summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/typechecker/Macros.scala
blob: c0844ec8fc64d79da3198fb7d5b0c987f8a50907 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
package scala.tools.nsc
package typechecker

import symtab.Flags._
import scala.tools.nsc.util._
import scala.tools.nsc.util.ClassPath._
import scala.reflect.runtime.ReflectionUtils
import scala.collection.mutable.ListBuffer
import scala.compat.Platform.EOL
import scala.reflect.internal.util.Statistics
import scala.reflect.macros.util._
import java.lang.{Class => jClass}
import java.lang.reflect.{Array => jArray, Method => jMethod}
import scala.reflect.internal.util.Collections._
import scala.util.control.ControlThrowable
import scala.reflect.macros.runtime.AbortMacroException

/**
 *  Code to deal with macros, namely with:
 *    * Compilation of macro definitions
 *    * Expansion of macro applications
 *
 *  Say we have in a class C:
 *
 *    def foo[T](xs: List[T]): T = macro fooBar
 *
 *  Then fooBar needs to point to a static method of the following form:
 *
 *    def fooBar[T: c.WeakTypeTag] // type tag annotation is optional
 *           (c: scala.reflect.macros.Context)
 *           (xs: c.Expr[List[T]])
 *           : c.Expr[T] = {
 *      ...
 *    }
 *
 *  Then, if foo is called in qual.foo[Int](elems), where qual: D,
 *  the macro application is expanded to a reflective invocation of fooBar with parameters:
 *
 *    (simpleMacroContext{ type PrefixType = D; val prefix = qual })
 *    (Expr(elems))
 *    (TypeTag(Int))
 */
trait Macros extends scala.tools.reflect.FastTrack with Traces {
  self: Analyzer =>

  import global._
  import definitions._
  import treeInfo.{isRepeatedParamType => _, _}
  import MacrosStats._
  def globalSettings = global.settings

  /** `MacroImplBinding` and its companion module are responsible for
   *  serialization/deserialization of macro def -> impl bindings.
   *
   *  The first officially released version of macros persisted these bindings across compilation runs
   *  using a neat trick. The right-hand side of a macro definition (which contains a reference to a macro impl)
   *  was typechecked and then put verbatim into an annotation on the macro definition.
   *
   *  This solution is very simple, but unfortunately it's also lacking. If we use it, then
   *  signatures of macro defs become transitively dependent on scala-reflect.jar
   *  (because they refer to macro impls, and macro impls refer to scala.reflect.macros.Context defined in scala-reflect.jar).
   *  More details can be found in comments to https://issues.scala-lang.org/browse/SI-5940.
   *
   *  Therefore we have to avoid putting macro impls into binding pickles and come up with our own serialization format.
   *  Situation is further complicated by the fact that it's not enough to just pickle macro impl's class name and method name,
   *  because macro expansion needs some knowledge about the shape of macro impl's signature (which we can't pickle).
   *  Hence we precompute necessary stuff (e.g. the layout of type parameters) when compiling macro defs.
   */

  /** Represents all the information that a macro definition needs to know about its implementation.
   *  Includes a path to load the implementation via Java reflection,
   *  and various accounting information necessary when composing an argument list for the reflective invocation.
   */
  private case class MacroImplBinding(
    // Java class name of the class that contains the macro implementation
    // is used to load the corresponding object with Java reflection
    val className: String,
    // method name of the macro implementation
    // `className` and `methName` are all we need to reflectively invoke a macro implementation
    // because macro implementations cannot be overloaded
    val methName: String,
    // flattens the macro impl's parameter lists having symbols replaced with metadata
    // currently metadata is an index of the type parameter corresponding to that type tag (if applicable)
    // f.ex. for: def impl[T: WeakTypeTag, U: WeakTypeTag, V](c: Context)(x: c.Expr[T]): (U, V) = ???
    // `signature` will be equal to List(-1, -1, 0, 1)
    val signature: List[Int],
    // type arguments part of a macro impl ref (the right-hand side of a macro definition)
    // these trees don't refer to a macro impl, so we can pickle them as is
    val targs: List[Tree])

  /** Macro def -> macro impl bindings are serialized into a `macroImpl` annotation
   *  with synthetic content that carries the payload described in `MacroImplBinding`.
   *
   *  For example, for a pair of macro definition and macro implementation:
   *    def impl(c: scala.reflect.macros.Context): c.Expr[Unit] = c.literalUnit;
   *    def foo: Unit = macro impl
   *
   *  We will have the following annotation added on the macro definition `foo`:
   *
   *    @scala.reflect.macros.internal.macroImpl(
   *      `macro`(
   *        "signature" = List(-1),
   *        "methodName" = "impl",
   *        "versionFormat" = 1,
   *        "className" = "Macros$"))
   */
  private object MacroImplBinding {
    val versionFormat = 1

    def pickleAtom(obj: Any): Tree =
      obj match {
        case list: List[_] => Apply(Ident(ListModule), list map pickleAtom)
        case s: String => Literal(Constant(s))
        case i: Int => Literal(Constant(i))
      }

    def unpickleAtom(tree: Tree): Any =
      tree match {
        case Apply(list @ Ident(_), args) if list.symbol == ListModule => args map unpickleAtom
        case Literal(Constant(s: String)) => s
        case Literal(Constant(i: Int)) => i
      }

    def pickle(macroImplRef: Tree): Tree = {
      val MacroImplReference(owner, macroImpl, targs) = macroImplRef
      val paramss = macroImpl.paramss

      // todo. refactor when fixing SI-5498
      def className: String = {
        def loop(sym: Symbol): String = sym match {
          case sym if sym.owner.isPackageClass =>
            val suffix = if (sym.isModuleClass) "$" else ""
            sym.fullName + suffix
          case sym =>
            val separator = if (sym.owner.isModuleClass) "" else "$"
            loop(sym.owner) + separator + sym.javaSimpleName.toString
        }

        loop(owner)
      }

      def signature: List[Int] = {
        val transformed = transformTypeTagEvidenceParams(paramss, (param, tparam) => tparam)
        transformed.flatten map (p => if (p.isTerm) -1 else p.paramPos)
      }

      val payload = List[(String, Any)](
        "versionFormat" -> versionFormat,
        "className"     -> className,
        "methodName"    -> macroImpl.name.toString,
        "signature"     -> signature
      )

