(pre, alts) =>
        tryTwice {
          if (settings.debug.value) log("infer method alt " + tree.symbol + " with alternatives " + (alts map pre.memberType) + ", argtpes = " + argtpes + ", pt = " + pt)
          val applicable = alts filter (alt => isApplicable(undetparams, followApply(pre.memberType(alt)), argtpes, pt))
          def improves(sym1: Symbol, sym2: Symbol) =
            sym2 == NoSymbol || sym2.isError ||
            isStrictlyMoreSpecific(followApply(pre.memberType(sym1)), followApply(pre.memberType(sym2)))
          val best = ((NoSymbol: Symbol) /: applicable) ((best, alt) =>
            if (improves(alt, best)) alt else best)
          val competing = applicable dropWhile (alt => best == alt || improves(best, alt))
          if (best == NoSymbol) {
            if (pt == WildcardType) {
              errorTree(tree, applyErrorMsg(tree, " cannot be applied to ", argtpes, pt))
            } else {
              inferMethodAlternative(tree, undetparams, argtpes, WildcardType)
            }
          } else if (!competing.isEmpty) {
            if (!(argtpes exists (_.isErroneous)) && !pt.isErroneous)
              context.ambiguousError(tree.pos, pre, best, competing.head,
                                     "argument types " + argtpes.mkString("(", ",", ")") +
                                     (if (pt == WildcardType) "" else " and expected result type " + pt))
            setError(tree)
            ()
          } else {
            checkNotShadowed(tree.pos, pre, best, applicable)
            tree.setSymbol(best).setType(pre.memberType(best))
          }
        }
      case _ =>
    }

    /** Try inference twice, once without views and once with views,
     *  unless views are already disabled.
     *
     *  @param infer ...
     */
    def tryTwice(infer: => Unit) {
      if (context.implicitsEnabled) {
        val reportGeneralErrors = context.reportGeneralErrors
        context.reportGeneralErrors = false
        context.implicitsEnabled = false
        try {
          infer
        } catch {
          case ex: CyclicReference =>
            throw ex
          case ex: TypeError =>
            context.reportGeneralErrors = reportGeneralErrors
            context.implicitsEnabled = true
            infer
        }
        context.reportGeneralErrors = reportGeneralErrors
        context.implicitsEnabled = true
      } else infer
    }

    /** Assign <code>tree</code> the type of unique polymorphic alternative
     *  with <code>nparams</code> as the number of type parameters, if it exists.
     *  If several or none such polymorphic alternatives exist, error.
     *
     *  @param tree ...
     *  @param nparams ...
     */
    def inferPolyAlternatives(tree: Tree, argtypes: List[Type]): Unit = tree.tpe match {
      case OverloadedType(pre, alts) =>
        val sym0 = tree.symbol filter { alt => alt.typeParams.length == argtypes.length }
        if (sym0 == NoSymbol) {
          error(
            tree.pos,
            if (alts exists (alt => alt.typeParams.length > 0))
              "wrong number of type parameters for " + treeSymTypeMsg(tree)
            else treeSymTypeMsg(tree) + " does not take type parameters")
          return
        }
        if (sym0.hasFlag(OVERLOADED)) {
          val sym = sym0 filter { alt => isWithinBounds(pre, alt.owner, alt.typeParams, argtypes) }
          if (sym == NoSymbol) {
            if (!(argtypes exists (_.isErroneous))) {
              error(
                tree.pos,
                "type arguments " + argtypes.mkString("[", ",", "]") +
                " conform to the bounds of none of the overloaded alternatives of\n "+sym0+
                ": "+sym0.info)
              return
            }
          }
          if (sym.hasFlag(OVERLOADED)) {
            val tparams = new AsSeenFromMap(pre, sym.alternatives.head.owner).mapOver(
              sym.alternatives.head.typeParams)
            val bounds = tparams map (_.tpe)  //@M TODO: might be affected by change to tpe in Symbol
            val tpe =
              PolyType(tparams,
                       OverloadedType(AntiPolyType(pre, bounds), sym.alternatives))
            sym.setInfo(tpe)
            tree.setSymbol(sym).setType(tpe)
          } else {
            tree.setSymbol(sym).setType(pre.memberType(sym))
          }
        } else {
          tree.setSymbol(sym0).setType(pre.memberType(sym0))
        }
    }
  }
}