summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/typechecker/Macros.scala
blob: 62a0e08aad2a714224248a8ecab6e041910c8fb5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
package scala.tools.nsc
package typechecker

import symtab.Flags._
import scala.tools.nsc.util._
import scala.tools.nsc.util.ClassPath._
import scala.reflect.ReflectionUtils
import scala.collection.mutable.ListBuffer
import scala.compat.Platform.EOL
import scala.reflect.makro.runtime.{Context => MacroContext}
import scala.reflect.runtime.Mirror
import util.Statistics._

/**
 *  Code to deal with macros, namely with:
 *    * Compilation of macro definitions
 *    * Expansion of macro applications
 *
 *  Say we have in a class C:
 *
 *    def foo[T](xs: List[T]): T = macro fooBar
 *
 *  Then fooBar needs to point to a static method of the following form:
 *
 *    def fooBar[T: c.TypeTag]
 *           (c: scala.reflect.makro.Context)
 *           (xs: c.Expr[List[T]])
 *           : c.mirror.Tree = {
 *      ...
 *    }
 *
 *  Then, if foo is called in qual.foo[Int](elems), where qual: D,
 *  the macro application is expanded to a reflective invocation of fooBar with parameters
 *
 *    (simpleMacroContext{ type PrefixType = D; val prefix = qual })
 *    (Expr(elems))
 *    (TypeTag(Int))
 */
trait Macros { self: Analyzer =>
  import global._
  import definitions._

  val macroDebug = settings.Ymacrodebug.value
  val macroCopypaste = settings.Ymacrocopypaste.value
  val macroTrace = scala.tools.nsc.util.trace when macroDebug

  val globalMacroCache = collection.mutable.Map[Any, Any]()
  val perRunMacroCache = perRunCaches.newMap[Symbol, collection.mutable.Map[Any, Any]]

  /** A list of compatible macro implementation signatures.
   *
   *  In the example above:
   *    (c: scala.reflect.makro.Context)(xs: c.Expr[List[T]]): c.Expr[T]
   *
   *  @param macroDef The macro definition symbol
   *  @param tparams  The type parameters of the macro definition
   *  @param vparamss The value parameters of the macro definition
   *  @param retTpe   The return type of the macro definition
   */
  private def macroImplSigs(macroDef: Symbol, tparams: List[TypeDef], vparamss: List[List[ValDef]], retTpe: Type): (List[List[List[Symbol]]], Type) = {
    // had to move method's body to an object because of the recursive dependencies between sigma and param
    object SigGenerator {
      val hasThis = macroDef.owner.isClass
      val ownerTpe = macroDef.owner match {
        case owner if owner.isModuleClass => new UniqueThisType(macroDef.owner)
        case owner if owner.isClass => macroDef.owner.tpe
        case _ => NoType
      }
      val hasTparams = !tparams.isEmpty

      def sigma(tpe: Type): Type = {
        class SigmaTypeMap extends TypeMap {
          def apply(tp: Type): Type = tp match {
            case TypeRef(pre, sym, args) =>
              val pre1 = pre match {
                case ThisType(sym) if sym == macroDef.owner =>
                  SingleType(SingleType(SingleType(NoPrefix, paramsCtx(0)), MacroContextPrefix), ExprValue)
                case SingleType(NoPrefix, sym) =>
                  vparamss.flatten.find(_.symbol == sym) match {
                    case Some(macroDefParam) =>
                      SingleType(SingleType(NoPrefix, param(macroDefParam)), ExprValue)
                    case _ =>
                      pre
                  }
                case _ =>
                  pre
              }
              val args1 = args map mapOver
              TypeRef(pre1, sym, args1)
            case _ =>
              mapOver(tp)
          }
        }

        new SigmaTypeMap() apply tpe
      }

      def makeParam(name: Name, pos: Position, tpe: Type, flags: Long = 0L) =
        macroDef.newValueParameter(name, pos, flags) setInfo tpe
      val ctxParam = makeParam(nme.macroContext, macroDef.pos, MacroContextClass.tpe, SYNTHETIC)
      def implType(isType: Boolean, origTpe: Type): Type =
        if (isRepeatedParamType(origTpe))
          appliedType(
            RepeatedParamClass.typeConstructor,
            List(implType(isType, sigma(origTpe.typeArgs.head))))
        else {
          val tsym = getMember(MacroContextClass, if (isType) tpnme.TypeTag else tpnme.Expr)
          typeRef(singleType(NoPrefix, ctxParam), tsym, List(sigma(origTpe)))
        }
      val paramCache = collection.mutable.Map[Symbol, Symbol]()
      def param(tree: Tree): Symbol =
        paramCache.getOrElseUpdate(tree.symbol, {
          // [Eugene] deskolemization became necessary once I implemented inference of macro def return type
          // please, verify this solution, but for now I'll leave it here - cargo cult for the win
          val sym = tree.symbol.deSkolemize
          val sigParam = makeParam(sym.name, sym.pos, implType(sym.isType, sym.tpe))
          if (sym.isSynthetic) sigParam.flags |= SYNTHETIC
          sigParam
        })

      val paramsCtx = List(ctxParam)
      val paramsThis = List(makeParam(nme.macroThis, macroDef.pos, implType(false, ownerTpe), SYNTHETIC))
      val paramsTparams = tparams map param
      val paramssParams = vparamss map (_ map param)

      var paramsss = List[List[List[Symbol]]]()
      // tparams are no longer part of a signature, they get into macro implementations via context bounds
//      if (hasTparams && hasThis) paramsss :+= paramsCtx :: paramsThis :: paramsTparams :: paramssParams
//      if (hasTparams) paramsss :+= paramsCtx :: paramsTparams :: paramssParams
      // _this params are no longer part of a signature, its gets into macro implementations via Context.prefix
//      if (hasThis) paramsss :+= paramsCtx :: paramsThis :: paramssParams
      paramsss :+= paramsCtx :: paramssParams

      val tsym = getMember(MacroContextClass, tpnme.Expr)
      val implRetTpe = typeRef(singleType(NoPrefix, ctxParam), tsym, List(sigma(retTpe)))
    }

    import SigGenerator._
    macroTrace("generating macroImplSigs for: ")(macroDef)
    macroTrace("tparams are: ")(tparams)
    macroTrace("vparamss are: ")(vparamss)
    macroTrace("retTpe is: ")(retTpe)
    macroTrace("macroImplSigs are: ")(paramsss, implRetTpe)
  }

  private def transformTypeTagEvidenceParams(paramss: List[List[Symbol]], transform: (Symbol, Symbol) => Option[Symbol]): List[List[Symbol]] = {
    if (paramss.length == 0)
      return paramss

    val wannabe = if (paramss.head.length == 1) paramss.head.head else NoSymbol
    val contextParam = if (wannabe != NoSymbol && wannabe.tpe <:< definitions.MacroContextClass.tpe) wannabe else NoSymbol