      // the shape of the nucleus is chosen arbitrarily. it doesn't carry any payload.
      // it's only necessary as a stub `fun` for an Apply node that carries metadata in its `args`
      // so don't try to find a program element named "macro" that corresponds to the nucleus
      // I just named it "macro", because it's macro-related, but I could as well name it "foobar"
      val nucleus = Ident(newTermName("macro"))
      val wrapped = Apply(nucleus, payload map { case (k, v) => Assign(pickleAtom(k), pickleAtom(v)) })
      val pickle = gen.mkTypeApply(wrapped, targs map (_.duplicate))

      // assign NoType to all freshly created AST nodes
      // otherwise pickler will choke on tree.tpe being null
      // there's another gotcha
      // if you don't assign a ConstantType to a constant
      // then pickling will crash
      new Transformer {
        override def transform(tree: Tree) = {
          tree match {
            case Literal(const @ Constant(x)) if tree.tpe == null => tree setType ConstantType(const)
            case _ if tree.tpe == null => tree setType NoType
            case _ => ;
          }
          super.transform(tree)
        }
      }.transform(pickle)
    }

    def unpickle(pickle: Tree): MacroImplBinding = {
      val (wrapped, targs) =
        pickle match {
          case TypeApply(wrapped, targs) => (wrapped, targs)
          case wrapped => (wrapped, Nil)
        }
      val Apply(_, pickledPayload) = wrapped
      val payload = pickledPayload.map{ case Assign(k, v) => (unpickleAtom(k), unpickleAtom(v)) }.toMap

      val pickleVersionFormat = payload("versionFormat").asInstanceOf[Int]
      if (versionFormat != pickleVersionFormat) throw new Error("macro impl binding format mismatch: expected $versionFormat, actual $pickleVersionFormat")

      val className = payload("className").asInstanceOf[String]
      val methodName = payload("methodName").asInstanceOf[String]
      val signature = payload("signature").asInstanceOf[List[Int]]
      MacroImplBinding(className, methodName, signature, targs)
    }
  }

  private def bindMacroImpl(macroDef: Symbol, macroImplRef: Tree): Unit = {
    val pickle = MacroImplBinding.pickle(macroImplRef)
    macroDef withAnnotation AnnotationInfo(MacroImplAnnotation.tpe, List(pickle), Nil)
  }

  private def loadMacroImplBinding(macroDef: Symbol): MacroImplBinding = {
    val Some(AnnotationInfo(_, List(pickle), _)) = macroDef.getAnnotation(MacroImplAnnotation)
    MacroImplBinding.unpickle(pickle)
  }

  /** Transforms parameters lists of a macro impl.
   *  The `transform` function is invoked only for WeakTypeTag evidence parameters.
   *
   *  The transformer takes two arguments: a value parameter from the parameter list
   *  and a type parameter that is witnesses by the value parameter.
   *
   *  If the transformer returns a NoSymbol, the value parameter is not included from the result.
   *  If the transformer returns something else, this something else is included in the result instead of the value parameter.
   *
   *  Despite of being highly esoteric, this function significantly simplifies signature analysis.
   *  For example, it can be used to strip macroImpl.paramss from the evidences (necessary when checking def <-> impl correspondence)
   *  or to streamline creation of the list of macro arguments.
   */
  private def transformTypeTagEvidenceParams(paramss: List[List[Symbol]], transform: (Symbol, Symbol) => Symbol): List[List[Symbol]] = {
    if (paramss.isEmpty || paramss.last.isEmpty) return paramss // no implicit parameters in the signature => nothing to do
    if (paramss.head.isEmpty || !(paramss.head.head.tpe <:< MacroContextClass.tpe)) return paramss // no context parameter in the signature => nothing to do
    def transformTag(param: Symbol): Symbol = param.tpe.dealias match {
      case TypeRef(SingleType(SingleType(NoPrefix, c), universe), WeakTypeTagClass, targ :: Nil)
      if c == paramss.head.head && universe == MacroContextUniverse =>
        transform(param, targ.typeSymbol)
      case _ =>
        param
    }
    val transformed = paramss.last map transformTag filter (_ ne NoSymbol)
    if (transformed.isEmpty) paramss.init else paramss.init :+ transformed
  }

  def computeMacroDefTypeFromMacroImpl(macroDdef: DefDef, macroImpl: Symbol): Type = {
    // Step I. Transform c.Expr[T] to T
    var runtimeType = macroImpl.tpe.finalResultType.dealias match {
      case TypeRef(_, ExprClass, runtimeType :: Nil) => runtimeType
      case _ => AnyTpe // so that macro impls with rhs = ??? don't screw up our inference
    }

    // Step II. Transform type parameters of a macro implementation into type arguments in a macro definition's body
    runtimeType = runtimeType.substituteTypes(macroImpl.typeParams, loadMacroImplBinding(macroDdef.symbol).targs.map(_.tpe))

    // Step III. Transform c.prefix.value.XXX to this.XXX and implParam.value.YYY to defParam.YYY
    def unsigma(tpe: Type): Type =
      transformTypeTagEvidenceParams(macroImpl.paramss, (param, tparam) => NoSymbol) match {
        case (implCtxParam :: Nil) :: implParamss =>
          val implToDef = flatMap2(implParamss, macroDdef.vparamss)(map2(_, _)((_, _))).toMap
          object UnsigmaTypeMap extends TypeMap {
            def apply(tp: Type): Type = tp match {
              case TypeRef(pre, sym, args) =>
                val pre1 = pre match {
                  case SingleType(SingleType(SingleType(NoPrefix, c), prefix), value) if c == implCtxParam && prefix == MacroContextPrefix && value == ExprValue =>
                    ThisType(macroDdef.symbol.owner)
                  case SingleType(SingleType(NoPrefix, implParam), value) if value == ExprValue =>
                    implToDef get implParam map (defParam => SingleType(NoPrefix, defParam.symbol)) getOrElse pre
                  case _ =>
                    pre
                }
                val args1 = args map mapOver
                TypeRef(pre1, sym, args1)
              case _ =>
                mapOver(tp)
            }
          }

