summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/typechecker/PatternMatching.scala
blob: a8f471a396d7c7c59da3fed31d780b616e95830a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
/* NSC -- new Scala compiler
 *
 * Copyright 2011-2013 LAMP/EPFL
 * @author Adriaan Moors
 */

package scala.tools.nsc
package typechecker

import symtab._
import Flags.{MUTABLE, METHOD, LABEL, SYNTHETIC, ARTIFACT}
import scala.language.postfixOps
import scala.tools.nsc.transform.TypingTransformers
import scala.tools.nsc.transform.Transform
import scala.collection.mutable.HashSet
import scala.collection.mutable.HashMap
import scala.reflect.internal.util.Statistics
import scala.reflect.internal.Types

/** Translate pattern matching.
  *
  * Either into optimized if/then/else's,
  * or virtualized as method calls (these methods form a zero-plus monad), similar in spirit to how for-comprehensions are compiled.
  *
  * For each case, express all patterns as extractor calls, guards as 0-ary extractors, and sequence them using `flatMap`
  * (lifting the body of the case into the monad using `one`).
  *
  * Cases are combined into a pattern match using the `orElse` combinator (the implicit failure case is expressed using the monad's `zero`).
  *
  * TODO:
  *  - DCE (on irrefutable patterns)
  *  - update spec and double check it's implemented correctly (see TODO's)
  *
  * (longer-term) TODO:
  *  - user-defined unapplyProd
  *  - recover GADT typing by locally inserting implicit witnesses to type equalities derived from the current case, and considering these witnesses during subtyping (?)
  *  - recover exhaustivity/unreachability of user-defined extractors by partitioning the types they match on using an HList or similar type-level structure
  */
trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL {   // self: Analyzer =>
  import Statistics._
  import PatternMatchingStats._

  val global: Global               // need to repeat here because otherwise last mixin defines global as
                                   // SymbolTable. If we had DOT this would not be an issue
  import global._                  // the global environment
  import definitions._             // standard classes and methods

  val phaseName: String = "patmat"

  // TODO: the inliner fails to inline the closures to patmatDebug
  object debugging {
    val printPatmat = settings.Ypatmatdebug.value
    @inline final def patmatDebug(s: => String) = if (printPatmat) println(s)
  }
  import debugging.patmatDebug

  // to govern how much time we spend analyzing matches for unreachability/exhaustivity
  object AnalysisBudget {
    import scala.tools.cmd.FromString.IntFromString
    val max = sys.props.get("scalac.patmat.analysisBudget").collect(IntFromString.orElse{case "off" => Integer.MAX_VALUE}).getOrElse(256)

    abstract class Exception extends RuntimeException("CNF budget exceeded") {
      val advice: String
      def warn(pos: Position, kind: String) = currentUnit.uncheckedWarning(pos, s"Cannot check match for $kind.\n$advice")
    }

    object exceeded extends Exception {
      val advice = s"(The analysis required more space than allowed. Please try with scalac -Dscalac.patmat.analysisBudget=${AnalysisBudget.max*2} or -Dscalac.patmat.analysisBudget=off.)"
    }
  }

  def newTransformer(unit: CompilationUnit): Transformer =
    if (opt.virtPatmat) new MatchTransformer(unit)
    else noopTransformer

  // duplicated from CPSUtils (avoid dependency from compiler -> cps plugin...)
  private lazy val MarkerCPSAdaptPlus  = rootMirror.getClassIfDefined("scala.util.continuations.cpsPlus")
  private lazy val MarkerCPSAdaptMinus = rootMirror.getClassIfDefined("scala.util.continuations.cpsMinus")
  private lazy val MarkerCPSSynth      = rootMirror.getClassIfDefined("scala.util.continuations.cpsSynth")
  private lazy val stripTriggerCPSAnns = List(MarkerCPSSynth, MarkerCPSAdaptMinus, MarkerCPSAdaptPlus)
  private lazy val MarkerCPSTypes      = rootMirror.getClassIfDefined("scala.util.continuations.cpsParam")
  private lazy val strippedCPSAnns     = MarkerCPSTypes :: stripTriggerCPSAnns
  private def removeCPSAdaptAnnotations(tp: Type) = tp filterAnnotations (ann => !(strippedCPSAnns exists (ann matches _)))

  class MatchTransformer(unit: CompilationUnit) extends TypingTransformer(unit) {
    override def transform(tree: Tree): Tree = tree match {
      case Match(sel, cases) =>
        val origTp = tree.tpe
        // setType origTp intended for CPS -- TODO: is it necessary?
        val translated = translator.translateMatch(treeCopy.Match(tree, transform(sel), transformTrees(cases).asInstanceOf[List[CaseDef]]))
        try {
          localTyper.typed(translated) setType origTp
        } catch {
          case x: (Types#TypeError) =>
            // TODO: this should never happen; error should've been reported during type checking
            unit.error(tree.pos, "error during expansion of this match (this is a scalac bug).\nThe underlying error was: "+ x.msg)
            translated
        }
      case Try(block, catches, finalizer) =>
        treeCopy.Try(tree, transform(block), translator.translateTry(transformTrees(catches).asInstanceOf[List[CaseDef]], tree.tpe, tree.pos), transform(finalizer))
      case _ => super.transform(tree)
    }

    def translator: MatchTranslation with CodegenCore = {
      new OptimizingMatchTranslator(localTyper)
    }
  }

  import definitions._
  import analyzer._ //Typer


  case class DefaultOverrideMatchAttachment(default: Tree)

  object vpmName {
    val one       = newTermName("one")
    val drop      = newTermName("drop")
    val flatMap   = newTermName("flatMap")
    val get       = newTermName("get")
    val guard     = newTermName("guard")
    val isEmpty   = newTermName("isEmpty")
    val orElse    = newTermName("orElse")
    val outer     = newTermName("<outer>")
    val runOrElse = newTermName("runOrElse")
    val zero      = newTermName("zero")
    val _match    = newTermName("__match") // don't call the val __match, since that will trigger virtual pattern matching...

    def counted(str: String, i: Int) = newTermName(str+i)
  }

  class PureMatchTranslator(val typer: Typer, val matchStrategy: Tree) extends MatchTranslation with TreeMakers with PureCodegen
  class OptimizingMatchTranslator(val typer: Typer)                    extends MatchTranslation with TreeMakers with MatchOptimizations

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// talking to userland
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

  /** Interface with user-defined match monad?
   * if there's a `__match` in scope, we use this as the match strategy, assuming it conforms to MatchStrategy as defined below:

       type Matcher[P[_], M[+_], A] = {
         def flatMap[B](f: P[A] => M[B]): M[B]
         def orElse[B >: A](alternative: => M[B]): M[B]
       }

       abstract class MatchStrategy[P[_], M[+_]] {
         // runs the matcher on the given input
         def runOrElse[T, U](in: P[T])(matcher: P[T] => M[U]): P[U]

         def zero: M[Nothing]
         def one[T](x: P[T]): M[T]
         def guard[T](cond: P[Boolean], then: => P[T]): M[T]
       }

   * P and M are derived from one's signature (`def one[T](x: P[T]): M[T]`)


   * if no `__match` is found, we assume the following implementation (and generate optimized code accordingly)

       object __match extends MatchStrategy[({type Id[x] = x})#Id, Option] {
         def zero = None
         def one[T](x: T) = Some(x)
         // NOTE: guard's return type must be of the shape M[T], where M is the monad in which the pattern match should be interpreted
         def guard[T](cond: Boolean, then: => T): Option[T] = if(cond) Some(then) else None
         def runOrElse[T, U](x: T)(f: T => Option[U]): U = f(x) getOrElse (throw new MatchError(x))
       }

   */
  trait MatchMonadInterface {
    val typer: Typer
    val matchOwner = typer.context.owner

    def reportUnreachable(pos: Position) = typer.context.unit.warning(pos, "unreachable code")
    def reportMissingCases(pos: Position, counterExamples: List[String]) = {
      val ceString =
        if (counterExamples.tail.isEmpty) "input: " + counterExamples.head
        else "inputs: " + counterExamples.mkString(", ")

      typer.context.unit.warning(pos, "match may not be exhaustive.\nIt would fail on the following "+ ceString)
    }

    def inMatchMonad(tp: Type): Type
    def pureType(tp: Type): Type
    final def matchMonadResult(tp: Type): Type =
      tp.baseType(matchMonadSym).typeArgs match {
        case arg :: Nil => arg
        case _ => ErrorType
      }

    protected def matchMonadSym: Symbol
  }

  trait MatchTranslation extends MatchMonadInterface { self: TreeMakers with CodegenCore =>
    import typer.{typed, context, silent, reallyExists}
    // import typer.infer.containsUnchecked

    // Why is it so difficult to say "here's a name and a context, give me any
    // matching symbol in scope" ? I am sure this code is wrong, but attempts to
    // use the scopes of the contexts in the enclosing context chain discover
    // nothing. How to associate a name with a symbol would would be a wonderful
    // linkage for which to establish a canonical acquisition mechanism.
    def matchingSymbolInScope(pat: Tree): Symbol = {
      def declarationOfName(tpe: Type, name: Name): Symbol = tpe match {
        case PolyType(tparams, restpe)  => tparams find (_.name == name) getOrElse declarationOfName(restpe, name)
        case MethodType(params, restpe) => params find (_.name == name) getOrElse declarationOfName(restpe, name)
        case ClassInfoType(_, _, clazz) => clazz.rawInfo member name
        case _                          => NoSymbol
      }
      pat match {
        case Bind(name, _) =>
          context.enclosingContextChain.foldLeft(NoSymbol: Symbol)((res, ctx) =>
            res orElse declarationOfName(ctx.owner.rawInfo, name))
        case _ => NoSymbol
      }
    }

    // Issue better warnings than "unreachable code" when people mis-use
    // variable patterns thinking they bind to existing identifiers.
    //
    // Possible TODO: more deeply nested variable patterns, like
    //   case (a, b) => 1 ; case (c, d) => 2
    // However this is a pain (at least the way I'm going about it)
    // and I have to think these detailed errors are primarily useful
    // for beginners, not people writing nested pattern matches.
    def checkMatchVariablePatterns(m: Match) {
      // A string describing the first variable pattern
      var vpat: String = null
      // Using an iterator so we can recognize the last case
      val it = m.cases.iterator

      def addendum(pat: Tree) = {
        matchingSymbolInScope(pat) match {
          case NoSymbol   => ""
          case sym        =>
            val desc = if (sym.isParameter) s"parameter ${sym.nameString} of" else sym + " in"
            s"\nIf you intended to match against $desc ${sym.owner}, you must use backticks, like: case `${sym.nameString}` =>"
        }
      }

      while (it.hasNext) {
        val cdef = it.next
        // If a default case has been seen, then every succeeding case is unreachable.
        if (vpat != null)
          context.unit./*error*/warning(cdef.body.pos, "unreachable code due to " + vpat + addendum(cdef.pat))
        // If this is a default case and more cases follow, warn about this one so
        // we have a reason to mention its pattern variable name and any corresponding
        // symbol in scope.  Errors will follow from the remaining cases, at least
        // once we make the above warning an error.
        else if (it.hasNext && (treeInfo isDefaultCase cdef)) {
          val vpatName = cdef.pat match {
            case Bind(name, _)   => s" '$name'"
            case _               => ""
          }
          vpat = s"variable pattern$vpatName on line ${cdef.pat.pos.line}"
          context.unit.warning(cdef.pos, s"patterns after a variable pattern cannot match (SLS 8.1.1)" + addendum(cdef.pat))
        }
      }
    }

    /** Implement a pattern match by turning its cases (including the implicit failure case)
      * into the corresponding (monadic) extractors, and combining them with the `orElse` combinator.
      *
      * For `scrutinee match { case1 ... caseN }`, the resulting tree has the shape
      * `runOrElse(scrutinee)(x => translateCase1(x).orElse(translateCase2(x)).....orElse(zero))`
      *
      * NOTE: the resulting tree is not type checked, nor are nested pattern matches transformed
      *   thus, you must typecheck the result (and that will in turn translate nested matches)
      *   this could probably optimized... (but note that the matchStrategy must be solved for each nested patternmatch)
      */
    def translateMatch(match_ : Match): Tree = {
      val Match(selector, cases) = match_
      checkMatchVariablePatterns(match_)

      // we don't transform after uncurry
      // (that would require more sophistication when generating trees,
      //  and the only place that emits Matches after typers is for exception handling anyway)
      if(phase.id >= currentRun.uncurryPhase.id) debugwarn("running translateMatch at "+ phase +" on "+ selector +" match "+ cases)
      patmatDebug("translating "+ cases.mkString("{", "\n", "}"))

      val start = if (Statistics.canEnable) Statistics.startTimer(patmatNanos) else null

      val selectorTp = repeatedToSeq(elimAnonymousClass(selector.tpe.widen.withoutAnnotations))

      val origPt  = match_.tpe
      // when one of the internal cps-type-state annotations is present, strip all CPS annotations
      // a cps-type-state-annotated type makes no sense as an expected type (matchX.tpe is used as pt in translateMatch)
      // (only test availability of MarkerCPSAdaptPlus assuming they are either all available or none of them are)
      val ptUnCPS =
        if (MarkerCPSAdaptPlus != NoSymbol && (stripTriggerCPSAnns exists origPt.hasAnnotation))
          removeCPSAdaptAnnotations(origPt)
        else origPt

      // relevant test cases: pos/existentials-harmful.scala, pos/gadt-gilles.scala, pos/t2683.scala, pos/virtpatmat_exist4.scala
      // pt is the skolemized version
      val pt = repeatedToSeq(ptUnCPS)

      // val packedPt = repeatedToSeq(typer.packedType(match_, context.owner))

      // the alternative to attaching the default case override would be to simply
      // append the default to the list of cases and suppress the unreachable case error that may arise (once we detect that...)
      val matchFailGenOverride = match_.attachments.get[DefaultOverrideMatchAttachment].map{case DefaultOverrideMatchAttachment(default) => ((scrut: Tree) => default)}

      val selectorSym = freshSym(selector.pos, pureType(selectorTp)) setFlag treeInfo.SYNTH_CASE_FLAGS

      // pt = Any* occurs when compiling test/files/pos/annotDepMethType.scala  with -Xexperimental
      val combined = combineCases(selector, selectorSym, cases map translateCase(selectorSym, pt), pt, matchOwner, matchFailGenOverride)

      if (Statistics.canEnable) Statistics.stopTimer(patmatNanos, start)
      combined
    }