    val lastParamList0 = paramss.lastOption getOrElse Nil
    val lastParamList = lastParamList0 flatMap (param => param.tpe match {
      case TypeRef(SingleType(NoPrefix, contextParam), sym, List(tparam)) =>
        var wannabe = sym
        while (wannabe.isAliasType) wannabe = wannabe.info.typeSymbol
        if (wannabe != definitions.TypeTagClass)
          List(param)
        else
          transform(param, tparam.typeSymbol) map (_ :: Nil) getOrElse Nil
      case _ =>
        List(param)
    })

    var result = paramss.dropRight(1) :+ lastParamList
    if (lastParamList0.isEmpty ^ lastParamList.isEmpty) {
      result = result dropRight 1
    }

    result
  }

  /** As specified above, body of a macro definition must reference its implementation.
   *  This function verifies that the body indeed refers to a method, and that
   *  the referenced macro implementation is compatible with the given macro definition.
   *
   *  This means that macro implementation (fooBar in example above) must:
   *    1) Refer to a statically accessible, non-overloaded method.
   *    2) Have the right parameter lists as outlined in the SIP / in the doc comment of this class.
   *
   *  @return typechecked rhs of the given macro definition
   */
  def typedMacroBody(typer: Typer, ddef: DefDef): Tree = {
    import typer.context
    if (macroDebug) println("typechecking macro def %s at %s".format(ddef.symbol, ddef.pos))

    if (!typer.checkFeature(ddef.pos, MacrosFeature, immediate = true)) {
      ddef.symbol setFlag IS_ERROR
      return EmptyTree
    }

    implicit class AugmentedString(s: String) {
      def abbreviateCoreAliases: String = { // hack!
        var result = s
        result = result.replace("c.mirror.TypeTag", "c.TypeTag")
        result = result.replace("c.mirror.Expr", "c.Expr")
        result
      }
    }

    var hasErrors = false
    def reportError(pos: Position, msg: String) = {
      hasErrors = true
      context.error(pos, msg)
    }

    val macroDef = ddef.symbol
    val defpos = macroDef.pos
    val implpos = ddef.rhs.pos
    assert(macroDef.isTermMacro, ddef)

    def invalidBodyError() =
      reportError(defpos,
        "macro body has wrong shape:" +
        "\n required: macro <reference to implementation object>.<implementation method name>" +
        "\n or      : macro <implementation method name>")
    def validatePreTyper(rhs: Tree): Unit = rhs match {
      // we do allow macro invocations inside macro bodies
      // personally I don't mind if pre-typer tree is a macro invocation
      // that later resolves to a valid reference to a macro implementation
      // however, I don't think that invalidBodyError() should hint at that
      // let this be an Easter Egg :)
      case Apply(_, _) => ;
      case TypeApply(_, _) => ;
      case Super(_, _) => ;
      case This(_) => ;
      case Ident(_) => ;
      case Select(_, _) => ;
      case _ => invalidBodyError()
    }
    def validatePostTyper(rhs1: Tree): Unit = {
      def loop(tree: Tree): Unit = {
        def errorNotStatic() =
          reportError(implpos, "macro implementation must be in statically accessible object")

        def ensureRoot(sym: Symbol) =
          if (!sym.isModule && !sym.isModuleClass) errorNotStatic()

        def ensureModule(sym: Symbol) =
          if (!sym.isModule) errorNotStatic()

        tree match {
          case TypeApply(fun, _) =>
            loop(fun)
          case Super(qual, _) =>
            ensureRoot(macroDef.owner)
            loop(qual)
          case This(_) =>
            ensureRoot(tree.symbol)
          case Select(qual, name) if name.isTypeName =>
            loop(qual)
          case Select(qual, name) if name.isTermName =>
            if (tree.symbol != rhs1.symbol) ensureModule(tree.symbol)
            loop(qual)
          case Ident(name) if name.isTypeName =>
            ;
          case Ident(name) if name.isTermName =>
            if (tree.symbol != rhs1.symbol) ensureModule(tree.symbol)
          case _ =>
            invalidBodyError()
        }
      }

      loop(rhs1)
    }

    val rhs = ddef.rhs
    validatePreTyper(rhs)
    if (hasErrors) macroTrace("macro def failed to satisfy trivial preconditions: ")(macroDef)

    // we use typed1 instead of typed, because otherwise adapt is going to mess us up
    // if adapt sees <qualifier>.<method>, it will want to perform eta-expansion and will fail
    // unfortunately, this means that we have to manually trigger macro expansion
    // because it's adapt which is responsible for automatic expansion during typechecking
    def typecheckRhs(rhs: Tree): Tree = {
      try {
        val prevNumErrors = reporter.ERROR.count // [Eugene] funnily enough, the isErroneous check is not enough
        var rhs1 = if (hasErrors) EmptyTree else typer.typed1(rhs, EXPRmode, WildcardType)
        def typecheckedWithErrors = (rhs1 exists (_.isErroneous)) || reporter.ERROR.count != prevNumErrors
        def rhsNeedsMacroExpansion = rhs1.symbol != null && rhs1.symbol.isTermMacro && !rhs1.symbol.isErroneous
        while (!typecheckedWithErrors && rhsNeedsMacroExpansion) {
          rhs1 = macroExpand1(typer, rhs1) match {
            case Success(expanded) =>
              try {
                val typechecked = typer.typed1(expanded, EXPRmode, WildcardType)
                if (macroDebug) {
                  println("typechecked1:")
                  println(typechecked)
                  println(showRaw(typechecked))
                }

                typechecked
              } finally {
                openMacros = openMacros.tail
              }
            case Fallback(fallback) =>
              typer.typed1(fallback, EXPRmode, WildcardType)
            case Other(result) =>
              result
          }
        }
        rhs1
      } catch {
        case ex: TypeError =>
          typer.reportTypeError(context, rhs.pos, ex)
          typer.infer.setError(rhs)
      }
    }

    val prevNumErrors = reporter.ERROR.count // funnily enough, the isErroneous check is not enough
    var rhs1 = typecheckRhs(rhs)
    def typecheckedWithErrors = (rhs1 exists (_.isErroneous)) || reporter.ERROR.count != prevNumErrors
    hasErrors = hasErrors || typecheckedWithErrors
    if (typecheckedWithErrors) macroTrace("body of a macro def failed to typecheck: ")(ddef)

    val macroImpl = rhs1.symbol
    macroDef withAnnotation AnnotationInfo(MacroImplAnnotation.tpe, List(rhs1), Nil)
    if (!hasErrors) {
      if (macroImpl == null) {
         invalidBodyError()
      } else {
        if (!macroImpl.isMethod)
           invalidBodyError()
        if (macroImpl.isOverloaded)
          reportError(implpos, "macro implementation cannot be overloaded")
        if (!macroImpl.typeParams.isEmpty && (!rhs1.isInstanceOf[TypeApply]))
          reportError(implpos, "macro implementation reference needs type arguments")
        if (!hasErrors)
          validatePostTyper(rhs1)
      }
      if (hasErrors)
        macroTrace("macro def failed to satisfy trivial preconditions: ")(macroDef)
    }