          UnsigmaTypeMap(tpe)
        case _ =>
          tpe
      }

    unsigma(runtimeType)
  }

  /** A reference macro implementation signature compatible with a given macro definition.
   *
   *  In the example above for the following macro def:
   *    def foo[T](xs: List[T]): T = macro fooBar
   *
   *  This function will return:
   *    (c: scala.reflect.macros.Context)(xs: c.Expr[List[T]]): c.Expr[T]
   *
   *  Note that type tag evidence parameters are not included into the result.
   *  Type tag context bounds for macro impl tparams are optional.
   *  Therefore compatibility checks ignore such parameters, and we don't need to bother about them here.
   *
   *  @param macroDef The macro definition symbol
   *  @param tparams  The type parameters of the macro definition
   *  @param vparamss The value parameters of the macro definition
   *  @param retTpe   The return type of the macro definition
   */
  private def macroImplSig(macroDef: Symbol, tparams: List[TypeDef], vparamss: List[List[ValDef]], retTpe: Type): (List[List[Symbol]], Type) = {
    // had to move method's body to an object because of the recursive dependencies between sigma and param
    object SigGenerator {
      def sigma(tpe: Type): Type = {
        class SigmaTypeMap extends TypeMap {
          def apply(tp: Type): Type = tp match {
            case TypeRef(pre, sym, args) =>
              val pre1 = pre match {
                case ThisType(sym) if sym == macroDef.owner =>
                  SingleType(SingleType(SingleType(NoPrefix, ctxParam), MacroContextPrefix), ExprValue)
                case SingleType(NoPrefix, sym) =>
                  mfind(vparamss)(_.symbol == sym) match {
                    case Some(macroDefParam) => SingleType(SingleType(NoPrefix, param(macroDefParam)), ExprValue)
                    case _ => pre
                  }
                case _ =>
                  pre
              }
              TypeRef(pre1, sym, args map mapOver)
            case _ =>
              mapOver(tp)
          }
        }

        new SigmaTypeMap() apply tpe
      }

      def makeParam(name: Name, pos: Position, tpe: Type, flags: Long = 0L) =
        macroDef.newValueParameter(name, pos, flags) setInfo tpe
      val ctxParam = makeParam(nme.macroContext, macroDef.pos, MacroContextClass.tpe, SYNTHETIC)
      def implType(isType: Boolean, origTpe: Type): Type =
        if (isRepeatedParamType(origTpe))
          appliedType(
            RepeatedParamClass.typeConstructor,
            List(implType(isType, sigma(origTpe.typeArgs.head))))
        else {
          val tsym = getMember(MacroContextClass, if (isType) tpnme.WeakTypeTag else tpnme.Expr)
          typeRef(singleType(NoPrefix, ctxParam), tsym, List(sigma(origTpe)))
        }
      val paramCache = scala.collection.mutable.Map[Symbol, Symbol]()
      def param(tree: Tree): Symbol =
        paramCache.getOrElseUpdate(tree.symbol, {
          val sym = tree.symbol
          makeParam(sym.name, sym.pos, implType(sym.isType, sym.tpe), sym.flags)
        })

      val paramss = List(ctxParam) :: mmap(vparamss)(param)
      val implRetTpe = typeRef(singleType(NoPrefix, ctxParam), getMember(MacroContextClass, tpnme.Expr), List(sigma(retTpe)))
    }

    import SigGenerator._
    macroLogVerbose(sm"""
      |generating macroImplSigs for: $macroDef
      |tparams are: $tparams
      |vparamss are: $vparamss
      |retTpe is: $retTpe
      |macroImplSig is: $paramss, $implRetTpe
    """.trim)
    (paramss, implRetTpe)
  }

  /** Verifies that the body of a macro def typechecks to a reference to a static public non-overloaded method,
   *  and that that method is signature-wise compatible with the given macro definition.
   *
   *  @return Typechecked rhs of the given macro definition if everything is okay.
   *          EmptyTree if an error occurs.
   */
  def typedMacroBody(typer: Typer, macroDdef: DefDef): Tree =
    try new MacroTyper(typer, macroDdef).typed
    catch { case MacroBodyTypecheckException => EmptyTree }

  class MacroTyper(val typer: Typer, val macroDdef: DefDef) extends MacroErrors {
    // Phase I: sanity checks
    val macroDef = macroDdef.symbol
    macroLogVerbose("typechecking macro def %s at %s".format(macroDef, macroDdef.pos))
    assert(macroDef.isTermMacro, macroDdef)
    if (fastTrack contains macroDef) MacroDefIsFastTrack()
    if (!typer.checkFeature(macroDdef.pos, MacrosFeature, immediate = true)) MacroFeatureNotEnabled()

    // we use typed1 instead of typed, because otherwise adapt is going to mess us up
    // if adapt sees <qualifier>.<method>, it will want to perform eta-expansion and will fail
    // unfortunately, this means that we have to manually trigger macro expansion
    // because it's adapt which is responsible for automatic expansion during typechecking
    def typecheckRhs(rhs: Tree): Tree = {
      try {
        // interestingly enough, just checking isErroneous doesn't cut it
        // e.g. a "type arguments [U] do not conform to method foo's type parameter bounds" error
        // doesn't manifest itself as an error in the resulting tree
        val prevNumErrors = reporter.ERROR.count
        var rhs1 = typer.typed1(rhs, EXPRmode, WildcardType)
        def rhsNeedsMacroExpansion = rhs1.symbol != null && rhs1.symbol.isTermMacro && !rhs1.symbol.isErroneous
        while (rhsNeedsMacroExpansion) {
          rhs1 = macroExpand1(typer, rhs1) match {
            case Success(expanded) =>
              try {
                val typechecked = typer.typed1(expanded, EXPRmode, WildcardType)
                macroLogVerbose("typechecked1:%n%s%n%s".format(typechecked, showRaw(typechecked)))
                typechecked
              } finally {
                popMacroContext()
              }
            case Delay(delayed) =>
              typer.instantiate(delayed, EXPRmode, WildcardType)
            case Fallback(fallback) =>
              typer.typed1(fallback, EXPRmode, WildcardType)
            case Other(result) =>
              result
          }
        }
        val typecheckedWithErrors = (rhs1 exists (_.isErroneous)) || reporter.ERROR.count != prevNumErrors
        if (typecheckedWithErrors) MacroDefUntypeableBodyError()
        rhs1
      } catch {
        case ex: TypeError =>
          typer.reportTypeError(context, rhs.pos, ex)
          MacroDefUntypeableBodyError()
      }
    }