    // return list of typed CaseDefs that are supported by the backend (typed/bind/wildcard)
    // we don't have a global scrutinee -- the caught exception must be bound in each of the casedefs
    // there's no need to check the scrutinee for null -- "throw null" becomes "throw new NullPointerException"
    // try to simplify to a type-based switch, or fall back to a catch-all case that runs a normal pattern match
    // unlike translateMatch, we type our result before returning it
    def translateTry(caseDefs: List[CaseDef], pt: Type, pos: Position): List[CaseDef] =
      // if they're already simple enough to be handled by the back-end, we're done
      if (caseDefs forall treeInfo.isCatchCase) caseDefs
      else {
        val swatches = { // switch-catches
          val bindersAndCases = caseDefs map { caseDef =>
            // generate a fresh symbol for each case, hoping we'll end up emitting a type-switch (we don't have a global scrut there)
            // if we fail to emit a fine-grained switch, have to do translateCase again with a single scrutSym (TODO: uniformize substitution on treemakers so we can avoid this)
            val caseScrutSym = freshSym(pos, pureType(ThrowableClass.tpe))
            (caseScrutSym, propagateSubstitution(translateCase(caseScrutSym, pt)(caseDef), EmptySubstitution))
          }

          for(cases <- emitTypeSwitch(bindersAndCases, pt).toList;
              if cases forall treeInfo.isCatchCase; // must check again, since it's not guaranteed -- TODO: can we eliminate this? e.g., a type test could test for a trait or a non-trivial prefix, which are not handled by the back-end
              cse <- cases) yield fixerUpper(matchOwner, pos)(cse).asInstanceOf[CaseDef]
        }

        val catches = if (swatches.nonEmpty) swatches else {
          val scrutSym = freshSym(pos, pureType(ThrowableClass.tpe))
          val casesNoSubstOnly = caseDefs map { caseDef => (propagateSubstitution(translateCase(scrutSym, pt)(caseDef), EmptySubstitution))}

          val exSym = freshSym(pos, pureType(ThrowableClass.tpe), "ex")

          List(
              atPos(pos) {
                CaseDef(
                  Bind(exSym, Ident(nme.WILDCARD)), // TODO: does this need fixing upping?
                  EmptyTree,
                  combineCasesNoSubstOnly(CODE.REF(exSym), scrutSym, casesNoSubstOnly, pt, matchOwner, Some(scrut => Throw(CODE.REF(exSym))))
                )
              })
        }

        typer.typedCases(catches, ThrowableClass.tpe, WildcardType)
      }



    /**  The translation of `pat if guard => body` has two aspects:
      *     1) the substitution due to the variables bound by patterns
      *     2) the combination of the extractor calls using `flatMap`.
      *
      * 2) is easy -- it looks like: `translatePattern_1.flatMap(translatePattern_2....flatMap(translatePattern_N.flatMap(translateGuard.flatMap((x_i) => success(Xbody(x_i)))))...)`
      *     this must be right-leaning tree, as can be seen intuitively by considering the scope of bound variables:
      *     variables bound by pat_1 must be visible from the function inside the left-most flatMap right up to Xbody all the way on the right
      * 1) is tricky because translatePattern_i determines the shape of translatePattern_i+1:
      *    zoom in on `translatePattern_1.flatMap(translatePattern_2)` for example -- it actually looks more like:
      *      `translatePattern_1(x_scrut).flatMap((x_1) => {y_i -> x_1._i}translatePattern_2)`
      *
      *    `x_1` references the result (inside the monad) of the extractor corresponding to `pat_1`,
      *    this result holds the values for the constructor arguments, which translatePattern_1 has extracted
      *    from the object pointed to by `x_scrut`. The `y_i` are the symbols bound by `pat_1` (in order)
      *    in the scope of the remainder of the pattern, and they must thus be replaced by:
      *      - (for 1-ary unapply) x_1
      *      - (for n-ary unapply, n > 1) selection of the i'th tuple component of `x_1`
      *      - (for unapplySeq) x_1.apply(i)
      *
      *    in the treemakers,
      *
      *    Thus, the result type of `translatePattern_i`'s extractor must conform to `M[(T_1,..., T_n)]`.
      *
      *    Operationally, phase 1) is a foldLeft, since we must consider the depth-first-flattening of
      *    the transformed patterns from left to right. For every pattern ast node, it produces a transformed ast and
      *    a function that will take care of binding and substitution of the next ast (to the right).
      *
      */
    def translateCase(scrutSym: Symbol, pt: Type)(caseDef: CaseDef) = caseDef match { case CaseDef(pattern, guard, body) =>
      translatePattern(scrutSym, pattern) ++ translateGuard(guard) :+ translateBody(body, pt)
    }

    def translatePattern(patBinder: Symbol, patTree: Tree): List[TreeMaker] = {
      // a list of TreeMakers that encode `patTree`, and a list of arguments for recursive invocations of `translatePattern` to encode its subpatterns
      type TranslationStep = (List[TreeMaker], List[(Symbol, Tree)])
      def withSubPats(treeMakers: List[TreeMaker], subpats: (Symbol, Tree)*): TranslationStep = (treeMakers, subpats.toList)
      def noFurtherSubPats(treeMakers: TreeMaker*): TranslationStep = (treeMakers.toList, Nil)

      val pos = patTree.pos

      def translateExtractorPattern(extractor: ExtractorCall): TranslationStep = {
        if (!extractor.isTyped) ErrorUtils.issueNormalTypeError(patTree, "Could not typecheck extractor call: "+ extractor)(context)
        // if (extractor.resultInMonad == ErrorType) throw new TypeError(pos, "Unsupported extractor type: "+ extractor.tpe)

        patmatDebug("translateExtractorPattern checking parameter type: "+ (patBinder, patBinder.info.widen, extractor.paramType, patBinder.info.widen <:< extractor.paramType))

        // must use type `tp`, which is provided by extractor's result, not the type expected by binder,
        // as b.info may be based on a Typed type ascription, which has not been taken into account yet by the translation
        // (it will later result in a type test when `tp` is not a subtype of `b.info`)
        // TODO: can we simplify this, together with the Bound case?
        (extractor.subPatBinders, extractor.subPatTypes).zipped foreach { case (b, tp) =>
          patmatDebug("changing "+ b +" : "+ b.info +" -> "+ tp)
          b setInfo tp
        }

        // example check: List[Int] <:< ::[Int]
        // TODO: extractor.paramType may contain unbound type params (run/t2800, run/t3530)
        val (typeTestTreeMaker, patBinderOrCasted) =
          if (needsTypeTest(patBinder.info.widen, extractor.paramType)) {
            // chain a type-testing extractor before the actual extractor call
            // it tests the type, checks the outer pointer and casts to the expected type
            // TODO: the outer check is mandated by the spec for case classes, but we do it for user-defined unapplies as well [SPEC]
            // (the prefix of the argument passed to the unapply must equal the prefix of the type of the binder)
            val treeMaker = TypeTestTreeMaker(patBinder, patBinder, extractor.paramType, extractor.paramType)(pos, extractorArgTypeTest = true)
            (List(treeMaker), treeMaker.nextBinder)
          } else (Nil, patBinder)

        withSubPats(typeTestTreeMaker :+ extractor.treeMaker(patBinderOrCasted, pos), extractor.subBindersAndPatterns: _*)
      }


      object MaybeBoundTyped {
        /** Decompose the pattern in `tree`, of shape C(p_1, ..., p_N), into a list of N symbols, and a list of its N sub-trees
          * The list of N symbols contains symbols for every bound name as well as the un-named sub-patterns (fresh symbols are generated here for these).
          * The returned type is the one inferred by inferTypedPattern (`owntype`)
          *
          * @arg patBinder  symbol used to refer to the result of the previous pattern's extractor (will later be replaced by the outer tree with the correct tree to refer to that patterns result)
        */
        def unapply(tree: Tree): Option[(Symbol, Type)] = tree match {
          // the Ident subpattern can be ignored, subpatBinder or patBinder tell us all we need to know about it
          case Bound(subpatBinder, typed@Typed(Ident(_), tpt)) if typed.tpe ne null => Some((subpatBinder, typed.tpe))
          case Bind(_, typed@Typed(Ident(_), tpt))             if typed.tpe ne null => Some((patBinder, typed.tpe))
          case Typed(Ident(_), tpt)                            if tree.tpe ne null  => Some((patBinder, tree.tpe))
          case _  => None
        }
      }

      val (treeMakers, subpats) = patTree match {
        // skip wildcard trees -- no point in checking them
        case WildcardPattern() => noFurtherSubPats()
        case UnApply(unfun, args) =>
          // TODO: check unargs == args
          // patmatDebug("unfun: "+ (unfun.tpe, unfun.symbol.ownerChain, unfun.symbol.info, patBinder.info))
          translateExtractorPattern(ExtractorCall(unfun, args))

        /** A constructor pattern is of the form c(p1, ..., pn) where n ≥ 0.
          It consists of a stable identifier c, followed by element patterns p1, ..., pn.
          The constructor c is a simple or qualified name which denotes a case class (§5.3.2).

          If the case class is monomorphic, then it must conform to the expected type of the pattern,
          and the formal parameter types of x’s primary constructor (§5.3) are taken as the expected types of the element patterns p1, ..., pn.

          If the case class is polymorphic, then its type parameters are instantiated so that the instantiation of c conforms to the expected type of the pattern.
          The instantiated formal parameter types of c’s primary constructor are then taken as the expected types of the component patterns p1, ..., pn.

          The pattern matches all objects created from constructor invocations c(v1, ..., vn) where each element pattern pi matches the corresponding value vi .
          A special case arises when c’s formal parameter types end in a repeated parameter. This is further discussed in (§8.1.9).
        **/
        case Apply(fun, args)     =>
          ExtractorCall.fromCaseClass(fun, args) map translateExtractorPattern getOrElse {
            ErrorUtils.issueNormalTypeError(patTree, "Could not find unapply member for "+ fun +" with args "+ args)(context)
            noFurtherSubPats()
          }

        /** A typed pattern x : T consists of a pattern variable x and a type pattern T.
            The type of x is the type pattern T, where each type variable and wildcard is replaced by a fresh, unknown type.
            This pattern matches any value matched by the type pattern T (§8.2); it binds the variable name to that value.
        **/
        // must treat Typed and Bind together -- we need to know the patBinder of the Bind pattern to get at the actual type
        case MaybeBoundTyped(subPatBinder, pt) =>
          val next = glb(List(patBinder.info.widen, pt)).normalize
          // a typed pattern never has any subtrees
          noFurtherSubPats(TypeTestTreeMaker(subPatBinder, patBinder, pt, next)(pos))

        /** A pattern binder x@p consists of a pattern variable x and a pattern p.
            The type of the variable x is the static type T of the pattern p.
            This pattern matches any value v matched by the pattern p,
            provided the run-time type of v is also an instance of T,  <-- TODO! https://issues.scala-lang.org/browse/SI-1503
            and it binds the variable name to that value.
        **/
        case Bound(subpatBinder, p)          =>
          // replace subpatBinder by patBinder (as if the Bind was not there)
          withSubPats(List(SubstOnlyTreeMaker(subpatBinder, patBinder)),
            // must be patBinder, as subpatBinder has the wrong info: even if the bind assumes a better type, this is not guaranteed until we cast
            (patBinder, p)
          )

        /** 8.1.4 Literal Patterns
              A literal pattern L matches any value that is equal (in terms of ==) to the literal L.
              The type of L must conform to the expected type of the pattern.

            8.1.5 Stable Identifier Patterns  (a stable identifier r (see §3.1))
              The pattern matches any value v such that r == v (§12.1).
              The type of r must conform to the expected type of the pattern.
        **/
        case Literal(Constant(_)) | Ident(_) | Select(_, _) | This(_) =>
          noFurtherSubPats(EqualityTestTreeMaker(patBinder, patTree, pos))

        case Alternative(alts)    =>
          noFurtherSubPats(AlternativesTreeMaker(patBinder, alts map (translatePattern(patBinder, _)), alts.head.pos))

      /* TODO: Paul says about future version: I think this should work, and always intended to implement if I can get away with it.
          case class Foo(x: Int, y: String)
          case class Bar(z: Int)

          def f(x: Any) = x match { case Foo(x, _) | Bar(x) => x } // x is lub of course.
      */

        case Bind(n, p) => // this happens in certain ill-formed programs, there'll be an error later
          patmatDebug("WARNING: Bind tree with unbound symbol "+ patTree)
          noFurtherSubPats() // there's no symbol -- something's wrong... don't fail here though (or should we?)

        // case Star(_) | ArrayValue  => error("stone age pattern relics encountered!")

        case _                       =>
          typer.context.unit.error(patTree.pos, s"unsupported pattern: $patTree (a ${patTree.getClass}).\n This is a scalac bug. Tree diagnostics: ${asCompactDebugString(patTree)}.")
          noFurtherSubPats()
      }

      treeMakers ++ subpats.flatMap { case (binder, pat) =>
        translatePattern(binder, pat) // recurse on subpatterns
      }
    }

    def translateGuard(guard: Tree): List[TreeMaker] =
      if (guard == EmptyTree) Nil
      else List(GuardTreeMaker(guard))

    // TODO: 1) if we want to support a generalisation of Kotlin's patmat continue, must not hard-wire lifting into the monad (which is now done by codegen.one),
    // so that user can generate failure when needed -- use implicit conversion to lift into monad on-demand?
    // to enable this, probably need to move away from Option to a monad specific to pattern-match,
    // so that we can return Option's from a match without ambiguity whether this indicates failure in the monad, or just some result in the monad
    // 2) body.tpe is the type of the body after applying the substitution that represents the solution of GADT type inference
    // need the explicit cast in case our substitutions in the body change the type to something that doesn't take GADT typing into account
    def translateBody(body: Tree, matchPt: Type): TreeMaker =
      BodyTreeMaker(body, matchPt)


///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// helper methods: they analyze types and trees in isolation, but they are not (directly) concerned with the structure of the overall translation
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

    object ExtractorCall {
      def apply(unfun: Tree, args: List[Tree]): ExtractorCall = new ExtractorCallRegular(unfun, args)

      def fromCaseClass(fun: Tree, args: List[Tree]): Option[ExtractorCall] =  Some(new ExtractorCallProd(fun, args))

      // THE PRINCIPLED SLOW PATH -- NOT USED
      // generate a call to the (synthetically generated) extractor of a case class
      // NOTE: it's an apply, not a select, since in general an extractor call may have multiple argument lists (including an implicit one)
      // that we need to preserve, so we supply the scrutinee as Ident(nme.SELECTOR_DUMMY),
      // and replace that dummy by a reference to the actual binder in translateExtractorPattern
      def fromCaseClassUnapply(fun: Tree, args: List[Tree]): Option[ExtractorCall] = {
        // TODO: can we rework the typer so we don't have to do all this twice?
        // undo rewrite performed in (5) of adapt
        val orig      = fun match {case tpt: TypeTree => tpt.original case _ => fun}
        val origSym   = orig.symbol
        val extractor = unapplyMember(origSym.filter(sym => reallyExists(unapplyMember(sym.tpe))).tpe)

        if((fun.tpe eq null) || fun.tpe.isError || (extractor eq NoSymbol)) {
          None
        } else {
          // this is a tricky balance: pos/t602.scala, pos/sudoku.scala, run/virtpatmat_alts.scala must all be happy
          // bypass typing at own risk: val extractorCall = Select(orig, extractor) setType caseClassApplyToUnapplyTp(fun.tpe)
          // can't always infer type arguments (pos/t602):
          /*  case class Span[K <: Ordered[K]](low: Option[K]) {
                override def equals(x: Any): Boolean = x match {
                  case Span((low0 @ _)) if low0 equals low => true
                }
              }*/
          // so... leave undetermined type params floating around if we have to
          // (if we don't infer types, uninstantiated type params show up later: pos/sudoku.scala)
          // (see also run/virtpatmat_alts.scala)
          val savedUndets = context.undetparams
          val extractorCall = try {
            context.undetparams = Nil
            silent(_.typed(Apply(Select(orig, extractor), List(Ident(nme.SELECTOR_DUMMY) setType fun.tpe.finalResultType)), EXPRmode, WildcardType), reportAmbiguousErrors = false) match {
              case SilentResultValue(extractorCall) => extractorCall // if !extractorCall.containsError()
              case _ =>
                // this fails to resolve overloading properly...
                // Apply(typedOperator(Select(orig, extractor)), List(Ident(nme.SELECTOR_DUMMY))) // no need to set the type of the dummy arg, it will be replaced anyway