    if (!hasErrors) {
      def checkCompatibility(reqparamss: List[List[Symbol]], actparamss: List[List[Symbol]], reqres: Type, actres: Type): List[String] = {
        var hasErrors = false
        var errors = List[String]()
        def compatibilityError(msg: String) {
          hasErrors = true
          errors :+= msg
        }

        val flatreqparams = reqparamss.flatten
        val flatactparams = actparamss.flatten
        val tparams = macroImpl.typeParams
        val tvars = tparams map freshVar
        def lengthMsg(which: String, extra: Symbol) =
          "parameter lists have different length, "+which+" extra parameter "+extra.defString
        if (actparamss.length != reqparamss.length)
          compatibilityError("number of parameter sections differ")

        if (!hasErrors) {
          try {
            for ((rparams, aparams) <- reqparamss zip actparamss) {
              if (rparams.length < aparams.length)
                compatibilityError(lengthMsg("found", aparams(rparams.length)))
              if (aparams.length < rparams.length)
                compatibilityError(lengthMsg("required", rparams(aparams.length)).abbreviateCoreAliases)
            }
            // if the implementation signature is already deemed to be incompatible, we bail out
            // otherwise, high-order type magic employed below might crash in weird ways
            if (!hasErrors) {
              for ((rparams, aparams) <- reqparamss zip actparamss) {
                for ((rparam, aparam) <- rparams zip aparams) {
                  def isRepeated(param: Symbol) = param.tpe.typeSymbol == RepeatedParamClass
                  if (rparam.name != aparam.name && !rparam.isSynthetic) {
                    val rparam1 = rparam
                    val aparam1 = aparam
                    compatibilityError("parameter names differ: "+rparam.name+" != "+aparam.name)
                  }
                  if (isRepeated(rparam) && !isRepeated(aparam))
                    compatibilityError("types incompatible for parameter "+rparam.name+": corresponding is not a vararg parameter")
                  if (!isRepeated(rparam) && isRepeated(aparam))
                    compatibilityError("types incompatible for parameter "+aparam.name+": corresponding is not a vararg parameter")
                  if (!hasErrors) {
                    var atpe = aparam.tpe.substSym(flatactparams, flatreqparams).instantiateTypeParams(tparams, tvars)

                    // strip the { type PrefixType = ... } refinement off the Context or otherwise we get compatibility errors
                    atpe = atpe match {
                      case RefinedType(List(tpe), Scope(sym)) if tpe == MacroContextClass.tpe && sym.allOverriddenSymbols.contains(MacroContextPrefixType) => tpe
                      case _ => atpe
                    }

                    val ok = if (macroDebug) withTypesExplained(rparam.tpe <:< atpe) else rparam.tpe <:< atpe
                    if (!ok) {
                      compatibilityError("type mismatch for parameter "+rparam.name+": "+rparam.tpe.toString.abbreviateCoreAliases+" does not conform to "+atpe)
                    }
                  }
                }
              }
            }
            if (!hasErrors) {
              val atpe = actres.substSym(flatactparams, flatreqparams).instantiateTypeParams(tparams, tvars)
              val ok = if (macroDebug) withTypesExplained(atpe <:< reqres) else atpe <:< reqres
              if (!ok) {
                compatibilityError("type mismatch for return type : "+reqres.toString.abbreviateCoreAliases+" does not conform to "+(if (ddef.tpt.tpe != null) atpe.toString else atpe.toString.abbreviateCoreAliases))
              }
            }
            if (!hasErrors) {
              val targs = solvedTypes(tvars, tparams, tparams map varianceInType(actres), false,
                lubDepth(flatactparams map (_.tpe)) max lubDepth(flatreqparams map (_.tpe)))
              val boundsOk = typer.silent(_.infer.checkBounds(ddef, NoPrefix, NoSymbol, tparams, targs, ""))
              boundsOk match {
                case SilentResultValue(true) => ;
                case SilentResultValue(false) | SilentTypeError(_) =>
                  val bounds = tparams map (tp => tp.info.instantiateTypeParams(tparams, targs).bounds)
                  compatibilityError("type arguments " + targs.mkString("[", ",", "]") +
                                     " do not conform to " + tparams.head.owner + "'s type parameter bounds " +
                                     (tparams map (_.defString)).mkString("[", ",", "]"))
              }
            }
          } catch {
            case ex: NoInstance =>
              compatibilityError(
                "type parameters "+(tparams map (_.defString) mkString ", ")+" cannot be instantiated\n"+
                ex.getMessage)
          }
        }

        errors.toList
      }

      var actparamss = macroImpl.paramss
      actparamss = transformTypeTagEvidenceParams(actparamss, (param, tparam) => None)

      val rettpe = if (ddef.tpt.tpe != null) ddef.tpt.tpe else computeMacroDefTypeFromMacroImpl(ddef, macroDef, macroImpl)
      val (reqparamsss0, reqres0) = macroImplSigs(macroDef, ddef.tparams, ddef.vparamss, rettpe)
      var reqparamsss = reqparamsss0

      // prohibit implicit params on macro implementations
      // we don't have to do this, but it appears to be more clear than allowing them
      val implicitParams = actparamss.flatten filter (_.isImplicit)
      if (implicitParams.length > 0) {
        reportError(implicitParams.head.pos, "macro implementations cannot have implicit parameters other than TypeTag evidences")
        macroTrace("macro def failed to satisfy trivial preconditions: ")(macroDef)
      }

      if (!hasErrors) {
        val reqres = reqres0
        val actres = macroImpl.tpe.finalResultType
        def showMeth(pss: List[List[Symbol]], restpe: Type, abbreviate: Boolean) = {
          var argsPart = (pss map (ps => ps map (_.defString) mkString ("(", ", ", ")"))).mkString
          if (abbreviate) argsPart = argsPart.abbreviateCoreAliases
          var retPart = restpe.toString
          if (abbreviate || ddef.tpt.tpe == null) retPart = retPart.abbreviateCoreAliases
          argsPart + ": " + retPart
        }
        def compatibilityError(addendum: String) =
          reportError(implpos,
            "macro implementation has wrong shape:"+
            "\n required: "+showMeth(reqparamsss.head, reqres, true) +
            (reqparamsss.tail map (paramss => "\n or      : "+showMeth(paramss, reqres, true)) mkString "")+
            "\n found   : "+showMeth(actparamss, actres, false)+
            "\n"+addendum)

        macroTrace("considering " + reqparamsss.length + " possibilities of compatible macro impl signatures for macro def: ")(ddef.name)
        val results = reqparamsss map (checkCompatibility(_, actparamss, reqres, actres))
        if (macroDebug) (reqparamsss zip results) foreach { case (reqparamss, result) =>
          println("%s %s".format(if (result.isEmpty) "[  OK  ]" else "[FAILED]", reqparamss))
          result foreach (errorMsg => println("  " + errorMsg))
        }

        if (results forall (!_.isEmpty)) {
          var index = reqparamsss indexWhere (_.length == actparamss.length)
          if (index == -1) index = 0
          val mostRelevantMessage = results(index).head
          compatibilityError(mostRelevantMessage)
        } else {
          assert((results filter (_.isEmpty)).length == 1, results)
          if (macroDebug) (reqparamsss zip results) filter (_._2.isEmpty) foreach { case (reqparamss, result) =>
            println("typechecked macro impl as: " + reqparamss)
          }
        }
      }
    }