    // Phase II: typecheck the right-hand side of the macro def
    val typed = typecheckRhs(macroDdef.rhs)
    typed match {
      case MacroImplReference(_, meth, _) if meth == Predef_??? =>
        bindMacroImpl(macroDef, typed)
        MacroDefIsQmarkQmarkQmark()
      case MacroImplReference(owner, meth, targs) =>
        if (!meth.isMethod) MacroDefInvalidBodyError()
        if (!meth.isPublic) MacroImplNotPublicError()
        if (meth.isOverloaded) MacroImplOverloadedError()
        if (!owner.isStaticOwner && !owner.moduleClass.isStaticOwner) MacroImplNotStaticError()
        if (meth.typeParams.length != targs.length) MacroImplWrongNumberOfTypeArgumentsError(typed)
        bindMacroImpl(macroDef, typed)
      case _ =>
        MacroDefInvalidBodyError()
    }

    // Phase III: check compatibility between the macro def and its macro impl
    // this check ignores type tag evidence parameters, because type tag context bounds are optional
    // aXXX (e.g. aparamss) => characteristics of the macro impl ("a" stands for "actual")
    // rXXX (e.g. rparamss) => characteristics of a reference macro impl signature synthesized from the macro def ("r" stands for "reference")
    val macroImpl = typed.symbol
    val aparamss = transformTypeTagEvidenceParams(macroImpl.paramss, (param, tparam) => NoSymbol)
    val aret = macroImpl.tpe.finalResultType
    val macroDefRet =
      if (!macroDdef.tpt.isEmpty) typer.typedType(macroDdef.tpt).tpe
      else computeMacroDefTypeFromMacroImpl(macroDdef, macroImpl)
    val (rparamss, rret) = macroImplSig(macroDef, macroDdef.tparams, macroDdef.vparamss, macroDefRet)

    val implicitParams = aparamss.flatten filter (_.isImplicit)
    if (implicitParams.nonEmpty) MacroImplNonTagImplicitParameters(implicitParams)
    if (aparamss.length != rparamss.length) MacroImplParamssMismatchError()

    val atparams = macroImpl.typeParams
    val atvars = atparams map freshVar
    def atpeToRtpe(atpe: Type) = atpe.substSym(aparamss.flatten, rparamss.flatten).instantiateTypeParams(atparams, atvars)

    try {
      map2(aparamss, rparamss)((aparams, rparams) => {
        if (aparams.length < rparams.length) MacroImplMissingParamsError(aparams, rparams)
        if (rparams.length < aparams.length) MacroImplExtraParamsError(aparams, rparams)
      })

      // cannot fuse these loops because if aparamss.flatten != rparamss.flatten
      // then `atpeToRtpe` is going to fail with an unsound substitution
      map2(aparamss.flatten, rparamss.flatten)((aparam, rparam) => {
        if (aparam.name != rparam.name && !rparam.isSynthetic) MacroImplParamNameMismatchError(aparam, rparam)
        if (isRepeated(aparam) ^ isRepeated(rparam)) MacroImplVarargMismatchError(aparam, rparam)
        val aparamtpe = aparam.tpe.dealias match {
          case RefinedType(List(tpe), Scope(sym)) if tpe =:= MacroContextClass.tpe && sym.allOverriddenSymbols.contains(MacroContextPrefixType) => tpe
          case tpe => tpe
        }
        checkMacroImplParamTypeMismatch(atpeToRtpe(aparamtpe), rparam)
      })

      checkMacroImplResultTypeMismatch(atpeToRtpe(aret), rret)

      val maxLubDepth = lubDepth(aparamss.flatten map (_.tpe)) max lubDepth(rparamss.flatten map (_.tpe))
      val atargs = solvedTypes(atvars, atparams, atparams map varianceInType(aret), upper = false, depth = maxLubDepth)
      val boundsOk = typer.silent(_.infer.checkBounds(macroDdef, NoPrefix, NoSymbol, atparams, atargs, ""))
      boundsOk match {
        case SilentResultValue(true) => // do nothing, success
        case SilentResultValue(false) | SilentTypeError(_) => MacroImplTargMismatchError(atargs, atparams)
      }
    } catch {
      case ex: NoInstance => MacroImplTparamInstantiationError(atparams, ex)
    }
  }

  /** Macro classloader that is used to resolve and run macro implementations.
   *  Loads classes from from -cp (aka the library classpath).
   *  Is also capable of detecting REPL and reusing its classloader.
   */
  lazy val macroClassloader: ClassLoader = {
    if (global.forMSIL)
      throw new UnsupportedOperationException("Scala reflection not available on this platform")

    val classpath = global.classPath.asURLs
    macroLogVerbose("macro classloader: initializing from -cp: %s".format(classpath))
    val loader = ScalaClassLoader.fromURLs(classpath, self.getClass.getClassLoader)

    // a heuristic to detect the REPL
    if (global.settings.exposeEmptyPackage.value) {
      macroLogVerbose("macro classloader: initializing from a REPL classloader".format(global.classPath.asURLs))
      import scala.tools.nsc.interpreter._
      val virtualDirectory = global.settings.outputDirs.getSingleOutput.get
      new AbstractFileClassLoader(virtualDirectory, loader) {}
    } else {
      loader
    }
  }