                // patmatDebug("funtpe after = "+ fun.tpe.finalResultType)
                // patmatDebug("orig: "+(orig, orig.tpe))
                val tgt = typed(orig, EXPRmode | QUALmode | POLYmode, HasMember(extractor.name)) // can't specify fun.tpe.finalResultType as the type for the extractor's arg,
                // as it may have been inferred incorrectly (see t602, where it's  com.mosol.sl.Span[Any], instead of  com.mosol.sl.Span[?K])
                // patmatDebug("tgt = "+ (tgt, tgt.tpe))
                val oper = typed(Select(tgt, extractor.name), EXPRmode | FUNmode | POLYmode | TAPPmode, WildcardType)
                // patmatDebug("oper: "+ (oper, oper.tpe))
                Apply(oper, List(Ident(nme.SELECTOR_DUMMY))) // no need to set the type of the dummy arg, it will be replaced anyway
            }
          } finally context.undetparams = savedUndets

          Some(this(extractorCall, args)) // TODO: simplify spliceApply?
        }
      }
    }

    abstract class ExtractorCall(val args: List[Tree]) {
      val nbSubPats = args.length

      // everything okay, captain?
      def isTyped    : Boolean

      def isSeq: Boolean
      lazy val lastIsStar = (nbSubPats > 0) && treeInfo.isStar(args.last)

      // to which type should the previous binder be casted?
      def paramType  : Type

      // binder has been casted to paramType if necessary
      def treeMaker(binder: Symbol, pos: Position): TreeMaker

      // `subPatBinders` are the variables bound by this pattern in the following patterns
      // subPatBinders are replaced by references to the relevant part of the extractor's result (tuple component, seq element, the result as-is)
      lazy val subPatBinders = args map {
        case Bound(b, p) => b
        case p => freshSym(p.pos, prefix = "p")
      }

      lazy val subBindersAndPatterns: List[(Symbol, Tree)] = (subPatBinders zip args) map {
        case (b, Bound(_, p)) => (b, p)
        case bp => bp
      }

      def subPatTypes: List[Type] =
        if(isSeq) {
          val TypeRef(pre, SeqClass, args) = seqTp
          // do repeated-parameter expansion to match up with the expected number of arguments (in casu, subpatterns)
          val formalsWithRepeated = rawSubPatTypes.init :+ typeRef(pre, RepeatedParamClass, args)

          if (lastIsStar) formalTypes(formalsWithRepeated, nbSubPats - 1) :+ seqTp
          else formalTypes(formalsWithRepeated, nbSubPats)
        } else rawSubPatTypes

      protected def rawSubPatTypes: List[Type]

      protected def seqTp = rawSubPatTypes.last baseType SeqClass
      protected def seqLenCmp                = rawSubPatTypes.last member nme.lengthCompare
      protected lazy val firstIndexingBinder = rawSubPatTypes.length - 1 // rawSubPatTypes.last is the Seq, thus there are `rawSubPatTypes.length - 1` non-seq elements in the tuple
      protected lazy val lastIndexingBinder  = if(lastIsStar) nbSubPats-2 else nbSubPats-1
      protected lazy val expectedLength      = lastIndexingBinder - firstIndexingBinder + 1
      protected lazy val minLenToCheck       = if(lastIsStar) 1 else 0
      protected def seqTree(binder: Symbol)  = tupleSel(binder)(firstIndexingBinder+1)
      protected def tupleSel(binder: Symbol)(i: Int): Tree = codegen.tupleSel(binder)(i)

      // the trees that select the subpatterns on the extractor's result, referenced by `binder`
      // require isSeq
      protected def subPatRefsSeq(binder: Symbol): List[Tree] = {
        val indexingIndices   = (0 to (lastIndexingBinder-firstIndexingBinder))
        val nbIndexingIndices = indexingIndices.length

        // this error-condition has already been checked by checkStarPatOK:
        //   if(isSeq) assert(firstIndexingBinder + nbIndexingIndices + (if(lastIsStar) 1 else 0) == nbSubPats, "(resultInMonad, ts, subPatTypes, subPats)= "+(resultInMonad, ts, subPatTypes, subPats))
        // there are `firstIndexingBinder` non-seq tuple elements preceding the Seq
        (((1 to firstIndexingBinder) map tupleSel(binder)) ++
        // then we have to index the binder that represents the sequence for the remaining subpatterns, except for...
        (indexingIndices map codegen.index(seqTree(binder))) ++
        // the last one -- if the last subpattern is a sequence wildcard: drop the prefix (indexed by the refs on the line above), return the remainder
        (if(!lastIsStar) Nil else List(
          if(nbIndexingIndices == 0) seqTree(binder)
          else codegen.drop(seqTree(binder))(nbIndexingIndices)))).toList
      }

      // the trees that select the subpatterns on the extractor's result, referenced by `binder`
      // require (nbSubPats > 0 && (!lastIsStar || isSeq))
      protected def subPatRefs(binder: Symbol): List[Tree] =
        if (nbSubPats == 0) Nil
        else if (isSeq) subPatRefsSeq(binder)
        else ((1 to nbSubPats) map tupleSel(binder)).toList

      protected def lengthGuard(binder: Symbol): Option[Tree] =
        // no need to check unless it's an unapplySeq and the minimal length is non-trivially satisfied
        checkedLength map { expectedLength => import CODE._
          // `binder.lengthCompare(expectedLength)`
          def checkExpectedLength = (seqTree(binder) DOT seqLenCmp)(LIT(expectedLength))

          // the comparison to perform
          // when the last subpattern is a wildcard-star the expectedLength is but a lower bound
          // (otherwise equality is required)
          def compareOp: (Tree, Tree) => Tree =
            if (lastIsStar)  _ INT_>= _
            else             _ INT_== _

          // `if (binder != null && $checkExpectedLength [== | >=] 0) then else zero`
          (seqTree(binder) ANY_!= NULL) AND compareOp(checkExpectedLength, ZERO)
        }

      def checkedLength: Option[Int] =
        // no need to check unless it's an unapplySeq and the minimal length is non-trivially satisfied
        if (!isSeq || (expectedLength < minLenToCheck)) None
        else Some(expectedLength)

    }

    // TODO: to be called when there's a def unapplyProd(x: T): U
    // U must have N members _1,..., _N -- the _i are type checked, call their type Ti,
    //
    // for now only used for case classes -- pretending there's an unapplyProd that's the identity (and don't call it)
    class ExtractorCallProd(fun: Tree, args: List[Tree]) extends ExtractorCall(args) {
      // TODO: fix the illegal type bound in pos/t602 -- type inference messes up before we get here:
      /*override def equals(x$1: Any): Boolean = ...
             val o5: Option[com.mosol.sl.Span[Any]] =  // Span[Any] --> Any is not a legal type argument for Span!
      */
      // private val orig            = fun match {case tpt: TypeTree => tpt.original case _ => fun}
      // private val origExtractorTp = unapplyMember(orig.symbol.filter(sym => reallyExists(unapplyMember(sym.tpe))).tpe).tpe
      // private val extractorTp     = if (wellKinded(fun.tpe)) fun.tpe else existentialAbstraction(origExtractorTp.typeParams, origExtractorTp.resultType)
      // patmatDebug("ExtractorCallProd: "+ (fun.tpe, existentialAbstraction(origExtractorTp.typeParams, origExtractorTp.resultType)))
      // patmatDebug("ExtractorCallProd: "+ (fun.tpe, args map (_.tpe)))
      private def constructorTp = fun.tpe

      def isTyped    = fun.isTyped

      // to which type should the previous binder be casted?
      def paramType  = constructorTp.finalResultType

      def isSeq: Boolean = rawSubPatTypes.nonEmpty && isRepeatedParamType(rawSubPatTypes.last)
      protected def rawSubPatTypes = constructorTp.paramTypes

      // binder has type paramType
      def treeMaker(binder: Symbol, pos: Position): TreeMaker = {
        val paramAccessors = binder.constrParamAccessors
        // binders corresponding to mutable fields should be stored (SI-5158, SI-6070)
        val mutableBinders =
          if (paramAccessors exists (_.isMutable))
            subPatBinders.zipWithIndex.collect{ case (binder, idx) if paramAccessors(idx).isMutable => binder }
          else Nil

        // checks binder ne null before chaining to the next extractor
        ProductExtractorTreeMaker(binder, lengthGuard(binder))(subPatBinders, subPatRefs(binder), mutableBinders)
      }

      // reference the (i-1)th case accessor if it exists, otherwise the (i-1)th tuple component
      override protected def tupleSel(binder: Symbol)(i: Int): Tree = { import CODE._
        // caseFieldAccessors is messed up after typers (reversed, names mangled for non-public fields)
        // TODO: figure out why...
        val accessors = binder.caseFieldAccessors
        // luckily, the constrParamAccessors are still sorted properly, so sort the field-accessors using them
        // (need to undo name-mangling, including the sneaky trailing whitespace)
        val constrParamAccessors = binder.constrParamAccessors

        def indexInCPA(acc: Symbol) =
          constrParamAccessors indexWhere { orig =>
            // patmatDebug("compare: "+ (orig, acc, orig.name, acc.name, (acc.name == orig.name), (acc.name startsWith (orig.name append "$"))))
            val origName  = orig.name.toString.trim
            val accName = acc.name.toString.trim
            (accName == origName) || (accName startsWith (origName + "$"))
          }

        // patmatDebug("caseFieldAccessors: "+ (accessors, binder.caseFieldAccessors map indexInCPA))
        // patmatDebug("constrParamAccessors: "+ constrParamAccessors)

        val accessorsSorted = accessors sortBy indexInCPA
        if (accessorsSorted isDefinedAt (i-1)) REF(binder) DOT accessorsSorted(i-1)
        else codegen.tupleSel(binder)(i) // this won't type check for case classes, as they do not inherit ProductN
      }

      override def toString(): String = "case class "+ (if (constructorTp eq null) fun else paramType.typeSymbol) +" with arguments "+ args
    }

    class ExtractorCallRegular(extractorCallIncludingDummy: Tree, args: List[Tree]) extends ExtractorCall(args) {
      private lazy val Some(Apply(extractorCall, _)) = extractorCallIncludingDummy.find{ case Apply(_, List(Ident(nme.SELECTOR_DUMMY))) => true case _ => false }

      def tpe        = extractorCall.tpe
      def isTyped    = (tpe ne NoType) && extractorCall.isTyped && (resultInMonad ne ErrorType)
      def paramType  = tpe.paramTypes.head
      def resultType = tpe.finalResultType
      def isSeq      = extractorCall.symbol.name == nme.unapplySeq

      def treeMaker(patBinderOrCasted: Symbol, pos: Position): TreeMaker = {
        // the extractor call (applied to the binder bound by the flatMap corresponding to the previous (i.e., enclosing/outer) pattern)
        val extractorApply = atPos(pos)(spliceApply(patBinderOrCasted))
        val binder         = freshSym(pos, pureType(resultInMonad)) // can't simplify this when subPatBinders.isEmpty, since UnitClass.tpe is definitely wrong when isSeq, and resultInMonad should always be correct since it comes directly from the extractor's result type
        ExtractorTreeMaker(extractorApply, lengthGuard(binder), binder)(subPatBinders, subPatRefs(binder), resultType.typeSymbol == BooleanClass, checkedLength, patBinderOrCasted)
      }

      override protected def seqTree(binder: Symbol): Tree =
        if (firstIndexingBinder == 0) CODE.REF(binder)
        else super.seqTree(binder)

      // the trees that select the subpatterns on the extractor's result, referenced by `binder`
      // require (nbSubPats > 0 && (!lastIsStar || isSeq))
      override protected def subPatRefs(binder: Symbol): List[Tree] =
        if (!isSeq && nbSubPats == 1) List(CODE.REF(binder)) // special case for extractors
        else super.subPatRefs(binder)

      protected def spliceApply(binder: Symbol): Tree = {
        object splice extends Transformer {
          override def transform(t: Tree) = t match {
            case Apply(x, List(Ident(nme.SELECTOR_DUMMY))) =>
              treeCopy.Apply(t, x, List(CODE.REF(binder)))
            case _ => super.transform(t)
          }
        }
        splice.transform(extractorCallIncludingDummy)
      }

      // what's the extractor's result type in the monad?
      // turn an extractor's result type into something `monadTypeToSubPatTypesAndRefs` understands
      protected lazy val resultInMonad: Type = if(!hasLength(tpe.paramTypes, 1)) ErrorType else {
        if (resultType.typeSymbol == BooleanClass) UnitClass.tpe
        else matchMonadResult(resultType)
      }

      protected lazy val rawSubPatTypes =
        if (resultInMonad.typeSymbol eq UnitClass) Nil
        else if(nbSubPats == 1)                    List(resultInMonad)
        else getProductArgs(resultInMonad) match {
          case Nil => List(resultInMonad)
          case x   => x
        }

      override def toString() = extractorCall +": "+ extractorCall.tpe +" (symbol= "+ extractorCall.symbol +")."
    }

    /** A conservative approximation of which patterns do not discern anything.
     * They are discarded during the translation.
     */
    object WildcardPattern {
      def unapply(pat: Tree): Boolean = pat match {
        case Bind(nme.WILDCARD, WildcardPattern()) => true // don't skip when binding an interesting symbol!
        case Ident(nme.WILDCARD)                   => true
        case Star(WildcardPattern())               => true
        case x: Ident                              => treeInfo.isVarPattern(x)
        case Alternative(ps)                       => ps forall (WildcardPattern.unapply(_))
        case EmptyTree                             => true
        case _                                     => false
      }
    }

    object Bound {
      def unapply(t: Tree): Option[(Symbol, Tree)] = t match {
        case t@Bind(n, p) if (t.symbol ne null) && (t.symbol ne NoSymbol) => // pos/t2429 does not satisfy these conditions
          Some((t.symbol, p))
        case _ => None
      }
    }
  }