    // if this macro definition is erroneous, then there's no sense in expanding its usages
    // in the previous prototype macro implementations were magically generated from macro definitions
    // so macro definitions and its usages couldn't be compiled in the same compilation run
    // however, now definitions and implementations are decoupled, so it's everything is possible
    // hence, we now use IS_ERROR flag to serve as an indicator that given macro definition is broken
    if (hasErrors) {
      macroDef setFlag IS_ERROR
    }

    rhs1
  }

  def computeMacroDefTypeFromMacroImpl(macroDdef: DefDef, macroDef: Symbol, macroImpl: Symbol): Type = {
    // get return type from method type
    def unwrapRet(tpe: Type): Type = {
      def loop(tpe: Type) = tpe match {
        case NullaryMethodType(ret) => ret
        case mtpe @ MethodType(_, ret) => unwrapRet(ret)
        case _ => tpe
      }

      tpe match {
        case PolyType(_, tpe) => loop(tpe)
        case _ => loop(tpe)
      }
    }
    var metaType = unwrapRet(macroImpl.tpe)

    // downgrade from metalevel-0 to metalevel-1
    def inferRuntimeType(metaType: Type): Type = metaType match {
      case TypeRef(pre, sym, args) if sym.name == tpnme.Expr && args.length == 1 =>
        args.head
      case _ =>
        AnyClass.tpe
    }
    var runtimeType = inferRuntimeType(metaType)

    // transform type parameters of a macro implementation into type parameters of a macro definition
    runtimeType = runtimeType map {
      case TypeRef(pre, sym, args) =>
        // [Eugene] not sure which of these deSkolemizes are necessary
        // sym.paramPos is unreliable (see another case below)
        val tparams = macroImpl.typeParams map (_.deSkolemize)
        val paramPos = tparams indexOf sym.deSkolemize
        val sym1 = if (paramPos == -1) sym else {
          val ann = macroDef.getAnnotation(MacroImplAnnotation)
          ann match {
            case Some(ann) =>
              val TypeApply(_, implRefTargs) = ann.args(0)
              val implRefTarg = implRefTargs(paramPos).tpe.typeSymbol
              implRefTarg
            case None =>
              sym
          }
        }
        TypeRef(pre, sym1, args)
      case tpe =>
        tpe
    }

    // as stated in the spec, before being matched to macroimpl, type and value parameters of macrodef
    // undergo a special transformation, sigma, that adapts them to the different metalevel macroimpl lives in
    // as a result, we need to reverse this transformation when inferring macrodef ret from macroimpl ret
    def unsigma(tpe: Type): Type = {
      // unfortunately, we cannot dereference ``paramss'', because we're in the middle of inferring a type for ``macroDef''
//      val defParamss = macroDef.paramss
      val defParamss = macroDdef.vparamss map (_ map (_.symbol))
      var implParamss = macroImpl.paramss
      implParamss = transformTypeTagEvidenceParams(implParamss, (param, tparam) => None)

      val implCtxParam = if (implParamss.length > 0 && implParamss(0).length > 0) implParamss(0)(0) else null
      def implParamToDefParam(implParam: Symbol): Symbol = {
        val indices = (((implParamss drop 1).zipWithIndex) map { case (implParams, index) => (index, implParams indexOf implParam) } filter (_._2 != -1)).headOption
        val defParam = indices flatMap {
          case (plistIndex, pIndex) =>
            if (defParamss.length <= plistIndex) None
            else if (defParamss(plistIndex).length <= pIndex) None
            else Some(defParamss(plistIndex)(pIndex))
        }
        defParam.orNull
      }

      class UnsigmaTypeMap extends TypeMap {
        def apply(tp: Type): Type = tp match {
          case TypeRef(pre, sym, args) =>
            val pre1 = pre match {
              case SingleType(SingleType(SingleType(NoPrefix, param), prefix), value) if param == implCtxParam && prefix == MacroContextPrefix && value == ExprValue =>
                ThisType(macroDef.owner)
              case SingleType(SingleType(NoPrefix, param), value) if implParamToDefParam(param) != null && value == ExprValue =>
                val macroDefParam = implParamToDefParam(param)
                SingleType(NoPrefix, macroDefParam)
              case _ =>
                pre
            }
            val args1 = args map mapOver
            TypeRef(pre1, sym, args1)
          case _ =>
            mapOver(tp)
        }
      }

      new UnsigmaTypeMap() apply tpe
    }
    runtimeType = unsigma(runtimeType)

    runtimeType
  }

  /** Primary mirror that is used to resolve and run macro implementations.
   *  Loads classes from -Xmacro-primary-classpath, or from -cp if the option is not specified.
   */
  private lazy val primaryMirror: Mirror = {
    if (global.forMSIL)
      throw new UnsupportedOperationException("Scala reflection not available on this platform")

    val libraryClassLoader = {
      if (settings.XmacroPrimaryClasspath.value != "") {
        if (macroDebug) println("primary macro mirror: initializing from -Xmacro-primary-classpath: %s".format(settings.XmacroPrimaryClasspath.value))
        val classpath = toURLs(settings.XmacroFallbackClasspath.value)
        ScalaClassLoader.fromURLs(classpath, self.getClass.getClassLoader)
      } else {
        if (macroDebug) println("primary macro mirror: initializing from -cp: %s".format(global.classPath.asURLs))
        val classpath = global.classPath.asURLs
        var loader: ClassLoader = ScalaClassLoader.fromURLs(classpath, self.getClass.getClassLoader)

        // [Eugene] a heuristic to detect REPL
        if (global.settings.exposeEmptyPackage.value) {
          import scala.tools.nsc.interpreter._
          val virtualDirectory = global.settings.outputDirs.getSingleOutput.get
          loader = new AbstractFileClassLoader(virtualDirectory, loader) {}
        }

        loader
      }
    }

    new Mirror(libraryClassLoader) { override def toString = "<primary macro mirror>" }
  }

  /** Fallback mirror that is used to resolve and run macro implementations.
   *  Loads classes from -Xmacro-fallback-classpath aka "macro fallback classpath".
   */
  private lazy val fallbackMirror: Mirror = {
    if (global.forMSIL)
      throw new UnsupportedOperationException("Scala reflection not available on this platform")

    val fallbackClassLoader = {
      if (macroDebug) println("fallback macro mirror: initializing from -Xmacro-fallback-classpath: %s".format(settings.XmacroFallbackClasspath.value))
      val classpath = toURLs(settings.XmacroFallbackClasspath.value)
      ScalaClassLoader.fromURLs(classpath, self.getClass.getClassLoader)
    }

    new Mirror(fallbackClassLoader) { override def toString = "<fallback macro mirror>" }
  }