  /** Produces a function that can be used to invoke macro implementation for a given macro definition:
   *    1) Looks up macro implementation symbol in this universe.
   *    2) Loads its enclosing class from the macro classloader.
   *    3) Loads the companion of that enclosing class from the macro classloader.
   *    4) Resolves macro implementation within the loaded companion.
   *
   *  @return Requested runtime if macro implementation can be loaded successfully from either of the mirrors,
   *          `null` otherwise.
   */
  type MacroRuntime = MacroArgs => Any
  private val macroRuntimesCache = perRunCaches.newWeakMap[Symbol, MacroRuntime]
  private def macroRuntime(macroDef: Symbol): MacroRuntime = {
    macroLogVerbose(s"looking for macro implementation: $macroDef")
    if (fastTrack contains macroDef) {
      macroLogVerbose("macro expansion is serviced by a fast track")
      fastTrack(macroDef)
    } else {
      macroRuntimesCache.getOrElseUpdate(macroDef, {
        val binding = loadMacroImplBinding(macroDef)
        val className = binding.className
        val methName = binding.methName
        macroLogVerbose(s"resolved implementation as $className.$methName")

        if (binding.className == Predef_???.owner.fullName.toString && binding.methName == Predef_???.name.encoded) {
          args => throw new AbortMacroException(args.c.enclosingPosition, "macro implementation is missing")
        } else {
          // I don't use Scala reflection here, because it seems to interfere with JIT magic
          // whenever you instantiate a mirror (and not do anything with in, just instantiate), performance drops by 15-20%
          // I'm not sure what's the reason - for me it's pure voodoo
          // upd. my latest experiments show that everything's okay
          // it seems that in 2.10.1 we can easily switch to Scala reflection
          try {
            macroLogVerbose(s"loading implementation class: $className")
            macroLogVerbose(s"classloader is: ${ReflectionUtils.show(macroClassloader)}")
            val implObj = ReflectionUtils.staticSingletonInstance(macroClassloader, className)
            // relies on the fact that macro impls cannot be overloaded
            // so every methName can resolve to at maximum one method
            val implMeths = implObj.getClass.getDeclaredMethods.find(_.getName == methName)
            val implMeth = implMeths getOrElse { throw new NoSuchMethodException(s"$className.$methName") }
            macroLogVerbose(s"successfully loaded macro impl as ($implObj, $implMeth)")
            args => implMeth.invoke(implObj, ((args.c +: args.others) map (_.asInstanceOf[AnyRef])): _*)
          } catch {
            case ex: Exception =>
              macroLogVerbose(s"macro runtime failed to load: ${ex.toString}")
              macroDef setFlag IS_ERROR
              null
          }
        }
      })
    }
  }

  private def macroContext(typer: Typer, prefixTree: Tree, expandeeTree: Tree): MacroContext =
    new {
      val universe: self.global.type = self.global
      val callsiteTyper: universe.analyzer.Typer = typer.asInstanceOf[global.analyzer.Typer]
      val expandee = expandeeTree
    } with UnaffiliatedMacroContext {
      val prefix = Expr[Nothing](prefixTree)(TypeTag.Nothing)
      override def toString = "MacroContext(%s@%s +%d)".format(expandee.symbol.name, expandee.pos, enclosingMacros.length - 1 /* exclude myself */)
    }

  /** Calculate the arguments to pass to a macro implementation when expanding the provided tree.
   */
  case class MacroArgs(c: MacroContext, others: List[Any])
  private def macroArgs(typer: Typer, expandee: Tree): MacroArgs = {
    val macroDef   = expandee.symbol
    val prefixTree = expandee.collect{ case Select(qual, name) => qual }.headOption.getOrElse(EmptyTree)
    val context    = expandee.attachments.get[MacroRuntimeAttachment].flatMap(_.macroContext).getOrElse(macroContext(typer, prefixTree, expandee))
    var typeArgs   = List[Tree]()
    val exprArgs   = ListBuffer[List[Expr[_]]]()
    def collectMacroArgs(tree: Tree): Unit = tree match {
      case Apply(fn, args) =>
        // todo. infer precise typetag for this Expr, namely the declared type of the corresponding macro impl argument
        exprArgs.prepend(args map (arg => context.Expr[Nothing](arg)(TypeTag.Nothing)))
        collectMacroArgs(fn)
      case TypeApply(fn, args) =>
        typeArgs = args
        collectMacroArgs(fn)
      case _ =>
    }
    collectMacroArgs(expandee)

    val argcDoesntMatch = macroDef.paramss.length != exprArgs.length
    val nullaryArgsEmptyParams = exprArgs.isEmpty && macroDef.paramss == ListOfNil
    if (argcDoesntMatch && !nullaryArgsEmptyParams) { typer.TyperErrorGen.MacroPartialApplicationError(expandee) }

    val argss: List[List[Any]] = exprArgs.toList
    macroLogVerbose(s"context: $context")
    macroLogVerbose(s"argss: $argss")

    val preparedArgss: List[List[Any]] =
      if (fastTrack contains macroDef) {
        if (fastTrack(macroDef) validate context) argss
        else typer.TyperErrorGen.MacroPartialApplicationError(expandee)
      } else {
        // if paramss have typetag context bounds, add an arglist to argss if necessary and instantiate the corresponding evidences
        // consider the following example:
        //
        //   class D[T] {
        //     class C[U] {
        //       def foo[V] = macro Impls.foo[T, U, V]
        //     }
        //   }
        //
        //   val outer1 = new D[Int]
        //   val outer2 = new outer1.C[String]
        //   outer2.foo[Boolean]
        //
        // then T and U need to be inferred from the lexical scope of the call using `asSeenFrom`
        // whereas V won't be resolved by asSeenFrom and need to be loaded directly from `expandee` which needs to contain a TypeApply node
        // also, macro implementation reference may contain a regular type as a type argument, then we pass it verbatim
        val binding = loadMacroImplBinding(macroDef)
        macroLogVerbose(s"binding: $binding")
        val tags = binding.signature filter (_ != -1) map (paramPos => {
          val targ = binding.targs(paramPos).tpe.typeSymbol
          val tpe = if (targ.isTypeParameterOrSkolem) {
            if (targ.owner == macroDef) {
              // doesn't work when macro def is compiled separately from its usages
              // then targ is not a skolem and isn't equal to any of macroDef.typeParams
              // val argPos = targ.deSkolemize.paramPos
              val argPos = macroDef.typeParams.indexWhere(_.name == targ.name)
              typeArgs(argPos).tpe
            } else
              targ.tpe.asSeenFrom(
                if (prefixTree == EmptyTree) macroDef.owner.tpe else prefixTree.tpe,
                macroDef.owner)
          } else
            targ.tpe
          context.WeakTypeTag(tpe)
        })
        macroLogVerbose(s"tags: $tags")