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// substitution
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  trait TypedSubstitution extends MatchMonadInterface {
    object Substitution {
      def apply(from: Symbol, to: Tree) = new Substitution(List(from), List(to))
      // requires sameLength(from, to)
      def apply(from: List[Symbol], to: List[Tree]) =
        if (from nonEmpty) new Substitution(from, to) else EmptySubstitution
    }

    class Substitution(val from: List[Symbol], val to: List[Tree]) {
      // We must explicitly type the trees that we replace inside some other tree, since the latter may already have been typed,
      // and will thus not be retyped. This means we might end up with untyped subtrees inside bigger, typed trees.
      def apply(tree: Tree): Tree = {
        // according to -Ystatistics 10% of translateMatch's time is spent in this method...
        // since about half of the typedSubst's end up being no-ops, the check below shaves off 5% of the time spent in typedSubst
        if (!tree.exists { case i@Ident(_) => from contains i.symbol case _ => false}) tree
        else (new Transformer {
          private def typedIfOrigTyped(to: Tree, origTp: Type): Tree =
            if (origTp == null || origTp == NoType) to
            // important: only type when actually substing and when original tree was typed
            // (don't need to use origTp as the expected type, though, and can't always do this anyway due to unknown type params stemming from polymorphic extractors)
            else typer.typed(to, EXPRmode, WildcardType)

          override def transform(tree: Tree): Tree = {
            def subst(from: List[Symbol], to: List[Tree]): Tree =
              if (from.isEmpty) tree
              else if (tree.symbol == from.head) typedIfOrigTyped(to.head.shallowDuplicate, tree.tpe)
              else subst(from.tail, to.tail)

            tree match {
              case Ident(_) => subst(from, to)
              case _        => super.transform(tree)
            }
          }
        }).transform(tree)
      }


      // the substitution that chains `other` before `this` substitution
      // forall t: Tree. this(other(t)) == (this >> other)(t)
      def >>(other: Substitution): Substitution = {
        val (fromFiltered, toFiltered) = (from, to).zipped filter { (f, t) =>  !other.from.contains(f) }
        new Substitution(other.from ++ fromFiltered, other.to.map(apply) ++ toFiltered) // a quick benchmarking run indicates the `.map(apply)` is not too costly
      }
      override def toString = (from.map(_.name) zip to) mkString("Substitution(", ", ", ")")
    }

    object EmptySubstitution extends Substitution(Nil, Nil) {
      override def apply(tree: Tree): Tree = tree
      override def >>(other: Substitution): Substitution = other
    }
  }

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// the making of the trees
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  trait TreeMakers extends TypedSubstitution { self: CodegenCore =>
    def optimizeCases(prevBinder: Symbol, cases: List[List[TreeMaker]], pt: Type, unchecked: Boolean): (List[List[TreeMaker]], List[Tree]) =
      (cases, Nil)

    def emitSwitch(scrut: Tree, scrutSym: Symbol, cases: List[List[TreeMaker]], pt: Type, matchFailGenOverride: Option[Tree => Tree], unchecked: Boolean): Option[Tree] =
      None

    // for catch (no need to customize match failure)
    def emitTypeSwitch(bindersAndCases: List[(Symbol, List[TreeMaker])], pt: Type): Option[List[CaseDef]] =
      None

    abstract class TreeMaker {
      def pos: Position

      /** captures the scope and the value of the bindings in patterns
       * important *when* the substitution happens (can't accumulate and do at once after the full matcher has been constructed)
       */
      def substitution: Substitution =
        if (currSub eq null) localSubstitution
        else currSub

      protected def localSubstitution: Substitution

      private[TreeMakers] def incorporateOuterSubstitution(outerSubst: Substitution): Unit = {
        if (currSub ne null) {
          patmatDebug("BUG: incorporateOuterSubstitution called more than once for "+ (this, currSub, outerSubst))
          Thread.dumpStack()
        }
        else currSub = outerSubst >> substitution
      }
      private[this] var currSub: Substitution = null

      /** The substitution that specifies the trees that compute the values of the subpattern binders.
       *
       * Should not be used to perform actual substitution!
       * Only used to reason symbolically about the values the subpattern binders are bound to.
       * See TreeMakerToCond#updateSubstitution.
       *
       * Overridden in PreserveSubPatBinders to pretend it replaces the subpattern binders by subpattern refs
       * (Even though we don't do so anymore -- see SI-5158, SI-5739 and SI-6070.)
       *
       * TODO: clean this up, would be nicer to have some higher-level way to compute
       * the binders bound by this tree maker and the symbolic values that correspond to them
       */
      def subPatternsAsSubstitution: Substitution = substitution

      // build Tree that chains `next` after the current extractor
      def chainBefore(next: Tree)(casegen: Casegen): Tree
    }

    trait NoNewBinders extends TreeMaker {
      protected val localSubstitution: Substitution = EmptySubstitution
    }

    case class TrivialTreeMaker(tree: Tree) extends TreeMaker with NoNewBinders {
      def pos = tree.pos

      def chainBefore(next: Tree)(casegen: Casegen): Tree = tree
    }

    case class BodyTreeMaker(body: Tree, matchPt: Type) extends TreeMaker with NoNewBinders {
      def pos = body.pos

      def chainBefore(next: Tree)(casegen: Casegen): Tree = // assert(next eq EmptyTree)
        atPos(body.pos)(casegen.one(substitution(body))) // since SubstOnly treemakers are dropped, need to do it here
      override def toString = "B"+(body, matchPt)
    }

    case class SubstOnlyTreeMaker(prevBinder: Symbol, nextBinder: Symbol) extends TreeMaker {
      val pos = NoPosition

      val localSubstitution = Substitution(prevBinder, CODE.REF(nextBinder))
      def chainBefore(next: Tree)(casegen: Casegen): Tree = substitution(next)
      override def toString = "S"+ localSubstitution
    }

    abstract class FunTreeMaker extends TreeMaker {
      val nextBinder: Symbol
      def pos = nextBinder.pos
    }

    abstract class CondTreeMaker extends FunTreeMaker {
      val prevBinder: Symbol
      val nextBinderTp: Type
      val cond: Tree
      val res: Tree

      lazy val nextBinder = freshSym(pos, nextBinderTp)
      lazy val localSubstitution = Substitution(List(prevBinder), List(CODE.REF(nextBinder)))

      def chainBefore(next: Tree)(casegen: Casegen): Tree =
        atPos(pos)(casegen.flatMapCond(cond, res, nextBinder, substitution(next)))
    }

    // unless we're optimizing, emit local variable bindings for all subpatterns of extractor/case class patterns
    protected val debugInfoEmitVars = !settings.optimise.value

    trait PreserveSubPatBinders extends TreeMaker {
      val subPatBinders: List[Symbol]
      val subPatRefs: List[Tree]

      // unless `debugInfoEmitVars`, this set should contain the bare minimum for correctness
      // mutable case class fields need to be stored regardless (SI-5158, SI-6070) -- see override in ProductExtractorTreeMaker
      def storedBinders: Set[Symbol] = if (debugInfoEmitVars) subPatBinders.toSet else Set.empty

      def emitVars = storedBinders.nonEmpty

      private lazy val (stored, substed) = (subPatBinders, subPatRefs).zipped.partition{ case (sym, _) => storedBinders(sym) }

      protected lazy val localSubstitution: Substitution = if (!emitVars) Substitution(subPatBinders, subPatRefs)
        else {
          val (subPatBindersSubstituted, subPatRefsSubstituted) = substed.unzip
          Substitution(subPatBindersSubstituted.toList, subPatRefsSubstituted.toList)
        }

      /** The substitution that specifies the trees that compute the values of the subpattern binders.
       *
       * We pretend to replace the subpattern binders by subpattern refs
       * (Even though we don't do so anymore -- see SI-5158, SI-5739 and SI-6070.)
       */
      override def subPatternsAsSubstitution =
        Substitution(subPatBinders, subPatRefs) >> super.subPatternsAsSubstitution

      import CODE._
      def bindSubPats(in: Tree): Tree = if (!emitVars) in
        else {
          val (subPatBindersStored, subPatRefsStored) = stored.unzip
          Block(map2(subPatBindersStored.toList, subPatRefsStored.toList)(VAL(_) === _), in)
        }
    }

    /**
     * Make a TreeMaker that will result in an extractor call specified by `extractor`
     * the next TreeMaker (here, we don't know which it'll be) is chained after this one by flatMap'ing
     * a function with binder `nextBinder` over our extractor's result
     * the function's body is determined by the next TreeMaker
     * (furthermore, the interpretation of `flatMap` depends on the codegen instance we're using).
     *
     * The values for the subpatterns, as computed by the extractor call in `extractor`,
     * are stored in local variables that re-use the symbols in `subPatBinders`.
     * This makes extractor patterns more debuggable (SI-5739).
     */
    case class ExtractorTreeMaker(extractor: Tree, extraCond: Option[Tree], nextBinder: Symbol)(
          val subPatBinders: List[Symbol],
          val subPatRefs: List[Tree],
          extractorReturnsBoolean: Boolean,
          val checkedLength: Option[Int],
          val prevBinder: Symbol) extends FunTreeMaker with PreserveSubPatBinders {

      def chainBefore(next: Tree)(casegen: Casegen): Tree = {
        val condAndNext = extraCond match {
          case Some(cond) =>
            casegen.ifThenElseZero(substitution(cond), bindSubPats(substitution(next)))
          case _ =>
            bindSubPats(substitution(next))
        }
        atPos(extractor.pos)(
          if (extractorReturnsBoolean) casegen.flatMapCond(extractor, CODE.UNIT, nextBinder, condAndNext)
          else casegen.flatMap(extractor, nextBinder, condAndNext)
        )
      }

      override def toString = "X"+(extractor, nextBinder.name)
    }

    /**
     * An optimized version of ExtractorTreeMaker for Products.
     * For now, this is hard-coded to case classes, and we simply extract the case class fields.
     *
     * The values for the subpatterns, as specified by the case class fields at the time of extraction,
     * are stored in local variables that re-use the symbols in `subPatBinders`.
     * This makes extractor patterns more debuggable (SI-5739) as well as
     * avoiding mutation after the pattern has been matched (SI-5158, SI-6070)
     *
     * TODO: make this user-definable as follows
     *   When a companion object defines a method `def unapply_1(x: T): U_1`, but no `def unapply` or `def unapplySeq`,
     *   the extractor is considered to match any non-null value of type T
     *   the pattern is expected to have as many sub-patterns as there are `def unapply_I(x: T): U_I` methods,
     *   and the type of the I'th sub-pattern is `U_I`.
     *   The same exception for Seq patterns applies: if the last extractor is of type `Seq[U_N]`,
     *   the pattern must have at least N arguments (exactly N if the last argument is annotated with `: _*`).
     *   The arguments starting at N (and beyond) are taken from the sequence returned by apply_N,
     *   and it is checked that that sequence has enough elements to provide values for all expected sub-patterns.
     *
     *   For a case class C, the implementation is assumed to be `def unapply_I(x: C) = x._I`,
     *   and the extractor call is inlined under that assumption.
     */
    case class ProductExtractorTreeMaker(prevBinder: Symbol, extraCond: Option[Tree])(
          val subPatBinders: List[Symbol],
          val subPatRefs: List[Tree],
          val mutableBinders: List[Symbol]) extends FunTreeMaker with PreserveSubPatBinders {

      import CODE._
      val nextBinder = prevBinder // just passing through

      // mutable binders must be stored to avoid unsoundness or seeing mutation of fields after matching (SI-5158, SI-6070)
      // (the implementation could be optimized by duplicating code from `super.storedBinders`, but this seems more elegant)
      override def storedBinders: Set[Symbol] = super.storedBinders ++ mutableBinders.toSet

      def chainBefore(next: Tree)(casegen: Casegen): Tree = {
        val nullCheck = REF(prevBinder) OBJ_NE NULL
        val cond = extraCond map (nullCheck AND _) getOrElse nullCheck
        casegen.ifThenElseZero(cond, bindSubPats(substitution(next)))
      }

      override def toString = "P"+(prevBinder.name,  extraCond getOrElse "", localSubstitution)
    }

    // typetag-based tests are inserted by the type checker
    def needsTypeTest(tp: Type, pt: Type): Boolean = !(tp <:< pt)

    object TypeTestTreeMaker {
      // factored out so that we can consistently generate other representations of the tree that implements the test
      // (e.g. propositions for exhaustivity and friends, boolean for isPureTypeTest)
      trait TypeTestCondStrategy {
        type Result

        def outerTest(testedBinder: Symbol, expectedTp: Type): Result
        // TODO: can probably always widen
        def typeTest(testedBinder: Symbol, expectedTp: Type): Result
        def nonNullTest(testedBinder: Symbol): Result
        def equalsTest(pat: Tree, testedBinder: Symbol): Result
        def eqTest(pat: Tree, testedBinder: Symbol): Result
        def and(a: Result, b: Result): Result
      }

      object treeCondStrategy extends TypeTestCondStrategy { import CODE._
        type Result = Tree

        def and(a: Result, b: Result): Result                = a AND b
        def typeTest(testedBinder: Symbol, expectedTp: Type) = codegen._isInstanceOf(testedBinder, expectedTp)
        def nonNullTest(testedBinder: Symbol)                = REF(testedBinder) OBJ_NE NULL
        def equalsTest(pat: Tree, testedBinder: Symbol)      = codegen._equals(pat, testedBinder)
        def eqTest(pat: Tree, testedBinder: Symbol)          = REF(testedBinder) OBJ_EQ pat

        def outerTest(testedBinder: Symbol, expectedTp: Type): Tree = {
          val expectedOuter = expectedTp.prefix match {
            case ThisType(clazz)      => THIS(clazz)
            case pre if pre != NoType => REF(pre.prefix, pre.termSymbol)
            case _ => TRUE_typed // fallback for SI-6183
          }

          // ExplicitOuter replaces `Select(q, outerSym) OBJ_EQ expectedPrefix` by `Select(q, outerAccessor(outerSym.owner)) OBJ_EQ expectedPrefix`
          // if there's an outer accessor, otherwise the condition becomes `true` -- TODO: can we improve needsOuterTest so there's always an outerAccessor?
          val outer = expectedTp.typeSymbol.newMethod(vpmName.outer, newFlags = SYNTHETIC | ARTIFACT) setInfo expectedTp.prefix

          (Select(codegen._asInstanceOf(testedBinder, expectedTp), outer)) OBJ_EQ expectedOuter
        }
      }

      object pureTypeTestChecker extends TypeTestCondStrategy {
        type Result = Boolean

        def typeTest(testedBinder: Symbol, expectedTp: Type): Result  = true

        def outerTest(testedBinder: Symbol, expectedTp: Type): Result = false
        def nonNullTest(testedBinder: Symbol): Result                 = false
        def equalsTest(pat: Tree, testedBinder: Symbol): Result       = false
        def eqTest(pat: Tree, testedBinder: Symbol): Result           = false
        def and(a: Result, b: Result): Result                         = false // we don't and type tests, so the conjunction must include at least one false
      }
    }

    /** implements the run-time aspects of (§8.2) (typedPattern has already done the necessary type transformations)
     *
     * Type patterns consist of types, type variables, and wildcards. A type pattern T is of one of the following forms:
        - A reference to a class C, p.C, or T#C.
          This type pattern matches any non-null instance of the given class.
          Note that the prefix of the class, if it is given, is relevant for determining class instances.
          For instance, the pattern p.C matches only instances of classes C which were created with the path p as prefix.
          The bottom types scala.Nothing and scala.Null cannot be used as type patterns, because they would match nothing in any case.

        - A singleton type p.type.
          This type pattern matches only the value denoted by the path p
          (that is, a pattern match involved a comparison of the matched value with p using method eq in class AnyRef). // TODO: the actual pattern matcher uses ==, so that's what I'm using for now
          // https://issues.scala-lang.org/browse/SI-4577 "pattern matcher, still disappointing us at equality time"

        - A compound type pattern T1 with ... with Tn where each Ti is a type pat- tern.
          This type pattern matches all values that are matched by each of the type patterns Ti.