  /** Produces a function that can be used to invoke macro implementation for a given macro definition:
   *    1) Looks up macro implementation symbol in this universe.
   *    2) Loads its enclosing class from the primary mirror.
   *    3) Loads the companion of that enclosing class from the primary mirror.
   *    4) Resolves macro implementation within the loaded companion.
   *    5) If 2-4 fails, repeats them for the fallback mirror.
   *
   *  @return Some(runtime) if macro implementation can be loaded successfully from either of the mirrors,
   *          None otherwise.
   */
  private def macroRuntime(macroDef: Symbol): Option[List[Any] => Any] = {
    macroTrace("looking for macro implementation: ")(macroDef)
    macroTrace("macroDef is annotated with: ")(macroDef.annotations)

    val ann = macroDef.getAnnotation(MacroImplAnnotation)
    if (ann == None) {
      macroTrace("@macroImpl annotation is missing (this means that macro definition failed to typecheck)")(macroDef)
      return None
    }

    val macroImpl = ann.get.args(0).symbol
    if (macroImpl == NoSymbol) {
      macroTrace("@macroImpl annotation is malformed (this means that macro definition failed to typecheck)")(macroDef)
      return None
    }

    if (macroDebug) println("resolved implementation %s at %s".format(macroImpl, macroImpl.pos))
    if (macroImpl.isErroneous) {
      macroTrace("macro implementation is erroneous (this means that either macro body or macro implementation signature failed to typecheck)")(macroDef)
      return None
    }

    def loadMacroImpl(macroMirror: Mirror): Option[(Object, macroMirror.Symbol)] = {
      try {
        // this logic relies on the assumptions that were valid for the old macro prototype
        // namely that macro implementations can only be defined in top-level classes and modules
        // with the new prototype that materialized in a SIP, macros need to be statically accessible, which is different
        // for example, a macro def could be defined in a trait that is implemented by an object
        // there are some more clever cases when seemingly non-static method ends up being statically accessible
        // however, the code below doesn't account for these guys, because it'd take a look of time to get it right
        // for now I leave it as a todo and move along to more the important stuff

        macroTrace("loading implementation class from %s: ".format(macroMirror))(macroImpl.owner.fullName)
        macroTrace("classloader is: ")("%s of type %s".format(macroMirror.classLoader, if (macroMirror.classLoader != null) macroMirror.classLoader.getClass.toString else "primordial classloader"))
        def inferClasspath(cl: ClassLoader) = cl match {
          case cl: java.net.URLClassLoader => "[" + (cl.getURLs mkString ",") + "]"
          case null => "[" + scala.tools.util.PathResolver.Environment.javaBootClassPath + "]"
          case _ => "<unknown>"
        }
        macroTrace("classpath is: ")(inferClasspath(macroMirror.classLoader))

        // [Eugene] relies on the fact that macro implementations can only be defined in static classes
        // [Martin to Eugene] There's similar logic buried in Symbol#flatname. Maybe we can refactor?
        def classfile(sym: Symbol): String = {
          def recur(sym: Symbol): String = sym match {
            case sym if sym.owner.isPackageClass =>
              val suffix = if (sym.isModuleClass) "$" else ""
              sym.fullName + suffix
            case sym =>
              val separator = if (sym.owner.isModuleClass) "" else "$"
              recur(sym.owner) + separator + sym.javaSimpleName.toString
          }

          if (sym.isClass || sym.isModule) recur(sym)
          else recur(sym.enclClass)
        }

        // [Eugene] this doesn't work for inner classes
        // neither does macroImpl.owner.javaClassName, so I had to roll my own implementation
        //val receiverName = macroImpl.owner.fullName
        val implClassName = classfile(macroImpl.owner)
        val implClassSymbol: macroMirror.Symbol = macroMirror.symbolForName(implClassName)

        if (macroDebug) {
          println("implClassSymbol is: " + implClassSymbol.fullNameString)

          if (implClassSymbol != macroMirror.NoSymbol) {
            val implClass = macroMirror.classToJava(implClassSymbol)
            val implSource = implClass.getProtectionDomain.getCodeSource
            println("implClass is %s from %s".format(implClass, implSource))
            println("implClassLoader is %s with classpath %s".format(implClass.getClassLoader, inferClasspath(implClass.getClassLoader)))
          }
        }

        val implObjSymbol = implClassSymbol.companionModule
        macroTrace("implObjSymbol is: ")(implObjSymbol.fullNameString)

        if (implObjSymbol == macroMirror.NoSymbol) None
        else {
          // yet another reflection method that doesn't work for inner classes
          //val receiver = macroMirror.companionInstance(receiverClass)
          val implObj = try {
            val implObjClass = java.lang.Class.forName(implClassName, true, macroMirror.classLoader)
            implObjClass getField "MODULE$" get null
          } catch {
            case ex: NoSuchFieldException => macroTrace("exception when loading implObj: ")(ex); null
            case ex: NoClassDefFoundError => macroTrace("exception when loading implObj: ")(ex); null
            case ex: ClassNotFoundException => macroTrace("exception when loading implObj: ")(ex); null
          }

          if (implObj == null) None
          else {
            val implMethSymbol = implObjSymbol.info.member(macroMirror.newTermName(macroImpl.name.toString))
            if (macroDebug) {
              println("implMethSymbol is: " + implMethSymbol.fullNameString)
              println("jimplMethSymbol is: " + macroMirror.methodToJava(implMethSymbol))
            }

            if (implMethSymbol == macroMirror.NoSymbol) None
            else {
              if (macroDebug) println("successfully loaded macro impl as (%s, %s)".format(implObj, implMethSymbol))
              Some((implObj, implMethSymbol))
            }
          }
        }
      } catch {
        case ex: ClassNotFoundException =>
          macroTrace("implementation class failed to load: ")(ex.toString)
          None
      }
    }

    val primary = loadMacroImpl(primaryMirror)
    primary match {
      case Some((implObj, implMethSymbol)) =>
        def runtime(args: List[Any]) = primaryMirror.invoke(implObj, implMethSymbol)(args: _*).asInstanceOf[Any]
        Some(runtime)
      case None =>
        if (settings.XmacroFallbackClasspath.value != "") {
          if (macroDebug) println("trying to load macro implementation from the fallback mirror: %s".format(settings.XmacroFallbackClasspath.value))
          val fallback = loadMacroImpl(fallbackMirror)
          fallback match {
            case Some((implObj, implMethSymbol)) =>
              def runtime(args: List[Any]) = fallbackMirror.invoke(implObj, implMethSymbol)(args: _*).asInstanceOf[Any]
              Some(runtime)
            case None =>
              None
          }
        } else {
          None
        }
    }
  }

  /** Should become private again once we're done with migrating typetag generation from implicits */
  def macroContext(typer: Typer, prefixTree: Tree, expandeeTree: Tree): MacroContext { val mirror: global.type } =
    new {
      val mirror: global.type = global
      val callsiteTyper: mirror.analyzer.Typer = typer.asInstanceOf[global.analyzer.Typer]
      // todo. infer precise typetag for this Expr, namely the PrefixType member of the Context refinement
      val prefix = Expr(prefixTree)(TypeTag.Nothing)
      val expandee = expandeeTree
    } with MacroContext {
      override def toString = "MacroContext(%s@%s +%d)".format(expandee.symbol.name, expandee.pos, openMacros.length - 1 /* exclude myself */)
    }