        // transforms argss taking into account varargness of paramss
        // note that typetag context bounds are only declared on macroImpls
        // so this optional arglist might not match macroDef's paramlist
        // nb! varargs can apply to any parameter section, not necessarily to the last one
        mapWithIndex(argss :+ tags)((as, i) => {
          val mapsToParamss = macroDef.paramss.indices contains i
          if (mapsToParamss) {
            val ps = macroDef.paramss(i)
            if (isVarArgsList(ps)) {
              val (normal, varargs) = as splitAt (ps.length - 1)
              normal :+ varargs // pack all varargs into a single List argument
            } else as
          } else as
        })
      }
    macroLogVerbose(s"preparedArgss: $preparedArgss")
    MacroArgs(context, preparedArgss.flatten)
  }

  /** Keeps track of macros in-flight.
   *  See more informations in comments to `openMacros` in `scala.reflect.macros.Context`.
   */
  private var _openMacros = List[MacroContext]()
  def openMacros = _openMacros
  private def pushMacroContext(c: MacroContext) = _openMacros ::= c
  private def popMacroContext() = _openMacros = _openMacros.tail
  def enclosingMacroPosition = openMacros map (_.macroApplication.pos) find (_ ne NoPosition) getOrElse NoPosition

  private sealed abstract class MacroExpansionResult
  private case class Success(expanded: Tree) extends MacroExpansionResult
  private case class Delay(delayed: Tree) extends MacroExpansionResult
  private case class Fallback(fallback: Tree) extends MacroExpansionResult { currentRun.seenMacroExpansionsFallingBack = true }
  private case class Other(result: Tree) extends MacroExpansionResult
  private def Skip(expanded: Tree) = Other(expanded)
  private def Cancel(expandee: Tree) = Other(expandee)
  private def Failure(expandee: Tree) = Other(expandee)

  /** Performs macro expansion:
   *    1) Checks whether the expansion needs to be delayed (see `mustDelayMacroExpansion`)
   *    2) Loads macro implementation using `macroMirror`
   *    3) Synthesizes invocation arguments for the macro implementation
   *    4) Checks that the result is a tree bound to this universe
   *    5) Typechecks the result against the return type of the macro definition
   *
   *  If -Ymacro-debug-lite is enabled, you will get basic notifications about macro expansion
   *  along with macro expansions logged in the form that can be copy/pasted verbatim into REPL.
   *
   *  If -Ymacro-debug-verbose is enabled, you will get detailed log of how exactly this function
   *  performs class loading and method resolution in order to load the macro implementation.
   *  The log will also include other non-trivial steps of macro expansion.
   *
   *  @return
   *    the expansion result                    if the expansion has been successful,
   *    the fallback method invocation          if the expansion has been unsuccessful, but there is a fallback,
   *    the expandee unchanged                  if the expansion has been delayed,
   *    the expandee fully expanded             if the expansion has been delayed before and has been expanded now,
   *    the expandee with an error marker set   if the expansion has been cancelled due malformed arguments or implementation
   *    the expandee with an error marker set   if there has been an error
   */
  def macroExpand(typer: Typer, expandee: Tree, mode: Int = EXPRmode, pt: Type = WildcardType): Tree = {
    if (settings.Ymacronoexpand.value) return expandee // SI-6812
    val start = if (Statistics.canEnable) Statistics.startTimer(macroExpandNanos) else null
    if (Statistics.canEnable) Statistics.incCounter(macroExpandCount)
    try {
      macroExpand1(typer, expandee) match {
        case Success(expanded) =>
          try {
            def typecheck(phase: String, tree: Tree, pt: Type): Tree = {
              if (tree.isErroneous) return tree
              macroLogVerbose(s"typechecking against $phase $pt: $expanded")
              val numErrors    = reporter.ERROR.count
              def hasNewErrors = reporter.ERROR.count > numErrors
              val result = typer.context.withImplicitsEnabled(typer.typed(tree, EXPRmode, pt))
              macroLogVerbose(s"""${if (hasNewErrors) "failed to typecheck" else "successfully typechecked"} against $phase $pt:\n$result""")
              result
            }

            var expectedTpe = expandee.tpe
            if (isNullaryInvocation(expandee)) expectedTpe = expectedTpe.finalResultType
            if (settings.YfundepMaterialization.value) {
              // approximation is necessary for whitebox macros to guide type inference
              // read more in the comments for onDelayed below
              val undetparams = expectedTpe collect { case tp if tp.typeSymbol.isTypeParameter => tp.typeSymbol }
              expectedTpe = deriveTypeWithWildcards(undetparams)(expectedTpe)
            }