        - A parameterized type pattern T[a1,...,an], where the ai are type variable patterns or wildcards _.
          This type pattern matches all values which match T for some arbitrary instantiation of the type variables and wildcards.
          The bounds or alias type of these type variable are determined as described in (§8.3).

        - A parameterized type pattern scala.Array[T1], where T1 is a type pattern. // TODO
          This type pattern matches any non-null instance of type scala.Array[U1], where U1 is a type matched by T1.
    **/
    case class TypeTestTreeMaker(prevBinder: Symbol, testedBinder: Symbol, expectedTp: Type, nextBinderTp: Type)(override val pos: Position, extractorArgTypeTest: Boolean = false) extends CondTreeMaker {
      import TypeTestTreeMaker._
      patmatDebug("TTTM"+(prevBinder, extractorArgTypeTest, testedBinder, expectedTp, nextBinderTp))

      lazy val outerTestNeeded = (
          !((expectedTp.prefix eq NoPrefix) || expectedTp.prefix.typeSymbol.isPackageClass)
        && needsOuterTest(expectedTp, testedBinder.info, matchOwner))

      // the logic to generate the run-time test that follows from the fact that
      // a `prevBinder` is expected to have type `expectedTp`
      // the actual tree-generation logic is factored out, since the analyses generate Cond(ition)s rather than Trees
      // TODO: `null match { x : T }` will yield a check that (indirectly) tests whether `null ne null`
      // don't bother (so that we don't end up with the warning "comparing values of types Null and Null using `ne' will always yield false")
      def renderCondition(cs: TypeTestCondStrategy): cs.Result = {
        import cs._

        def default =
          // do type test first to ensure we won't select outer on null
          if (outerTestNeeded) and(typeTest(testedBinder, expectedTp), outerTest(testedBinder, expectedTp))
          else typeTest(testedBinder, expectedTp)

        // propagate expected type
        def expTp(t: Tree): t.type = t setType expectedTp

        // true when called to type-test the argument to an extractor
        // don't do any fancy equality checking, just test the type
        if (extractorArgTypeTest) default
        else expectedTp match {
          // TODO: [SPEC] the spec requires `eq` instead of `==` for singleton types
          // this implies sym.isStable
          case SingleType(_, sym)                       => and(equalsTest(gen.mkAttributedQualifier(expectedTp), testedBinder), typeTest(testedBinder, expectedTp.widen))
          // must use == to support e.g. List() == Nil
          case ThisType(sym) if sym.isModule            => and(equalsTest(CODE.REF(sym), testedBinder), typeTest(testedBinder, expectedTp.widen))
          case ConstantType(Constant(null)) if testedBinder.info.widen <:< AnyRefClass.tpe
                                                        => eqTest(expTp(CODE.NULL), testedBinder)
          case ConstantType(const)                      => equalsTest(expTp(Literal(const)), testedBinder)
          case ThisType(sym)                            => eqTest(expTp(This(sym)), testedBinder)

          // TODO: verify that we don't need to special-case Array
          // I think it's okay:
          //  - the isInstanceOf test includes a test for the element type
          //  - Scala's arrays are invariant (so we don't drop type tests unsoundly)
          case _ if (expectedTp <:< AnyRefClass.tpe) && !needsTypeTest(testedBinder.info.widen, expectedTp) =>
            // do non-null check first to ensure we won't select outer on null
            if (outerTestNeeded) and(nonNullTest(testedBinder), outerTest(testedBinder, expectedTp))
            else nonNullTest(testedBinder)

          case _ => default
        }
      }

      val cond = renderCondition(treeCondStrategy)
      val res  = codegen._asInstanceOf(testedBinder, nextBinderTp)

      // is this purely a type test, e.g. no outer check, no equality tests (used in switch emission)
      def isPureTypeTest = renderCondition(pureTypeTestChecker)

      override def toString = "TT"+(expectedTp, testedBinder.name, nextBinderTp)
    }

    // need to substitute to deal with existential types -- TODO: deal with existentials better, don't substitute (see RichClass during quick.comp)
    case class EqualityTestTreeMaker(prevBinder: Symbol, patTree: Tree, override val pos: Position) extends CondTreeMaker {
      val nextBinderTp = prevBinder.info.widen

      // NOTE: generate `patTree == patBinder`, since the extractor must be in control of the equals method (also, patBinder may be null)
      // equals need not be well-behaved, so don't intersect with pattern's (stabilized) type (unlike MaybeBoundTyped's accumType, where it's required)
      val cond = codegen._equals(patTree, prevBinder)
      val res  = CODE.REF(prevBinder)
      override def toString = "ET"+(prevBinder.name, patTree)
    }

    case class AlternativesTreeMaker(prevBinder: Symbol, var altss: List[List[TreeMaker]], pos: Position) extends TreeMaker with NoNewBinders {
      // don't substitute prevBinder to nextBinder, a set of alternatives does not need to introduce a new binder, simply reuse the previous one

      override private[TreeMakers] def incorporateOuterSubstitution(outerSubst: Substitution): Unit = {
        super.incorporateOuterSubstitution(outerSubst)
        altss = altss map (alts => propagateSubstitution(alts, substitution))
      }

      def chainBefore(next: Tree)(codegenAlt: Casegen): Tree = { import CODE._
        atPos(pos){
          // one alternative may still generate multiple trees (e.g., an extractor call + equality test)
          // (for now,) alternatives may not bind variables (except wildcards), so we don't care about the final substitution built internally by makeTreeMakers
          val combinedAlts = altss map (altTreeMakers =>
            ((casegen: Casegen) => combineExtractors(altTreeMakers :+ TrivialTreeMaker(casegen.one(TRUE_typed)))(casegen))
          )

          val findAltMatcher = codegenAlt.matcher(EmptyTree, NoSymbol, BooleanClass.tpe)(combinedAlts, Some(x => FALSE_typed))
          codegenAlt.ifThenElseZero(findAltMatcher, substitution(next))
        }
      }
    }

    case class GuardTreeMaker(guardTree: Tree) extends TreeMaker with NoNewBinders {
      val pos = guardTree.pos

      def chainBefore(next: Tree)(casegen: Casegen): Tree = casegen.flatMapGuard(substitution(guardTree), next)
      override def toString = "G("+ guardTree +")"
    }

    // combineExtractors changes the current substitution's of the tree makers in `treeMakers`
    // requires propagateSubstitution(treeMakers) has been called
    def combineExtractors(treeMakers: List[TreeMaker])(casegen: Casegen): Tree =
      treeMakers.foldRight(EmptyTree: Tree)((a, b) => a.chainBefore(b)(casegen))


    def removeSubstOnly(makers: List[TreeMaker]) = makers filterNot (_.isInstanceOf[SubstOnlyTreeMaker])

    // a foldLeft to accumulate the localSubstitution left-to-right
    // it drops SubstOnly tree makers, since their only goal in life is to propagate substitutions to the next tree maker, which is fullfilled by propagateSubstitution
    def propagateSubstitution(treeMakers: List[TreeMaker], initial: Substitution): List[TreeMaker] = {
      var accumSubst: Substitution = initial
      treeMakers foreach { maker =>
        maker incorporateOuterSubstitution accumSubst
        accumSubst = maker.substitution
      }
      removeSubstOnly(treeMakers)
    }

    // calls propagateSubstitution on the treemakers
    def combineCases(scrut: Tree, scrutSym: Symbol, casesRaw: List[List[TreeMaker]], pt: Type, owner: Symbol, matchFailGenOverride: Option[Tree => Tree]): Tree = {
      // drops SubstOnlyTreeMakers, since their effect is now contained in the TreeMakers that follow them
      val casesNoSubstOnly = casesRaw map (propagateSubstitution(_, EmptySubstitution))
      combineCasesNoSubstOnly(scrut, scrutSym, casesNoSubstOnly, pt, owner, matchFailGenOverride)
    }

    // pt is the fully defined type of the cases (either pt or the lub of the types of the cases)
    def combineCasesNoSubstOnly(scrut: Tree, scrutSym: Symbol, casesNoSubstOnly: List[List[TreeMaker]], pt: Type, owner: Symbol, matchFailGenOverride: Option[Tree => Tree]): Tree =
      fixerUpper(owner, scrut.pos){
        def matchFailGen = (matchFailGenOverride orElse Some(CODE.MATCHERROR(_: Tree)))
        patmatDebug("combining cases: "+ (casesNoSubstOnly.map(_.mkString(" >> ")).mkString("{", "\n", "}")))

        val (unchecked, requireSwitch) =
          if (settings.XnoPatmatAnalysis.value) (true, false)
          else scrut match {
            case Typed(_, tpt) =>
              (tpt.tpe hasAnnotation UncheckedClass,
               // matches with two or fewer cases need not apply for switchiness (if-then-else will do)
               treeInfo.isSwitchAnnotation(tpt.tpe) && casesNoSubstOnly.lengthCompare(2) > 0)
            case _ =>
              (false, false)
          }

        emitSwitch(scrut, scrutSym, casesNoSubstOnly, pt, matchFailGenOverride, unchecked).getOrElse{
          if (requireSwitch) typer.context.unit.warning(scrut.pos, "could not emit switch for @switch annotated match")

          if (casesNoSubstOnly nonEmpty) {
            // before optimizing, check casesNoSubstOnly for presence of a default case,
            // since DCE will eliminate trivial cases like `case _ =>`, even if they're the last one
            // exhaustivity and reachability must be checked before optimization as well
            // TODO: improve notion of trivial/irrefutable -- a trivial type test before the body still makes for a default case
            //   ("trivial" depends on whether we're emitting a straight match or an exception, or more generally, any supertype of scrutSym.tpe is a no-op)
            //   irrefutability checking should use the approximation framework also used for CSE, unreachability and exhaustivity checking
            val synthCatchAll =
              if (casesNoSubstOnly.nonEmpty && {
                    val nonTrivLast = casesNoSubstOnly.last
                    nonTrivLast.nonEmpty && nonTrivLast.head.isInstanceOf[BodyTreeMaker]
                  }) None
              else matchFailGen

            val (cases, toHoist) = optimizeCases(scrutSym, casesNoSubstOnly, pt, unchecked)

            val matchRes = codegen.matcher(scrut, scrutSym, pt)(cases map combineExtractors, synthCatchAll)

            if (toHoist isEmpty) matchRes else Block(toHoist, matchRes)
          } else {
            codegen.matcher(scrut, scrutSym, pt)(Nil, matchFailGen)
          }
        }
      }

    // TODO: do this during tree construction, but that will require tracking the current owner in treemakers
    // TODO: assign more fine-grained positions
    // fixes symbol nesting, assigns positions
    protected def fixerUpper(origOwner: Symbol, pos: Position) = new Traverser {
      currentOwner = origOwner

      override def traverse(t: Tree) {
        if (t != EmptyTree && t.pos == NoPosition) {
          t.setPos(pos)
        }
        t match {
          case Function(_, _) if t.symbol == NoSymbol =>
            t.symbol = currentOwner.newAnonymousFunctionValue(t.pos)
            patmatDebug("new symbol for "+ (t, t.symbol.ownerChain))
          case Function(_, _) if (t.symbol.owner == NoSymbol) || (t.symbol.owner == origOwner) =>
            patmatDebug("fundef: "+ (t, t.symbol.ownerChain, currentOwner.ownerChain))
            t.symbol.owner = currentOwner
          case d : DefTree if (d.symbol != NoSymbol) && ((d.symbol.owner == NoSymbol) || (d.symbol.owner == origOwner)) => // don't indiscriminately change existing owners! (see e.g., pos/t3440, pos/t3534, pos/unapplyContexts2)
            patmatDebug("def: "+ (d, d.symbol.ownerChain, currentOwner.ownerChain))
            if(d.symbol.moduleClass ne NoSymbol)
              d.symbol.moduleClass.owner = currentOwner

            d.symbol.owner = currentOwner
          // case _ if (t.symbol != NoSymbol) && (t.symbol ne null) =>
          patmatDebug("untouched "+ (t, t.getClass, t.symbol.ownerChain, currentOwner.ownerChain))
          case _ =>
        }
        super.traverse(t)
      }

      // override def apply
      // patmatDebug("before fixerupper: "+ xTree)
      // currentRun.trackerFactory.snapshot()
      // patmatDebug("after fixerupper")
      // currentRun.trackerFactory.snapshot()
    }
  }


///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// generate actual trees
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  trait CodegenCore extends MatchMonadInterface {
    private var ctr = 0
    def freshName(prefix: String) = {ctr += 1; vpmName.counted(prefix, ctr)}

    // assert(owner ne null); assert(owner ne NoSymbol)
    def freshSym(pos: Position, tp: Type = NoType, prefix: String = "x") =
      NoSymbol.newTermSymbol(freshName(prefix), pos, newFlags = SYNTHETIC) setInfo tp

    def newSynthCaseLabel(name: String) =
      NoSymbol.newLabel(freshName(name), NoPosition) setFlag treeInfo.SYNTH_CASE_FLAGS

    // codegen relevant to the structure of the translation (how extractors are combined)
    trait AbsCodegen {
      def matcher(scrut: Tree, scrutSym: Symbol, restpe: Type)(cases: List[Casegen => Tree], matchFailGen: Option[Tree => Tree]): Tree

      // local / context-free
      def _asInstanceOf(b: Symbol, tp: Type): Tree
      def _asInstanceOf(t: Tree, tp: Type): Tree
      def _equals(checker: Tree, binder: Symbol): Tree
      def _isInstanceOf(b: Symbol, tp: Type): Tree
      def and(a: Tree, b: Tree): Tree
      def drop(tgt: Tree)(n: Int): Tree
      def index(tgt: Tree)(i: Int): Tree
      def mkZero(tp: Type): Tree
      def tupleSel(binder: Symbol)(i: Int): Tree
    }

    // structure
    trait Casegen extends AbsCodegen { import CODE._
      def one(res: Tree): Tree

      def flatMap(prev: Tree, b: Symbol, next: Tree): Tree
      def flatMapCond(cond: Tree, res: Tree, nextBinder: Symbol, next: Tree): Tree
      def flatMapGuard(cond: Tree, next: Tree): Tree
      def ifThenElseZero(c: Tree, then: Tree): Tree = IF (c) THEN then ELSE zero
      protected def zero: Tree
    }

    def codegen: AbsCodegen

    def typesConform(tp: Type, pt: Type) = ((tp eq pt) || (tp <:< pt))

    // we use subtyping as a model for implication between instanceof tests
    // i.e., when S <:< T we assume x.isInstanceOf[S] implies x.isInstanceOf[T]
    // unfortunately this is not true in general:
    // SI-6022 expects instanceOfTpImplies(ProductClass.tpe, AnyRefClass.tpe)
    def instanceOfTpImplies(tp: Type, tpImplied: Type) = {
      val tpValue    = tp.typeSymbol.isPrimitiveValueClass