  /** Calculate the arguments to pass to a macro implementation when expanding the provided tree.
   *
   *  This includes inferring the exact type and instance of the macro context to pass, and also
   *  allowing for missing parameter sections in macro implementation (see ``macroImplParamsss'' for more info).
   *
   *  @return list of runtime objects to pass to the implementation obtained by ``macroRuntime''
   */
  private def macroArgs(typer: Typer, expandee: Tree): Option[List[Any]] = {
    var prefixTree: Tree = EmptyTree
    var typeArgs = List[Tree]()
    val exprArgs = new ListBuffer[List[Expr[_]]]
    def collectMacroArgs(tree: Tree): Unit = tree match {
      case Apply(fn, args) =>
        // todo. infer precise typetag for this Expr, namely the declared type of the corresponding macro impl argument
        exprArgs.prepend(args map (Expr(_)(TypeTag.Nothing)))
        collectMacroArgs(fn)
      case TypeApply(fn, args) =>
        typeArgs = args
        collectMacroArgs(fn)
      case Select(qual, name) =>
        prefixTree = qual
      case _ =>
    }
    collectMacroArgs(expandee)
    val context = macroContext(typer, prefixTree, expandee)
    var argss: List[List[Any]] = List(context) :: exprArgs.toList
    macroTrace("argss: ")(argss)

    val macroDef = expandee.symbol
    val ann = macroDef.getAnnotation(MacroImplAnnotation).getOrElse(throw new Error("assertion failed. %s: %s".format(macroDef, macroDef.annotations)))
    val macroImpl = ann.args(0).symbol
    var paramss = macroImpl.paramss
    val tparams = macroImpl.typeParams
    macroTrace("paramss: ")(paramss)

    // we need to take care of all possible combos of nullary/empty-paramlist macro defs vs nullary/empty-arglist invocations
    // nullary def + nullary invocation => paramss and argss match, everything is okay
    // nullary def + empty-arglist invocation => illegal Scala code, impossible, everything is okay
    // empty-paramlist def + nullary invocation => uh-oh, we need to append a List() to argss
    // empty-paramlist def + empty-arglist invocation => paramss and argss match, everything is okay
    // that's almost it, but we need to account for the fact that paramss might have context bounds that mask the empty last paramlist
    val paramss_without_evidences = transformTypeTagEvidenceParams(paramss, (param, tparam) => None)
    val isEmptyParamlistDef = paramss_without_evidences.length != 0 && paramss_without_evidences.last.isEmpty
    val isEmptyArglistInvocation = argss.length != 0 && argss.last.isEmpty
    if (isEmptyParamlistDef && !isEmptyArglistInvocation) {
      if (macroDebug) println("isEmptyParamlistDef && !isEmptyArglistInvocation: appending a List() to argss")
      argss = argss :+ Nil
    }

    // nb! check partial application against paramss without evidences
    val numParamLists = paramss_without_evidences.length
    val numArgLists = argss.length
    if (numParamLists != numArgLists) {
      typer.context.error(expandee.pos, "macros cannot be partially applied")
      return None
    }

    // if paramss have typetag context bounds, add an arglist to argss if necessary and instantiate the corresponding evidences
    // consider the following example:
    //
    //   class D[T] {
    //     class C[U] {
    //       def foo[V] = macro Impls.foo[T, U, V]
    //     }
    //   }
    //
    //   val outer1 = new D[Int]
    //   val outer2 = new outer1.C[String]
    //   outer2.foo[Boolean]
    //
    // then T and U need to be inferred from the lexical scope of the call using ``asSeenFrom''
    // whereas V won't be resolved by asSeenFrom and need to be loaded directly from ``expandee'' which needs to contain a TypeApply node
    // also, macro implementation reference may contain a regular type as a type argument, then we pass it verbatim
    paramss = transformTypeTagEvidenceParams(paramss, (param, tparam) => Some(tparam))
    if (paramss.lastOption map (params => !params.isEmpty && params.forall(_.isType)) getOrElse false) argss = argss :+ Nil
    val evidences = paramss.last takeWhile (_.isType) map (tparam => {
      val TypeApply(_, implRefTargs) = ann.args(0)
      var implRefTarg = implRefTargs(tparam.paramPos).tpe.typeSymbol
      val tpe = if (implRefTarg.isTypeParameterOrSkolem) {
        if (implRefTarg.owner == macroDef) {
          // [Eugene] doesn't work when macro def is compiled separately from its usages
          // then implRefTarg is not a skolem and isn't equal to any of macroDef.typeParams
//          val paramPos = implRefTarg.deSkolemize.paramPos
          val paramPos = macroDef.typeParams.indexWhere(_.name == implRefTarg.name)
          typeArgs(paramPos).tpe
        } else
          implRefTarg.tpe.asSeenFrom(
            if (prefixTree == EmptyTree) macroDef.owner.tpe else prefixTree.tpe,
            macroDef.owner)
      } else
        implRefTarg.tpe
      if (macroDebug) println("resolved tparam %s as %s".format(tparam, tpe))
      tpe
    }) map (tpe => {
      val ttag = TypeTag(tpe)
      if (ttag.isConcrete) ttag.toConcrete else ttag
    })
    argss = argss.dropRight(1) :+ (evidences ++ argss.last)

    assert(argss.length == paramss.length, "argss: %s, paramss: %s".format(argss, paramss))
    val rawArgss = for ((as, ps) <- argss zip paramss) yield {
      if (isVarArgsList(ps)) as.take(ps.length - 1) :+ as.drop(ps.length - 1)
      else as
    }
    val rawArgs = rawArgss.flatten
    macroTrace("rawArgs: ")(rawArgs)
    Some(rawArgs)
  }

  /** Keeps track of macros in-flight.
   *  See more informations in comments to ``openMacros'' in ``scala.reflect.makro.Context''.
   */
  var openMacros = List[MacroContext]()

  /** Performs macro expansion:
   *    1) Checks whether the expansion needs to be delayed (see ``mustDelayMacroExpansion'')
   *    2) Loads macro implementation using ``macroMirror''
   *    3) Synthesizes invocation arguments for the macro implementation
   *    4) Checks that the result is a tree bound to this universe
   *    5) Typechecks the result against the return type of the macro definition
   *
   *  If -Ymacro-debug is enabled, you will get detailed log of how exactly this function
   *  performs class loading and method resolution in order to load the macro implementation.
   *  The log will also include other non-trivial steps of macro expansion.
   *
   *  If -Ymacro-copypaste is enabled along with -Ymacro-debug, you will get macro expansions
   *  logged in the form that can be copy/pasted verbatim into REPL (useful for debugging!).
   *
   *  @return
   *    the expansion result                    if the expansion has been successful,
   *    the fallback method invocation          if the expansion has been unsuccessful, but there is a fallback,
   *    the expandee unchanged                  if the expansion has been delayed,
   *    the expandee fully expanded             if the expansion has been delayed before and has been expanded now,
   *    the expandee with an error marker set   if the expansion has been cancelled due malformed arguments or implementation
   *    the expandee with an error marker set   if there has been an error
   */
  def macroExpand(typer: Typer, expandee: Tree, pt: Type): Tree =
    macroExpand1(typer, expandee) match {
      case Success(expanded) =>
        try {
          var expectedTpe = expandee.tpe