            // also see http://groups.google.com/group/scala-internals/browse_thread/thread/492560d941b315cc
            val expanded0 = duplicateAndKeepPositions(expanded)
            val expanded1 = typecheck("macro def return type", expanded0, expectedTpe)
            val expanded2 = typecheck("expected type", expanded1, pt)
            expanded2
          } finally {
            popMacroContext()
          }
        case Delay(delayed) =>
          // =========== THE SITUATION ===========
          //
          // If we've been delayed (i.e. bailed out of the expansion because of undetermined type params present in the expandee),
          // then there are two possible situations we're in:
          //
          // 1) We're in POLYmode, when the typer tests the waters wrt type inference
          // (e.g. as in typedArgToPoly in doTypedApply).
          //
          // 2) We're out of POLYmode, which means that the typer is out of tricks to infer our type
          // (e.g. if we're an argument to a function call, then this means that no previous argument lists
          // can determine our type variables for us).
          //
          // Situation #1 is okay for us, since there's no pressure. In POLYmode we're just verifying that
          // there's nothing outrageously wrong with our undetermined type params (from what I understand!).
          //
          // Situation #2 requires measures to be taken. If we're in it, then noone's going to help us infer
          // the undetermined type params. Therefore we need to do something ourselves or otherwise this
          // expandee will forever remaing not expanded (see SI-5692).
          //
          // A traditional way out of this conundrum is to call `instantiate` and let the inferencer
          // try to find the way out. It works for simple cases, but sometimes, if the inferencer lacks
          // information, it will be forced to approximate.
          //
          // =========== THE PROBLEM ===========
          //
          // Consider the following example (thanks, Miles!):
          //
          //   // Iso represents an isomorphism between two datatypes:
          //   // 1) An arbitrary one (e.g. a random case class)
          //   // 2) A uniform representation for all datatypes (e.g. an HList)
          //   trait Iso[T, U] {
          //     def to(t : T) : U
          //     def from(u : U) : T
          //   }
          //   implicit def materializeIso[T, U]: Iso[T, U] = macro ???
          //
          //   case class Foo(i: Int, s: String, b: Boolean)
          //   def foo[C, L](c: C)(implicit iso: Iso[C, L]): L = iso.to(c)
          //   foo(Foo(23, "foo", true))
          //
          // In the snippet above, even though we know that there's a fundep going from T to U
          // (in a sense that a datatype's uniform representation is unambiguously determined by the datatype,
          // e.g. for Foo it will be Int :: String :: Boolean :: HNil), there's no way to convey this information
          // to the typechecker. Therefore the typechecker will infer Nothing for L, which is hardly what we want.
          //
          // =========== THE SOLUTION ===========
          //
          // To give materializers a chance to say their word before vanilla inference kicks in,
          // we infer as much as possible (e.g. in the example above even though L is hopeless, C still can be inferred to Foo)
          // and then trigger macro expansion with the undetermined type parameters still there.
          // Thanks to that the materializer can take a look at what's going on and react accordingly.
          //
          // NOTE: This functionality is only available under the -Xfundep-materialization flag in Scala 2.10,
          // but is enabled by default in Scala 2.11.
          val shouldInstantiate = typer.context.undetparams.nonEmpty && !inPolyMode(mode)
          if (shouldInstantiate) {
            if (settings.YfundepMaterialization.value) {
              forced += delayed
              typer.infer.inferExprInstance(delayed, typer.context.extractUndetparams(), pt, keepNothings = false)
              macroExpand(typer, delayed, mode, pt)
            } else typer.instantiatePossiblyExpectingUnit(delayed, mode, pt)
          } else delayed
        case Fallback(fallback) =>
          typer.context.withImplicitsEnabled(typer.typed(fallback, EXPRmode, pt))
        case Other(result) =>
          result
      }
    } finally {
      if (Statistics.canEnable) Statistics.stopTimer(macroExpandNanos, start)
    }
  }

  /** Does the same as `macroExpand`, but without typechecking the expansion
   *  Meant for internal use within the macro infrastructure, don't use it elsewhere.
   */
  private def macroExpand1(typer: Typer, expandee: Tree): MacroExpansionResult =
    // verbose printing might cause recursive macro expansions, so I'm shutting it down here
    withInfoLevel(nodePrinters.InfoLevel.Quiet) {
      if (expandee.symbol.isErroneous || (expandee exists (_.isErroneous))) {
        val reason = if (expandee.symbol.isErroneous) "not found or incompatible macro implementation" else "erroneous arguments"
        macroLogVerbose(s"cancelled macro expansion because of $reason: $expandee")
        return Cancel(typer.infer.setError(expandee))
      }

      try {
        val runtime = macroRuntime(expandee.symbol)
        if (runtime != null) macroExpandWithRuntime(typer, expandee, runtime)
        else macroExpandWithoutRuntime(typer, expandee)
      } catch {
        case typer.TyperErrorGen.MacroExpansionException => Failure(expandee)
      }
    }

  /** Expands a macro when a runtime (i.e. the macro implementation) can be successfully loaded
   *  Meant for internal use within the macro infrastructure, don't use it elsewhere.
   */
  private def macroExpandWithRuntime(typer: Typer, expandee: Tree, runtime: MacroRuntime): MacroExpansionResult = {
    val wasDelayed  = isDelayed(expandee)
    val undetparams = calculateUndetparams(expandee)
    val nowDelayed  = !typer.context.macrosEnabled || undetparams.nonEmpty

    (wasDelayed, nowDelayed) match {
      case (true, true) =>
        Delay(expandee)
      case (true, false) =>
        val expanded = macroExpandAll(typer, expandee)
        if (expanded exists (_.isErroneous)) Failure(expandee)
        else Skip(expanded)
      case (false, true) =>
        macroLogLite("macro expansion is delayed: %s".format(expandee))
        delayed += expandee -> undetparams
        expandee updateAttachment MacroRuntimeAttachment(delayed = true, typerContext = typer.context, macroContext = Some(macroArgs(typer, expandee).c))
        Delay(expandee)
      case (false, false) =>
        import typer.TyperErrorGen._
        macroLogLite("performing macro expansion %s at %s".format(expandee, expandee.pos))
        val args = macroArgs(typer, expandee)
        try {
          val numErrors    = reporter.ERROR.count
          def hasNewErrors = reporter.ERROR.count > numErrors
          val expanded = { pushMacroContext(args.c); runtime(args) }
          if (hasNewErrors) MacroGeneratedTypeError(expandee)
          expanded match {
            case expanded: Expr[_] =>
              macroLogVerbose("original:")
              macroLogLite("" + expanded.tree + "\n" + showRaw(expanded.tree))
              val freeSyms = expanded.tree.freeTerms ++ expanded.tree.freeTypes
              freeSyms foreach (sym => MacroFreeSymbolError(expandee, sym))
              Success(atPos(enclosingMacroPosition.focus)(expanded.tree updateAttachment MacroExpansionAttachment(expandee)))
            case _ =>
              MacroExpansionIsNotExprError(expandee, expanded)
          }
        } catch {
          case ex: Throwable =>
            popMacroContext()
            val realex = ReflectionUtils.unwrapThrowable(ex)
            realex match {
              case ex: AbortMacroException => MacroGeneratedAbort(expandee, ex)
              case ex: ControlThrowable => throw ex
              case ex: TypeError => MacroGeneratedTypeError(expandee, ex)
              case _ => MacroGeneratedException(expandee, realex)
            }
        } finally {
          expandee.removeAttachment[MacroRuntimeAttachment]
        }
    }
  }