      // pretend we're comparing to Any when we're actually comparing to AnyVal or AnyRef
      // (and the subtype is respectively a value type or not a value type)
      // this allows us to reuse subtyping as a model for implication between instanceOf tests
      // the latter don't see a difference between AnyRef, Object or Any when comparing non-value types -- SI-6022
      val tpImpliedNormalizedToAny =
        if (tpImplied =:= (if (tpValue) AnyValClass.tpe else AnyRefClass.tpe)) AnyClass.tpe
        else tpImplied

      tp <:< tpImpliedNormalizedToAny
    }

    abstract class CommonCodegen extends AbsCodegen { import CODE._
      def fun(arg: Symbol, body: Tree): Tree           = Function(List(ValDef(arg)), body)
      def genTypeApply(tfun: Tree, args: Type*): Tree  = if(args contains NoType) tfun else TypeApply(tfun, args.toList map TypeTree)
      def tupleSel(binder: Symbol)(i: Int): Tree       = (REF(binder) DOT nme.productAccessorName(i)) // make tree that accesses the i'th component of the tuple referenced by binder
      def index(tgt: Tree)(i: Int): Tree               = tgt APPLY (LIT(i))
      def drop(tgt: Tree)(n: Int): Tree                = (tgt DOT vpmName.drop) (LIT(n))
      def _equals(checker: Tree, binder: Symbol): Tree = checker MEMBER_== REF(binder)          // NOTE: checker must be the target of the ==, that's the patmat semantics for ya
      def and(a: Tree, b: Tree): Tree                  = a AND b

      // drop annotations generated by CPS plugin etc, since its annotationchecker rejects T @cps[U] <: Any
      // let's assume for now annotations don't affect casts, drop them there, and bring them back using the outer Typed tree
      private def mkCast(t: Tree, tp: Type) =
        Typed(gen.mkAsInstanceOf(t, tp.withoutAnnotations, true, false), TypeTree() setType tp)

      // the force is needed mainly to deal with the GADT typing hack (we can't detect it otherwise as tp nor pt need contain an abstract type, we're just casting wildly)
      def _asInstanceOf(t: Tree, tp: Type): Tree = if (t.tpe != NoType && t.isTyped && typesConform(t.tpe, tp)) t else mkCast(t, tp)
      def _asInstanceOf(b: Symbol, tp: Type): Tree = if (typesConform(b.info, tp)) REF(b) else mkCast(REF(b), tp)
      def _isInstanceOf(b: Symbol, tp: Type): Tree = gen.mkIsInstanceOf(REF(b), tp.withoutAnnotations, true, false)
      //   if (typesConform(b.info, tpX)) { patmatDebug("warning: emitted spurious isInstanceOf: "+(b, tp)); TRUE }

      // duplicated out of frustration with cast generation
      def mkZero(tp: Type): Tree = {
        tp.typeSymbol match {
          case UnitClass    => Literal(Constant())
          case BooleanClass => Literal(Constant(false))
          case FloatClass   => Literal(Constant(0.0f))
          case DoubleClass  => Literal(Constant(0.0d))
          case ByteClass    => Literal(Constant(0.toByte))
          case ShortClass   => Literal(Constant(0.toShort))
          case IntClass     => Literal(Constant(0))
          case LongClass    => Literal(Constant(0L))
          case CharClass    => Literal(Constant(0.toChar))
          case _            => gen.mkAsInstanceOf(Literal(Constant(null)), tp, any = true, wrapInApply = false) // the magic incantation is true/false here
        }
      }
    }
  }

  trait PureMatchMonadInterface extends MatchMonadInterface {
    val matchStrategy: Tree

    def inMatchMonad(tp: Type): Type = appliedType(oneSig, List(tp)).finalResultType
    def pureType(tp: Type): Type     = appliedType(oneSig, List(tp)).paramTypes.headOption getOrElse NoType // fail gracefully (otherwise we get crashes)
    protected def matchMonadSym      = oneSig.finalResultType.typeSymbol

    import CODE._
    def _match(n: Name): SelectStart = matchStrategy DOT n

    private lazy val oneSig: Type =
      typer.typed(_match(vpmName.one), EXPRmode | POLYmode | TAPPmode | FUNmode, WildcardType).tpe  // TODO: error message
  }

  trait PureCodegen extends CodegenCore with PureMatchMonadInterface {
    def codegen: AbsCodegen = pureCodegen

    object pureCodegen extends CommonCodegen with Casegen { import CODE._
      //// methods in MatchingStrategy (the monad companion) -- used directly in translation
      // __match.runOrElse(`scrut`)(`scrutSym` => `matcher`)
      // TODO: consider catchAll, or virtualized matching will break in exception handlers
      def matcher(scrut: Tree, scrutSym: Symbol, restpe: Type)(cases: List[Casegen => Tree], matchFailGen: Option[Tree => Tree]): Tree =
        _match(vpmName.runOrElse) APPLY (scrut) APPLY (fun(scrutSym, cases map (f => f(this)) reduceLeft typedOrElse))

      // __match.one(`res`)
      def one(res: Tree): Tree = (_match(vpmName.one)) (res)
      // __match.zero
      protected def zero: Tree = _match(vpmName.zero)
      // __match.guard(`c`, `then`)
      def guard(c: Tree, then: Tree): Tree = _match(vpmName.guard) APPLY (c, then)

      //// methods in the monad instance -- used directly in translation
      // `prev`.flatMap(`b` => `next`)
      def flatMap(prev: Tree, b: Symbol, next: Tree): Tree = (prev DOT vpmName.flatMap)(fun(b, next))
      // `thisCase`.orElse(`elseCase`)
      def typedOrElse(thisCase: Tree, elseCase: Tree): Tree = (thisCase DOT vpmName.orElse) APPLY (elseCase)
      //  __match.guard(`cond`, `res`).flatMap(`nextBinder` => `next`)
      def flatMapCond(cond: Tree, res: Tree, nextBinder: Symbol, next: Tree): Tree = flatMap(guard(cond, res), nextBinder, next)
      //  __match.guard(`guardTree`, ()).flatMap((_: P[Unit]) => `next`)
      def flatMapGuard(guardTree: Tree, next: Tree): Tree = flatMapCond(guardTree, CODE.UNIT, freshSym(guardTree.pos, pureType(UnitClass.tpe)), next)
    }
  }


///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// OPTIMIZATIONS
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// decisions, decisions
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

  trait TreeMakerApproximation extends TreeMakers with Prettification{ self: CodegenCore =>
    object Test {
      var currId = 0
    }
    case class Test(cond: Cond, treeMaker: TreeMaker) {
      // private val reusedBy = new scala.collection.mutable.HashSet[Test]
      var reuses: Option[Test] = None
      def registerReuseBy(later: Test): Unit = {
        assert(later.reuses.isEmpty, later.reuses)
        // reusedBy += later
        later.reuses = Some(this)
      }

      val id = { Test.currId += 1; Test.currId}
      override def toString =
        "T"+ id + "C("+ cond +")"  //+ (reuses map ("== T"+_.id) getOrElse (if(reusedBy.isEmpty) treeMaker else reusedBy mkString (treeMaker+ " -->(", ", ",")")))
    }

    // TODO: remove Cond, replace by Prop from Logic
    object Cond {
      var currId = 0
    }

    abstract class Cond {
      val id = { Cond.currId += 1; Cond.currId}
    }

    case object TrueCond extends Cond  {override def toString = "T"}
    case object FalseCond extends Cond {override def toString = "F"}

    case class AndCond(a: Cond, b: Cond) extends Cond {override def toString = a +"/\\"+ b}
    case class OrCond(a: Cond, b: Cond)  extends Cond {override def toString = "("+a+") \\/ ("+ b +")"}

    object EqualityCond {
      private val uniques = new scala.collection.mutable.HashMap[(Tree, Tree), EqualityCond]
      def apply(testedPath: Tree, rhs: Tree): EqualityCond = uniques getOrElseUpdate((testedPath, rhs), new EqualityCond(testedPath, rhs))
      def unapply(c: EqualityCond) = Some((c.testedPath, c.rhs))
    }
    class EqualityCond(val testedPath: Tree, val rhs: Tree) extends Cond {
      override def toString = testedPath +" == "+ rhs +"#"+ id
    }

    object NonNullCond {
      private val uniques = new scala.collection.mutable.HashMap[Tree, NonNullCond]
      def apply(testedPath: Tree): NonNullCond = uniques getOrElseUpdate(testedPath, new NonNullCond(testedPath))
      def unapply(c: NonNullCond) = Some(c.testedPath)
    }
    class NonNullCond(val testedPath: Tree) extends Cond {
      override def toString = testedPath +" ne null " +"#"+ id
    }

    object TypeCond {
      private val uniques = new scala.collection.mutable.HashMap[(Tree, Type), TypeCond]
      def apply(testedPath: Tree, pt: Type): TypeCond = uniques getOrElseUpdate((testedPath, pt), new TypeCond(testedPath, pt))
      def unapply(c: TypeCond) = Some((c.testedPath, c.pt))
    }
    class TypeCond(val testedPath: Tree, val pt: Type) extends Cond {
      override def toString = testedPath +" : "+ pt +"#"+ id
    }

//    class OuterEqCond(val testedPath: Tree, val expectedType: Type) extends Cond {
//      val expectedOuter = expectedTp.prefix match {
//        case ThisType(clazz)  => THIS(clazz)
//        case pre              => REF(pre.prefix, pre.termSymbol)
//      }
//
//      // ExplicitOuter replaces `Select(q, outerSym) OBJ_EQ expectedPrefix` by `Select(q, outerAccessor(outerSym.owner)) OBJ_EQ expectedPrefix`
//      // if there's an outer accessor, otherwise the condition becomes `true` -- TODO: can we improve needsOuterTest so there's always an outerAccessor?
//      val outer = expectedTp.typeSymbol.newMethod(vpmName.outer) setInfo expectedTp.prefix setFlag SYNTHETIC
//
//      (Select(codegen._asInstanceOf(testedBinder, expectedTp), outer)) OBJ_EQ expectedOuter
//    }

    // TODO: improve, e.g., for constants
    def sameValue(a: Tree, b: Tree): Boolean = (a eq b) || ((a, b) match {
      case (_ : Ident, _ : Ident) => a.symbol eq b.symbol
      case _                      => false
    })

    object IrrefutableExtractorTreeMaker {
      // will an extractor with unapply method of methodtype `tp` always succeed?
      // note: this assumes the other side-conditions implied by the extractor are met
      // (argument of the right type, length check succeeds for unapplySeq,...)
      def irrefutableExtractorType(tp: Type): Boolean = tp.resultType.dealias match {
        case TypeRef(_, SomeClass, _) => true
        // probably not useful since this type won't be inferred nor can it be written down (yet)
        case ConstantType(Constant(true)) => true
        case _ => false
      }

      def unapply(xtm: ExtractorTreeMaker): Option[(Tree, Symbol)] = xtm match {
        case ExtractorTreeMaker(extractor, None, nextBinder) if irrefutableExtractorType(extractor.tpe) =>
          Some((extractor, nextBinder))
        case _ =>
          None
      }
    }

    // returns (tree, tests), where `tree` will be used to refer to `root` in `tests`
    class TreeMakersToConds(val root: Symbol) {
      // a variable in this set should never be replaced by a tree that "does not consist of a selection on a variable in this set" (intuitively)
      private val pointsToBound = scala.collection.mutable.HashSet(root)
      private val trees         = scala.collection.mutable.HashSet.empty[Tree]

      // the substitution that renames variables to variables in pointsToBound
      private var normalize: Substitution  = EmptySubstitution
      private var substitutionComputed = false

      // replaces a variable (in pointsToBound) by a selection on another variable in pointsToBound
      // in the end, instead of having x1, x1.hd, x2, x2.hd, ... flying around,
      // we want something like x1, x1.hd, x1.hd.tl, x1.hd.tl.hd, so that we can easily recognize when
      // we're testing the same variable
      // TODO check:
      //   pointsToBound -- accumSubst.from == Set(root) && (accumSubst.from.toSet -- pointsToBound) isEmpty
      private var accumSubst: Substitution = EmptySubstitution

      // hashconsing trees (modulo value-equality)
      def unique(t: Tree, tpOverride: Type = NoType): Tree =
        trees find (a => a.correspondsStructure(t)(sameValue)) match {
          case Some(orig) =>
            // patmatDebug("unique: "+ (t eq orig, orig))
            orig
          case _ =>
            trees += t
            if (tpOverride != NoType) t setType tpOverride
            else t
        }

      def uniqueTp(tp: Type): Type = tp match {
        // typerefs etc are already hashconsed
        case _ : UniqueType                      => tp
        case tp@RefinedType(parents, EmptyScope) => tp.memo(tp: Type)(identity) // TODO: does this help?
        case _                                   => tp
      }

      // produce the unique tree used to refer to this binder
      // the type of the binder passed to the first invocation
      // determines the type of the tree that'll be returned for that binder as of then
      final def binderToUniqueTree(b: Symbol) =
        unique(accumSubst(normalize(CODE.REF(b))), b.tpe)

      def /\(conds: Iterable[Cond]) = if (conds.isEmpty) TrueCond else conds.reduceLeft(AndCond(_, _))
      def \/(conds: Iterable[Cond]) = if (conds.isEmpty) FalseCond else conds.reduceLeft(OrCond(_, _))

      // note that the sequencing of operations is important: must visit in same order as match execution
      // binderToUniqueTree uses the type of the first symbol that was encountered as the type for all future binders
      abstract class TreeMakerToCond extends (TreeMaker => Cond) {
        // requires(if (!substitutionComputed))
        def updateSubstitution(subst: Substitution): Unit = {
          // find part of substitution that replaces bound symbols by new symbols, and reverse that part
          // so that we don't introduce new aliases for existing symbols, thus keeping the set of bound symbols minimal
          val (boundSubst, unboundSubst) = (subst.from zip subst.to) partition {
            case (f, t) =>
              t.isInstanceOf[Ident] && (t.symbol ne NoSymbol) && pointsToBound(f)
          }
          val (boundFrom, boundTo) = boundSubst.unzip
          val (unboundFrom, unboundTo) = unboundSubst.unzip