          // [Eugene] weird situation. what's the conventional way to deal with it?
          val isNullaryInvocation = expandee match {
            case TypeApply(Select(_, _), _) => true
            case Select(_, _) => true
            case _ => false
          }
          if (isNullaryInvocation) expectedTpe match {
            case MethodType(Nil, restpe) =>
              macroTrace("nullary invocation of a method with an empty parameter list. unwrapping expectedTpe from " + expectedTpe + " to:")(restpe)
              expectedTpe = restpe
            case _ => ;
          }

          var typechecked = typer.context.withImplicitsEnabled(typer.typed(expanded, EXPRmode, expectedTpe))
          if (macroDebug) {
            println("typechecked1:")
            println(typechecked)
            println(showRaw(typechecked))
          }

          typechecked = typer.context.withImplicitsEnabled(typer.typed(typechecked, EXPRmode, pt))
          if (macroDebug) {
            println("typechecked2:")
            println(typechecked)
            println(showRaw(typechecked))
          }

          typechecked
        } finally {
          openMacros = openMacros.tail
        }
      case Fallback(fallback) =>
        typer.context.withImplicitsEnabled(typer.typed(fallback, EXPRmode, pt))
      case Other(result) =>
        result
    }

  private sealed abstract class MacroExpansionResult extends Product with Serializable
  private case class Success(expanded: Tree) extends MacroExpansionResult
  private case class Fallback(fallback: Tree) extends MacroExpansionResult
  private case class Other(result: Tree) extends MacroExpansionResult
  private def Delay(expandee: Tree) = Other(expandee)
  private def Skip(expanded: Tree) = Other(expanded)
  private def Cancel(expandee: Tree) = Other(expandee)
  private def Failure(expandee: Tree) = Other(expandee)
  private def fail(typer: Typer, expandee: Tree, msg: String = null) = {
    if (macroDebug || macroCopypaste) {
      var msg1 = if (msg contains "exception during macro expansion") msg.split(EOL).drop(1).headOption.getOrElse("?") else msg
      if (macroDebug) msg1 = msg
      println("macro expansion has failed: %s".format(msg1))
    }
    val pos = if (expandee.pos != NoPosition) expandee.pos else openMacros.find(c => c.expandee.pos != NoPosition).map(_.expandee.pos).getOrElse(NoPosition)
    if (msg != null) typer.context.error(pos, msg)
    typer.infer.setError(expandee)
    Failure(expandee)
  }

  /** Does the same as ``macroExpand'', but without typechecking the expansion
   *  Meant for internal use within the macro infrastructure, don't use it elsewhere.
   */
  private def macroExpand1(typer: Typer, expandee: Tree): MacroExpansionResult = {
    // if a macro implementation is incompatible or any of the arguments are erroneous
    // there is no sense to expand the macro itself => it will only make matters worse
    if (expandee.symbol.isErroneous || (expandee exists (_.isErroneous))) {
      val reason = if (expandee.symbol.isErroneous) "incompatible macro implementation" else "erroneous arguments"
      macroTrace("cancelled macro expansion because of %s: ".format(reason))(expandee)
      return Cancel(typer.infer.setError(expandee))
    }

    if (!isDelayed(expandee)) {
      if (macroDebug || macroCopypaste) println("typechecking macro expansion %s at %s".format(expandee, expandee.pos))

      val undetparams = calculateUndetparams(expandee)
      if (undetparams.size != 0) {
        macroTrace("macro expansion is delayed: ")(expandee)
        delayed += expandee -> (typer.context, undetparams)
        Delay(expandee)
      } else {
        val start = startTimer(macroExpandNanos)
        incCounter(macroExpandCount)
        try {
          val macroDef = expandee.symbol
          macroRuntime(macroDef) match {
            case Some(runtime) =>
              val savedInfolevel = nodePrinters.infolevel
              try {
                // InfoLevel.Verbose examines and prints out infos of symbols
                // by the means of this'es these symbols can climb up the lexical scope
                // when these symbols will be examined by a node printer
                // they will enumerate and analyze their children (ask for infos and tpes)
                // if one of those children involves macro expansion, things might get nasty
                // that's why I'm temporarily turning this behavior off
                nodePrinters.infolevel = nodePrinters.InfoLevel.Quiet
                val args = macroArgs(typer, expandee)
                args match {
                  case Some(args) =>
                    // adding stuff to openMacros is easy, but removing it is a nightmare
                    // it needs to be sprinkled over several different code locations
                    val (context: MacroContext) :: _ = args
                    openMacros = context :: openMacros
                    val expanded: MacroExpansionResult = try {
                      val prevNumErrors = reporter.ERROR.count
                      val expanded = runtime(args)
                      val currNumErrors = reporter.ERROR.count
                      if (currNumErrors != prevNumErrors) {
                        fail(typer, expandee) // errors have been reported by the macro itself
                      } else {
                        expanded match {
                          case expanded: Expr[_] =>
                            if (macroDebug || macroCopypaste) {
                              if (macroDebug) println("original:")
                              println(expanded.tree)
                              println(showRaw(expanded.tree))
                            }

                            freeTerms(expanded.tree) foreach (fte => typer.context.error(expandee.pos,
                                ("macro expansion contains free term variable %s %s. "+
                                "have you forgot to use eval when splicing this variable into a reifee? " +
                                "if you have troubles tracking free term variables, consider using -Xlog-free-terms").format(fte.name, fte.origin)))
                            freeTypes(expanded.tree) foreach (fty => typer.context.error(expandee.pos,
                                ("macro expansion contains free type variable %s %s. "+
                                "have you forgot to use c.TypeTag annotation for this type parameter? " +
                                "if you have troubles tracking free type variables, consider using -Xlog-free-types").format(fty.name, fty.origin)))

                            val currNumErrors = reporter.ERROR.count
                            if (currNumErrors != prevNumErrors) {
                              fail(typer, expandee)
                            } else {
                              // inherit the position from the first position-ful expandee in macro callstack
                              // this is essential for sane error messages
                              var tree = expanded.tree
                              var position = openMacros.find(c => c.expandee.pos != NoPosition).map(_.expandee.pos).getOrElse(NoPosition)
                              tree = atPos(position.focus)(tree)