  /** Expands a macro when a runtime (i.e. the macro implementation) cannot be loaded
   *  Meant for internal use within the macro infrastructure, don't use it elsewhere.
   */
  private def macroExpandWithoutRuntime(typer: Typer, expandee: Tree): MacroExpansionResult = {
    import typer.TyperErrorGen._
    val fallbackSym = expandee.symbol.nextOverriddenSymbol orElse MacroImplementationNotFoundError(expandee)
    macroLogLite(s"falling back to: $fallbackSym")

    def mkFallbackTree(tree: Tree): Tree = {
      tree match {
        case Select(qual, name) => Select(qual, name) setPos tree.pos setSymbol fallbackSym
        case Apply(fn, args) => Apply(mkFallbackTree(fn), args) setPos tree.pos
        case TypeApply(fn, args) => TypeApply(mkFallbackTree(fn), args) setPos tree.pos
      }
    }
    Fallback(mkFallbackTree(expandee))
  }

  /** Without any restrictions on macro expansion, macro applications will expand at will,
   *  and when type inference is involved, expansions will end up using yet uninferred type params.
   *
   *  For some macros this might be ok (thanks to TreeTypeSubstituter that replaces
   *  the occurrences of undetparams with their inferred values), but in general case this won't work.
   *  E.g. for reification simple substitution is not enough - we actually need to re-reify inferred types.
   *
   *  Luckily, there exists a very simple way to fix the problem: delay macro expansion until everything is inferred.
   *  Here are the exact rules. Macro application gets delayed if any of its subtrees contain:
   *    1) type vars (tpe.isInstanceOf[TypeVar]) // [Eugene] this check is disabled right now, because TypeVars seem to be created from undetparams anyways
   *    2) undetparams (sym.isTypeParameter && !sym.isSkolem)
   */
  var hasPendingMacroExpansions = false
  private val forced = perRunCaches.newWeakSet[Tree]
  private val delayed = perRunCaches.newWeakMap[Tree, scala.collection.mutable.Set[Int]]
  private def isDelayed(expandee: Tree) = delayed contains expandee
  private def calculateUndetparams(expandee: Tree): scala.collection.mutable.Set[Int] =
    // !settings.YfundepMaterialization.value implies forced.isEmpty
    if (forced(expandee)) scala.collection.mutable.Set[Int]()
    else delayed.getOrElse(expandee, {
      val calculated = scala.collection.mutable.Set[Symbol]()
      expandee foreach (sub => {
        def traverse(sym: Symbol) = if (sym != null && (undetparams contains sym.id)) calculated += sym
        if (sub.symbol != null) traverse(sub.symbol)
        if (sub.tpe != null) sub.tpe foreach (sub => traverse(sub.typeSymbol))
      })
      macroLogVerbose("calculateUndetparams: %s".format(calculated))
      calculated map (_.id)
    })
  private val undetparams = perRunCaches.newSet[Int]
  def notifyUndetparamsAdded(newUndets: List[Symbol]): Unit = {
    undetparams ++= newUndets map (_.id)
    if (macroDebugVerbose) newUndets foreach (sym => println("undetParam added: %s".format(sym)))
  }
  def notifyUndetparamsInferred(undetNoMore: List[Symbol], inferreds: List[Type]): Unit = {
    undetparams --= undetNoMore map (_.id)
    if (macroDebugVerbose) (undetNoMore zip inferreds) foreach { case (sym, tpe) => println("undetParam inferred: %s as %s".format(sym, tpe))}
    if (!delayed.isEmpty)
      delayed.toList foreach {
        case (expandee, undetparams) if !undetparams.isEmpty =>
          undetparams --= undetNoMore map (_.id)
          if (undetparams.isEmpty) {
            hasPendingMacroExpansions = true
            macroLogVerbose(s"macro expansion is pending: $expandee")
          }
        case _ =>
          // do nothing
      }
  }

  /** Performs macro expansion on all subtrees of a given tree.
   *  Innermost macros are expanded first, outermost macros are expanded last.
   *  See the documentation for `macroExpand` for more information.
   */
  def macroExpandAll(typer: Typer, expandee: Tree): Tree =
    new Transformer {
      override def transform(tree: Tree) = super.transform(tree match {
        // todo. expansion should work from the inside out
        case tree if (delayed contains tree) && calculateUndetparams(tree).isEmpty =>
          val context = tree.attachments.get[MacroRuntimeAttachment].get.typerContext
          delayed -= tree
          context.implicitsEnabled = typer.context.implicitsEnabled
          context.enrichmentEnabled = typer.context.enrichmentEnabled
          context.macrosEnabled = typer.context.macrosEnabled
          macroExpand(newTyper(context), tree, EXPRmode, WildcardType)
        case _ =>
          tree
      })
    }.transform(expandee)
}

object MacrosStats {
  import scala.reflect.internal.TypesStats.typerNanos
  val macroExpandCount    = Statistics.newCounter ("#macro expansions", "typer")
  val macroExpandNanos    = Statistics.newSubTimer("time spent in macroExpand", typerNanos)
}