          // reverse substitution that would otherwise replace a variable we already encountered by a new variable
          // NOTE: this forgets the more precise type we have for these later variables, but that's probably okay
          normalize >>= Substitution(boundTo map (_.symbol), boundFrom map (CODE.REF(_)))
          // patmatDebug ("normalize subst: "+ normalize)

          val okSubst = Substitution(unboundFrom, unboundTo map (normalize(_))) // it's important substitution does not duplicate trees here -- it helps to keep hash consing simple, anyway
          pointsToBound ++= ((okSubst.from, okSubst.to).zipped filter { (f, t) => pointsToBound exists (sym => t.exists(_.symbol == sym)) })._1
          // patmatDebug("pointsToBound: "+ pointsToBound)

          accumSubst >>= okSubst
          // patmatDebug("accumSubst: "+ accumSubst)
        }

        def handleUnknown(tm: TreeMaker): Cond

        /** apply itself must render a faithful representation of the TreeMaker
         *
         * Concretely, TrueCond must only be used to represent a TreeMaker that is sure to match and that does not do any computation at all
         * e.g., doCSE relies on apply itself being sound in this sense (since it drops TreeMakers that are approximated to TrueCond -- SI-6077)
         *
         * handleUnknown may be customized by the caller to approximate further
         *
         * TODO: don't ignore outer-checks
         */
        def apply(tm: TreeMaker): Cond = {
          if (!substitutionComputed) updateSubstitution(tm.subPatternsAsSubstitution)

          tm match {
            case ttm@TypeTestTreeMaker(prevBinder, testedBinder, pt, _)   =>
              object condStrategy extends TypeTestTreeMaker.TypeTestCondStrategy {
                type Result                                           = Cond
                def and(a: Result, b: Result)                         = AndCond(a, b)
                def outerTest(testedBinder: Symbol, expectedTp: Type) = TrueCond // TODO OuterEqCond(testedBinder, expectedType)
                def typeTest(b: Symbol, pt: Type) = { // a type test implies the tested path is non-null (null.isInstanceOf[T] is false for all T)
                  val p = binderToUniqueTree(b);                        AndCond(NonNullCond(p), TypeCond(p, uniqueTp(pt)))
                }
                def nonNullTest(testedBinder: Symbol)                 = NonNullCond(binderToUniqueTree(testedBinder))
                def equalsTest(pat: Tree, testedBinder: Symbol)       = EqualityCond(binderToUniqueTree(testedBinder), unique(pat))
                def eqTest(pat: Tree, testedBinder: Symbol)           = EqualityCond(binderToUniqueTree(testedBinder), unique(pat)) // TODO: eq, not ==
              }
              ttm.renderCondition(condStrategy)
            case EqualityTestTreeMaker(prevBinder, patTree, _)        => EqualityCond(binderToUniqueTree(prevBinder), unique(patTree))
            case AlternativesTreeMaker(_, altss, _)                   => \/(altss map (alts => /\(alts map this)))
            case ProductExtractorTreeMaker(testedBinder, None)        => NonNullCond(binderToUniqueTree(testedBinder))
            case SubstOnlyTreeMaker(_, _)                             => TrueCond
            case GuardTreeMaker(guard) =>
              guard.tpe match {
                case ConstantType(Constant(true))  => TrueCond
                case ConstantType(Constant(false)) => FalseCond
                case _                             => handleUnknown(tm)
              }
            case ExtractorTreeMaker(_, _, _) |
                 ProductExtractorTreeMaker(_, _) |
                 BodyTreeMaker(_, _)               => handleUnknown(tm)
          }
        }
      }


      private val irrefutableExtractor: PartialFunction[TreeMaker, Cond] = {
        // the extra condition is None, the extractor's result indicates it always succeeds,
        // (the potential type-test for the argument is represented by a separate TypeTestTreeMaker)
        case IrrefutableExtractorTreeMaker(_, _) => TrueCond
      }

      // special-case: interpret pattern `List()` as `Nil`
      // TODO: make it more general List(1, 2) => 1 :: 2 :: Nil  -- not sure this is a good idea...
      private val rewriteListPattern: PartialFunction[TreeMaker, Cond] = {
        case p @ ExtractorTreeMaker(_, _, testedBinder)
          if testedBinder.tpe.typeSymbol == ListClass && p.checkedLength == Some(0) =>
            EqualityCond(binderToUniqueTree(p.prevBinder), unique(Ident(NilModule) setType NilModule.tpe))
      }
      val fullRewrite      = (irrefutableExtractor orElse rewriteListPattern)
      val refutableRewrite = irrefutableExtractor

      @inline def onUnknown(handler: TreeMaker => Cond) = new TreeMakerToCond {
        def handleUnknown(tm: TreeMaker) = handler(tm)
      }

      // used for CSE -- rewrite all unknowns to False (the most conserative option)
      object conservative extends TreeMakerToCond {
        def handleUnknown(tm: TreeMaker) = FalseCond
      }

      final def approximateMatch(cases: List[List[TreeMaker]], treeMakerToCond: TreeMakerToCond = conservative) ={
        val testss = cases.map { _ map (tm => Test(treeMakerToCond(tm), tm)) }
        substitutionComputed = true // a second call to approximateMatch should not re-compute the substitution (would be wrong)
        testss
      }
    }

    def approximateMatchConservative(root: Symbol, cases: List[List[TreeMaker]]): List[List[Test]] =
      (new TreeMakersToConds(root)).approximateMatch(cases)

    def showTreeMakers(cases: List[List[TreeMaker]]) = {
      patmatDebug("treeMakers:")
      patmatDebug(alignAcrossRows(cases, ">>"))
    }

    def showTests(testss: List[List[Test]]) = {
      patmatDebug("tests: ")
      patmatDebug(alignAcrossRows(testss, "&"))
    }
  }

  trait Prettification {
    private def max(xs: Seq[Int]) = if (xs isEmpty) 0 else xs max

    def alignedColumns(cols: Seq[AnyRef]): Seq[String] = {
      def toString(x: AnyRef) = if (x eq null) "" else x.toString
      if (cols.isEmpty || cols.tails.isEmpty) cols map toString
      else {
        val (colStrs, colLens) = cols map {c => val s = toString(c); (s, s.length)} unzip
        val maxLen = max(colLens)
        val avgLen = colLens.sum/colLens.length
        val goalLen = maxLen min avgLen*2
        def pad(s: String) = {
          val toAdd = ((goalLen - s.length) max 0) + 2
          (" " * (toAdd/2)) + s + (" " * (toAdd/2 + (toAdd%2)))
        }
        cols map (x => pad(toString(x)))
      }
    }
    def alignAcrossRows(xss: List[List[AnyRef]], sep: String, lineSep: String = "\n"): String = {
      val maxLen = max(xss map (_.length))
      val padded = xss map (xs => xs ++ List.fill(maxLen - xs.length)(null))
      padded.transpose.map(alignedColumns).transpose map (_.mkString(sep)) mkString(lineSep)
    }
  }

  // http://www.cis.upenn.edu/~cis510/tcl/chap3.pdf
  // http://users.encs.concordia.ca/~ta_ahmed/ms_thesis.pdf
  trait Logic extends Prettification {
    class Prop
    case class Eq(p: Var, q: Const) extends Prop

    type Const

    type TypeConst <: Const
    def TypeConst: TypeConstExtractor
    trait TypeConstExtractor {
      def apply(tp: Type): Const
    }

    def NullConst: Const

    type Var <: AbsVar

    trait AbsVar {
      // indicate we may later require a prop for V = C
      def registerEquality(c: Const): Unit

      // call this to indicate null is part of the domain
      def registerNull(): Unit

      // can this variable be null?
      def mayBeNull: Boolean

      // compute the domain and return it (call registerNull first!)
      def domainSyms: Option[Set[Sym]]

      // the symbol for this variable being equal to its statically known type
      // (only available if registerEquality has been called for that type before)
      def symForStaticTp: Option[Sym]

      // for this var, call it V, turn V = C into the equivalent proposition in boolean logic
      // registerEquality(c) must have been called prior to this call
      // in fact, all equalities relevant to this variable must have been registered
      def propForEqualsTo(c: Const): Prop

      // populated by registerEquality
      // once implications has been called, must not call registerEquality anymore
      def implications: List[(Sym, List[Sym], List[Sym])]
    }

    // would be nice to statically check whether a prop is equational or pure,
    // but that requires typing relations like And(x: Tx, y: Ty) : (if(Tx == PureProp && Ty == PureProp) PureProp else Prop)
    case class And(a: Prop, b: Prop) extends Prop
    case class Or(a: Prop, b: Prop) extends Prop
    case class Not(a: Prop) extends Prop

    case object True extends Prop
    case object False extends Prop

    // symbols are propositions
    case class Sym(val variable: Var, val const: Const) extends Prop {
      private[this] val id = nextSymId
      override def toString = variable +"="+ const +"#"+ id
    }
    private def nextSymId = {_symId += 1; _symId}; private var _symId = 0


    def /\(props: Iterable[Prop]) = if (props.isEmpty) True else props.reduceLeft(And(_, _))
    def \/(props: Iterable[Prop]) = if (props.isEmpty) False else props.reduceLeft(Or(_, _))


    trait PropTraverser {
      def apply(x: Prop): Unit = x match {
        case And(a, b) => apply(a); apply(b)
        case Or(a, b) => apply(a); apply(b)
        case Not(a) => apply(a)
        case Eq(a, b) => applyVar(a); applyConst(b)
        case _ =>
      }
      def applyVar(x: Var): Unit = {}
      def applyConst(x: Const): Unit = {}
    }

    def gatherVariables(p: Prop): Set[Var] = {
      val vars = new HashSet[Var]()
      (new PropTraverser {
        override def applyVar(v: Var) = vars += v
      })(p)
      vars.toSet
    }

    trait PropMap {
      def apply(x: Prop): Prop = x match { // TODO: mapConserve
        case And(a, b) => And(apply(a), apply(b))
        case Or(a, b) => Or(apply(a), apply(b))
        case Not(a) => Not(apply(a))
        case p => p
      }
    }

    // convert finite domain propositional logic with subtyping to pure boolean propositional logic
    // a type test or a value equality test are modelled as a variable being equal to some constant
    // a variable V may be assigned multiple constants, as long as they do not contradict each other
    // according to subtyping, e.g., V = ConstantType(1) and V = Int are valid assignments
    // we rewrite V = C to a fresh boolean symbol, and model what we know about the variable's domain
    // in a prelude (the equality axioms)
    //   1. a variable with a closed domain (of a sealed type) must be assigned one of the instantiatable types in its domain
    //   2. for each variable V in props, and each constant C it is compared to,
    //      compute which assignments imply each other (as in the example above: V = 1 implies V = Int)
    //      and which assignments are mutually exclusive (V = String implies -(V = Int))
    //
    // note that this is a conservative approximation: V = Constant(A) and V = Constant(B)
    // are considered mutually exclusive (and thus both cases are considered reachable in {case A => case B =>}),
    // even though A may be equal to B   (and thus the second case is not "dynamically reachable")
    //
    // TODO: for V1 representing x1 and V2 standing for x1.head, encode that
    //       V1 = Nil implies -(V2 = Ci) for all Ci in V2's domain (i.e., it is unassignable)
    def removeVarEq(props: List[Prop], modelNull: Boolean = false): (Prop, List[Prop]) = {
      val start = if (Statistics.canEnable) Statistics.startTimer(patmatAnaVarEq) else null

      val vars = new scala.collection.mutable.HashSet[Var]

      object gatherEqualities extends PropTraverser {
        override def apply(p: Prop) = p match {
          case Eq(v, c) =>
            vars += v
            v.registerEquality(c)
          case _ => super.apply(p)
        }
      }

      object rewriteEqualsToProp extends PropMap {
        override def apply(p: Prop) = p match {
          case Eq(v, c) => v.propForEqualsTo(c)
          case _ => super.apply(p)
        }
      }

      props foreach gatherEqualities.apply
      if (modelNull) vars foreach (_.registerNull)

      val pure = props map rewriteEqualsToProp.apply

      var eqAxioms: Prop = True
      def addAxiom(p: Prop) = eqAxioms = And(eqAxioms, p)

      patmatDebug("removeVarEq vars: "+ vars)
      vars.foreach { v =>
        // if v.domainSyms.isEmpty, we must consider the domain to be infinite
        // otherwise, since the domain fully partitions the type of the value,
        // exactly one of the types (and whatever it implies, imposed separately) must be chosen
        // consider X ::= A | B | C, and A => B
        // coverage is formulated as: A \/ B \/ C and the implications are
        v.domainSyms foreach { dsyms => addAxiom(\/(dsyms)) }

        // when this variable cannot be null the equality corresponding to the type test `(x: T)`, where T is x's static type,
        // is always true; when the variable may be null we use the implication `(x != null) => (x: T)` for the axiom
        v.symForStaticTp foreach { symForStaticTp =>
          if (v.mayBeNull) addAxiom(Or(v.propForEqualsTo(NullConst), symForStaticTp))
          else addAxiom(symForStaticTp)
        }

        v.implications foreach { case (sym, implied, excluded) =>
          // when sym is true, what must hold...
          implied  foreach (impliedSym  => addAxiom(Or(Not(sym), impliedSym)))
          // ... and what must not?
          excluded foreach (excludedSym => addAxiom(Or(Not(sym), Not(excludedSym))))
        }
      }

      patmatDebug("eqAxioms:\n"+ cnfString(eqFreePropToSolvable(eqAxioms)))
      patmatDebug("pure:"+ pure.map(p => cnfString(eqFreePropToSolvable(p))).mkString("\n"))

      if (Statistics.canEnable) Statistics.stopTimer(patmatAnaVarEq, start)

      (eqAxioms, pure)
    }


    type Formula
    def andFormula(a: Formula, b: Formula): Formula


    // may throw an AnalysisBudget.Exception
    def propToSolvable(p: Prop): Formula = {
      val (eqAxioms, pure :: Nil) = removeVarEq(List(p), modelNull = false)
      eqFreePropToSolvable(And(eqAxioms, pure))
    }

    // may throw an AnalysisBudget.Exception
    def eqFreePropToSolvable(p: Prop): Formula
    def cnfString(f: Formula): String

    type Model = Map[Sym, Boolean]
    val EmptyModel: Model
    val NoModel: Model

    def findModelFor(f: Formula): Model
    def findAllModelsFor(f: Formula): List[Model]
  }

  trait CNF extends Logic {
    // CNF: a formula is a conjunction of clauses
    type Formula = Array[Clause]
    /** Override Array creation for efficiency (to not go through reflection). */
    private implicit val clauseTag: scala.reflect.ClassTag[Clause] = new scala.reflect.ClassTag[Clause] {
      def runtimeClass: java.lang.Class[Clause] = classOf[Clause]
      final override def newArray(len: Int): Array[Clause] = new Array[Clause](len)
    }
    def formula(c: Clause*): Formula = c.toArray
    def andFormula(a: Formula, b: Formula): Formula = a ++ b