                              // now macro expansion gets typechecked against the macro definition return type
                              // however, this happens in macroExpand, not here in macroExpand1
                              Success(tree)
                            }
                          case expanded if expanded.isInstanceOf[Expr[_]] =>
                            val msg = "macro must return a compiler-specific expr; returned value is Expr, but it doesn't belong to this compiler's universe"
                            fail(typer, expandee, msg)
                          case expanded =>
                            val msg = "macro must return a compiler-specific expr; returned value is of class: %s".format(expanded.getClass)
                            fail(typer, expandee, msg)
                        }
                      }
                    } catch {
                      case ex: Throwable =>
                        openMacros = openMacros.tail
                        throw ex
                    }
                    if (!expanded.isInstanceOf[Success]) openMacros = openMacros.tail
                    expanded
                  case None =>
                    fail(typer, expandee) // error has been reported by macroArgs
                }
              } catch {
                case ex =>
                  // [Eugene] any ideas about how to improve this one?
                  val realex = ReflectionUtils.unwrapThrowable(ex)
                  realex match {
                    case realex: reflect.makro.runtime.AbortMacroException =>
                      if (macroDebug || macroCopypaste) println("macro expansion has failed: %s".format(realex.msg))
                      fail(typer, expandee) // error has been reported by abort
                    case _ =>
                      val message = {
                        try {
                          // the most reliable way of obtaining currently executing method
                          // http://stackoverflow.com/questions/442747/getting-the-name-of-the-current-executing-method
                          val currentMethodName = new Object(){}.getClass().getEnclosingMethod().getName
                          val relevancyThreshold = realex.getStackTrace().indexWhere(este => este.getMethodName == currentMethodName)
                          if (relevancyThreshold == -1) None
                          else {
                            var relevantElements = realex.getStackTrace().take(relevancyThreshold + 1)
                            var framesTillReflectiveInvocationOfMacroImpl = relevantElements.reverse.indexWhere(_.isNativeMethod) + 1
                            relevantElements = relevantElements dropRight framesTillReflectiveInvocationOfMacroImpl

                            realex.setStackTrace(relevantElements)
                            val message = new java.io.StringWriter()
                            realex.printStackTrace(new java.io.PrintWriter(message))
                            Some(EOL + message)
                          }
                        } catch {
                          // if the magic above goes boom, just fall back to uninformative, but better than nothing, getMessage
                          case ex: Throwable =>
                            None
                        }
                      } getOrElse realex.getMessage
                      fail(typer, expandee, "exception during macro expansion: " + message)
                  }
              } finally {
                nodePrinters.infolevel = savedInfolevel
              }
            case None =>
              def notFound() = {
                typer.context.error(expandee.pos, "macro implementation not found: " + macroDef.name + " " +
                  "(the most common reason for that is that you cannot use macro implementations in the same compilation run that defines them)\n" +
                  "if you do need to define macro implementations along with the rest of your program, consider two-phase compilation with -Xmacro-fallback-classpath " +
                  "in the second phase pointing to the output of the first phase")
                None
              }
              def fallBackToOverridden(tree: Tree): Option[Tree] = {
                tree match {
                  case Select(qual, name) if (macroDef.isTermMacro) =>
                    macroDef.allOverriddenSymbols match {
                      case first :: _ =>
                        Some(Select(qual, name) setPos tree.pos setSymbol first)
                      case _ =>
                        macroTrace("macro is not overridden: ")(tree)
                        notFound()
                    }
                  case Apply(fn, args) =>
                    fallBackToOverridden(fn) match {
                      case Some(fn1) => Some(Apply(fn1, args) setPos tree.pos)
                      case _         => None
                    }
                  case TypeApply(fn, args) =>
                    fallBackToOverridden(fn) match {
                      case Some(fn1) => Some(TypeApply(fn1, args) setPos tree.pos)
                      case _         => None
                    }
                  case _ =>
                    macroTrace("unexpected tree in fallback: ")(tree)
                    notFound()
                }
              }
              fallBackToOverridden(expandee) match {
                case Some(tree1) =>
                  macroTrace("falling back to ")(tree1)
                  currentRun.macroExpansionFailed = true
                  Fallback(tree1)
                case None =>
                  fail(typer, expandee)
              }
          }
        } finally {
          stopTimer(macroExpandNanos, start)
        }
      }
    } else {
      val undetparams = calculateUndetparams(expandee)
      if (undetparams.size != 0)
        Delay(expandee)
      else
        Skip(macroExpandAll(typer, expandee))
    }
  }

  /** Without any restrictions on macro expansion, macro applications will expand at will,
   *  and when type inference is involved, expansions will end up using yet uninferred type params.
   *
   *  For some macros this might be ok (thanks to TreeTypeSubstituter that replaces
   *  the occurrences of undetparams with their inferred values), but in general case this won't work.
   *  E.g. for reification simple substitution is not enough - we actually need to re-reify inferred types.
   *
   *  Luckily, there exists a very simple way to fix the problem: delay macro expansion until everything is inferred.
   *  Here are the exact rules. Macro application gets delayed if any of its subtrees contain:
   *    1) type vars (tpe.isInstanceOf[TypeVar]) // [Eugene] this check is disabled right now, because TypeVars seem to be created from undetparams anyways
   *    2) undetparams (sym.isTypeParameter && !sym.isSkolem)
   */
  var hasPendingMacroExpansions = false
  private val delayed = perRunCaches.newWeakMap[Tree, (Context, collection.mutable.Set[Int])]
  private def isDelayed(expandee: Tree) = delayed contains expandee
  private def calculateUndetparams(expandee: Tree): collection.mutable.Set[Int] =
    delayed.get(expandee).map(_._2).getOrElse {
      val calculated = collection.mutable.Set[Int]()
      expandee foreach (sub => {
        def traverse(sym: Symbol) = if (sym != null && (undetparams contains sym.id)) calculated += sym.id
        if (sub.symbol != null) traverse(sub.symbol)
        if (sub.tpe != null) sub.tpe foreach (sub => traverse(sub.typeSymbol))
      })
      calculated
    }
  private val undetparams = perRunCaches.newSet[Int]
  def notifyUndetparamsAdded(newUndets: List[Symbol]): Unit = undetparams ++= newUndets map (_.id)
  def notifyUndetparamsInferred(undetNoMore: List[Symbol], inferreds: List[Type]): Unit = {
    undetparams --= undetNoMore map (_.id)
    if (!delayed.isEmpty)
      delayed.toList foreach {
        case (expandee, (_, undetparams)) if !undetparams.isEmpty =>
          undetparams --= undetNoMore map (_.id)
          if (undetparams.isEmpty) {
            hasPendingMacroExpansions = true
            macroTrace("macro expansion is pending: ")(expandee)
          }
        case _ =>
          // do nothing
      }
  }

  /** Performs macro expansion on all subtrees of a given tree.
   *  Innermost macros are expanded first, outermost macros are expanded last.
   *  See the documentation for ``macroExpand'' for more information.
   */
  def macroExpandAll(typer: Typer, expandee: Tree): Tree =
    new Transformer {
      override def transform(tree: Tree) = super.transform(tree match {
        // todo. expansion should work from the inside out
        case wannabe if (delayed contains wannabe) && calculateUndetparams(wannabe).isEmpty =>
          val (context, _) = delayed(wannabe)
          delayed -= wannabe
          macroExpand(newTyper(context), wannabe, WildcardType)
        case _ =>
          tree
      })
    }.transform(expandee)
}