    // a clause is a disjunction of distinct literals
    type Clause = Set[Lit]
    def clause(l: Lit*): Clause = l.toSet
    private def merge(a: Clause, b: Clause) = a ++ b

    type Lit
    def Lit(sym: Sym, pos: Boolean = true): Lit

    // throws an AnalysisBudget.Exception when the prop results in a CNF that's too big
    // TODO: be smarter/more efficient about this (http://lara.epfl.ch/w/sav09:tseitin_s_encoding)
    def eqFreePropToSolvable(p: Prop): Formula = {
      def negationNormalFormNot(p: Prop, budget: Int = AnalysisBudget.max): Prop =
        if (budget <= 0) throw AnalysisBudget.exceeded
        else p match {
          case And(a, b) =>  Or(negationNormalFormNot(a, budget - 1), negationNormalFormNot(b, budget - 1))
          case Or(a, b)  => And(negationNormalFormNot(a, budget - 1), negationNormalFormNot(b, budget - 1))
          case Not(p)    => negationNormalForm(p, budget - 1)
          case True      => False
          case False     => True
          case s: Sym    => Not(s)
        }

      def negationNormalForm(p: Prop, budget: Int = AnalysisBudget.max): Prop =
        if (budget <= 0) throw AnalysisBudget.exceeded
        else p match {
          case And(a, b)      => And(negationNormalForm(a, budget - 1), negationNormalForm(b, budget - 1))
          case Or(a, b)       =>  Or(negationNormalForm(a, budget - 1), negationNormalForm(b, budget - 1))
          case Not(negated)   => negationNormalFormNot(negated, budget - 1)
          case True
             | False
             | (_ : Sym)      => p
        }

      val TrueF          = formula()
      val FalseF         = formula(clause())
      def lit(s: Sym)    = formula(clause(Lit(s)))
      def negLit(s: Sym) = formula(clause(Lit(s, false)))

      def conjunctiveNormalForm(p: Prop, budget: Int = AnalysisBudget.max): Formula = {
        def distribute(a: Formula, b: Formula, budget: Int): Formula =
          if (budget <= 0) throw AnalysisBudget.exceeded
          else
            (a, b) match {
              // true \/ _ = true
              // _ \/ true = true
              case (trueA, trueB) if trueA.size == 0 || trueB.size == 0 => TrueF
              // lit \/ lit
              case (a, b) if a.size == 1 && b.size == 1 => formula(merge(a(0), b(0)))
              // (c1 /\ ... /\ cn) \/ d = ((c1 \/ d) /\ ... /\ (cn \/ d))
              // d \/ (c1 /\ ... /\ cn) = ((d \/ c1) /\ ... /\ (d \/ cn))
              case (cs, ds) =>
                val (big, small) = if (cs.size > ds.size) (cs, ds) else (ds, cs)
                big flatMap (c => distribute(formula(c), small, budget - (big.size*small.size)))
            }

        if (budget <= 0) throw AnalysisBudget.exceeded

        p match {
          case True        => TrueF
          case False       => FalseF
          case s: Sym      => lit(s)
          case Not(s: Sym) => negLit(s)
          case And(a, b)   =>
            val cnfA = conjunctiveNormalForm(a, budget - 1)
            val cnfB = conjunctiveNormalForm(b, budget - cnfA.size)
            cnfA ++ cnfB
          case Or(a, b)    =>
            val cnfA = conjunctiveNormalForm(a)
            val cnfB = conjunctiveNormalForm(b)
            distribute(cnfA, cnfB, budget - (cnfA.size + cnfB.size))
        }
      }

      val start = if (Statistics.canEnable) Statistics.startTimer(patmatCNF) else null
      val res   = conjunctiveNormalForm(negationNormalForm(p))

      if (Statistics.canEnable) Statistics.stopTimer(patmatCNF, start)

      //
      if (Statistics.canEnable) patmatCNFSizes(res.size).value += 1

//      patmatDebug("cnf for\n"+ p +"\nis:\n"+cnfString(res))
      res
    }

  }

  trait DPLLSolver extends CNF {
    // a literal is a (possibly negated) variable
    def Lit(sym: Sym, pos: Boolean = true) = new Lit(sym, pos)
    class Lit(val sym: Sym, val pos: Boolean) {
      override def toString = if (!pos) "-"+ sym.toString else sym.toString
      override def equals(o: Any) = o match {
        case o: Lit => (o.sym == sym) && (o.pos == pos)
        case _ => false
      }
      override def hashCode = sym.hashCode + pos.hashCode

      def unary_- = Lit(sym, !pos)
    }

    def cnfString(f: Formula) = alignAcrossRows(f map (_.toList) toList, "\\/", " /\\\n")

    // adapted from http://lara.epfl.ch/w/sav10:simple_sat_solver (original by Hossein Hojjat)
    val EmptyModel = Map.empty[Sym, Boolean]
    val NoModel: Model = null

    // returns all solutions, if any (TODO: better infinite recursion backstop -- detect fixpoint??)
    def findAllModelsFor(f: Formula): List[Model] = {
      val vars: Set[Sym] = f.flatMap(_ collect {case l: Lit => l.sym}).toSet
      // patmatDebug("vars "+ vars)
      // the negation of a model -(S1=True/False /\ ... /\ SN=True/False) = clause(S1=False/True, ...., SN=False/True)
      def negateModel(m: Model) = clause(m.toSeq.map{ case (sym, pos) => Lit(sym, !pos) } : _*)

      def findAllModels(f: Formula, models: List[Model], recursionDepthAllowed: Int = 10): List[Model]=
        if (recursionDepthAllowed == 0) models
        else {
          patmatDebug("find all models for\n"+ cnfString(f))
          val model = findModelFor(f)
          // if we found a solution, conjunct the formula with the model's negation and recurse
          if (model ne NoModel) {
            val unassigned = (vars -- model.keySet).toList
            patmatDebug("unassigned "+ unassigned +" in "+ model)
            def force(lit: Lit) = {
              val model = withLit(findModelFor(dropUnit(f, lit)), lit)
              if (model ne NoModel) List(model)
              else Nil
            }
            val forced = unassigned flatMap { s =>
              force(Lit(s, true)) ++ force(Lit(s, false))
            }
            patmatDebug("forced "+ forced)
            val negated = negateModel(model)
            findAllModels(f :+ negated, model :: (forced ++ models), recursionDepthAllowed - 1)
          }
          else models
        }

      findAllModels(f, Nil)
    }

    private def withLit(res: Model, l: Lit): Model = if (res eq NoModel) NoModel else res + (l.sym -> l.pos)
    private def dropUnit(f: Formula, unitLit: Lit) = {
      val negated = -unitLit
      // drop entire clauses that are trivially true
      // (i.e., disjunctions that contain the literal we're making true in the returned model),
      // and simplify clauses by dropping the negation of the literal we're making true
      // (since False \/ X == X)
      f.filterNot(_.contains(unitLit)).map(_ - negated)
    }

    def findModelFor(f: Formula): Model = {
      @inline def orElse(a: Model, b: => Model) = if (a ne NoModel) a else b

      patmatDebug("DPLL\n"+ cnfString(f))

      val start = if (Statistics.canEnable) Statistics.startTimer(patmatAnaDPLL) else null

      val satisfiableWithModel: Model =
        if (f isEmpty) EmptyModel
        else if(f exists (_.isEmpty)) NoModel
        else f.find(_.size == 1) match {
          case Some(unitClause) =>
            val unitLit = unitClause.head
            // patmatDebug("unit: "+ unitLit)
            withLit(findModelFor(dropUnit(f, unitLit)), unitLit)
          case _ =>
            // partition symbols according to whether they appear in positive and/or negative literals
            val pos = new HashSet[Sym]()
            val neg = new HashSet[Sym]()
            f.foreach{_.foreach{ lit =>
              if (lit.pos) pos += lit.sym else neg += lit.sym
            }}
            // appearing in both positive and negative
            val impures = pos intersect neg
            // appearing only in either positive/negative positions
            val pures = (pos ++ neg) -- impures

            if (pures nonEmpty) {
              val pureSym = pures.head
              // turn it back into a literal
              // (since equality on literals is in terms of equality
              //  of the underlying symbol and its positivity, simply construct a new Lit)
              val pureLit = Lit(pureSym, pos(pureSym))
              // patmatDebug("pure: "+ pureLit +" pures: "+ pures +" impures: "+ impures)
              val simplified = f.filterNot(_.contains(pureLit))
              withLit(findModelFor(simplified), pureLit)
            } else {
              val split = f.head.head
              // patmatDebug("split: "+ split)
              orElse(findModelFor(f :+ clause(split)), findModelFor(f :+ clause(-split)))
            }
        }

        if (Statistics.canEnable) Statistics.stopTimer(patmatAnaDPLL, start)

        satisfiableWithModel
    }
  }


  /**
   * Represent a match as a formula in propositional logic that encodes whether the match matches (abstractly: we only consider types)
   *
   */
  trait SymbolicMatchAnalysis extends TreeMakerApproximation with Logic { self: CodegenCore =>
    def prepareNewAnalysis() = { Var.resetUniques(); Const.resetUniques() }

    object Var {
      private var _nextId = 0
      def nextId = {_nextId += 1; _nextId}

      def resetUniques() = {_nextId = 0; uniques.clear()}
      private val uniques = new scala.collection.mutable.HashMap[Tree, Var]
      def apply(x: Tree): Var = uniques getOrElseUpdate(x, new Var(x, x.tpe))
    }
    class Var(val path: Tree, staticTp: Type) extends AbsVar {
      private[this] val id: Int = Var.nextId

      // private[this] var canModify: Option[Array[StackTraceElement]] = None
      private[this] def ensureCanModify = {} //if (canModify.nonEmpty) patmatDebug("BUG!"+ this +" modified after having been observed: "+ canModify.get.mkString("\n"))

      private[this] def observed = {} //canModify = Some(Thread.currentThread.getStackTrace)

      // don't access until all potential equalities have been registered using registerEquality
      private[this] val symForEqualsTo = new scala.collection.mutable.HashMap[Const, Sym]

      // when looking at the domain, we only care about types we can check at run time
      val staticTpCheckable: Type = checkableType(staticTp)

      private[this] var _mayBeNull = false
      def registerNull(): Unit = { ensureCanModify; if (NullTp <:< staticTpCheckable) _mayBeNull = true }
      def mayBeNull: Boolean = _mayBeNull

      // case None => domain is unknown,
      // case Some(List(tps: _*)) => domain is exactly tps
      // we enumerate the subtypes of the full type, as that allows us to filter out more types statically,
      // once we go to run-time checks (on Const's), convert them to checkable types
      // TODO: there seems to be bug for singleton domains (variable does not show up in model)
      lazy val domain: Option[Set[Const]] = {
        val subConsts = enumerateSubtypes(staticTp).map{ tps =>
          tps.toSet[Type].map{ tp =>
            val domainC = TypeConst(tp)
            registerEquality(domainC)
            domainC
          }
        }

        val allConsts =
          if (mayBeNull) {
            registerEquality(NullConst)
            subConsts map (_ + NullConst)
          } else
            subConsts

        observed; allConsts
      }

      // populate equalitySyms
      // don't care about the result, but want only one fresh symbol per distinct constant c
      def registerEquality(c: Const): Unit = {ensureCanModify; symForEqualsTo getOrElseUpdate(c, Sym(this, c))}

      // return the symbol that represents this variable being equal to the constant `c`, if it exists, otherwise False (for robustness)
      // (registerEquality(c) must have been called prior, either when constructing the domain or from outside)
      def propForEqualsTo(c: Const): Prop = {observed; symForEqualsTo.getOrElse(c, False)}

      // [implementation NOTE: don't access until all potential equalities have been registered using registerEquality]p
      /** the information needed to construct the boolean proposition that encods the equality proposition (V = C)
       *
       * that models a type test pattern `_: C` or constant pattern `C`, where the type test gives rise to a TypeConst C,
       * and the constant pattern yields a ValueConst C
       *
       * for exhaustivity, we really only need implication (e.g., V = 1 implies that V = 1 /\ V = Int, if both tests occur in the match,
       * and thus in this variable's equality symbols), but reachability also requires us to model things like V = 1 precluding V = "1"
       */
      lazy val implications = {
        /** when we know V = C, which other equalities must hold
         *
         * in general, equality to some type implies equality to its supertypes
         * (this multi-valued kind of equality is necessary for unreachability)
         * note that we use subtyping as a model for implication between instanceof tests
         * i.e., when S <:< T we assume x.isInstanceOf[S] implies x.isInstanceOf[T]
         * unfortunately this is not true in general (see e.g. SI-6022)
         */
        def implies(lower: Const, upper: Const): Boolean =
          // values and null
            lower == upper ||
          // type implication
            (lower != NullConst && !upper.isValue &&
             instanceOfTpImplies(if (lower.isValue) lower.wideTp else lower.tp, upper.tp))

          // if(r) patmatDebug("implies    : "+(lower, lower.tp, upper, upper.tp))
          // else  patmatDebug("NOT implies: "+(lower, upper))


        /** does V = C preclude V having value `other`?
         (1) V = null is an exclusive assignment,
         (2) V = A and V = B, for A and B value constants, are mutually exclusive unless A == B
             we err on the safe side, for example:
               - assume `val X = 1; val Y = 1`, then
                 (2: Int) match { case X => case Y =>  <falsely considered reachable>  }
               - V = 1 does not preclude V = Int, or V = Any, it could be said to preclude V = String, but we don't model that

         (3) for types we could try to do something fancy, but be conservative and just say no
         */
        def excludes(a: Const, b: Const): Boolean =
          a != b && ((a == NullConst || b == NullConst) || (a.isValue && b.isValue))

          // if(r) patmatDebug("excludes    : "+(a, a.tp, b, b.tp))
          // else  patmatDebug("NOT excludes: "+(a, b))

/*
[ HALF BAKED FANCINESS: //!equalitySyms.exists(common => implies(common.const, a) && implies(common.const, b)))
 when type tests are involved, we reason (conservatively) under a closed world assumption,
 since we are really only trying to counter the effects of the symbols that we introduce to model type tests
 we don't aim to model the whole subtyping hierarchy, simply to encode enough about subtyping to do unreachability properly

 consider the following hierarchy:

    trait A
    trait B
    trait C
    trait AB extends B with A

  // two types are mutually exclusive if there is no equality symbol whose constant implies both
  object Test extends App {
    def foo(x: Any) = x match {
      case _ : C  => println("C")
      case _ : AB => println("AB")
      case _ : (A with B) => println("AB'")
      case _ : B  => println("B")
      case _ : A  => println("A")
    }

 of course this kind of reasoning is not true in general,
 but we can safely pretend types are mutually exclusive as long as there are no counter-examples in the match we're analyzing}
*/

        val excludedPair = new scala.collection.mutable.HashSet[ExcludedPair]

        case class ExcludedPair(a: Const, b: Const) {
          override def equals(o: Any) = o match {
            case ExcludedPair(aa, bb) => (a == aa && b == bb) || (a == bb && b == aa)
            case _ => false
          }
          // make ExcludedPair(a, b).hashCode == ExcludedPair(b, a).hashCode
          override def hashCode = a.hashCode ^ b.hashCode
        }

        equalitySyms map { sym =>
          // if we've already excluded the pair at some point (-A \/ -B), then don't exclude the symmetric one (-B \/ -A)
          // (nor the positive implications -B \/ A, or -A \/ B, which would entail the equality axioms falsifying the whole formula)
          val todo = equalitySyms filterNot (b => (b.const == sym.const) || excludedPair(ExcludedPair(b.const, sym.const)))
          val (excluded, notExcluded) = todo partition (b => excludes(sym.const, b.const))
          val implied = notExcluded filter (b => implies(sym.const, b.const))

          patmatDebug("eq axioms for: "+ sym.const)
          patmatDebug("excluded: "+ excluded)
          patmatDebug("implied: "+ implied)

          excluded foreach { excludedSym => excludedPair += ExcludedPair(sym.const, excludedSym.const)}

          (sym, implied, excluded)
        }
      }

      // accessing after calling registerNull will result in inconsistencies
      lazy val domainSyms: Option[Set[Sym]] = domain map { _ map symForEqualsTo }

      lazy val symForStaticTp: Option[Sym]  = symForEqualsTo.get(TypeConst(staticTpCheckable))

      // don't access until all potential equalities have been registered using registerEquality
      private lazy val equalitySyms = {observed; symForEqualsTo.values.toList}

      // don't call until all equalities have been registered and registerNull has been called (if needed)
      def describe = toString + ": " + staticTp + domain.map(_.mkString(" ::= ", " | ", "// "+ symForEqualsTo.keys)).getOrElse(symForEqualsTo.keys.mkString(" ::= ", " | ", " | ...")) + " // = " + path
      override def toString = "V"+ id
    }


    // all our variables range over types
    // a literal constant becomes ConstantType(Constant(v)) when the type allows it (roughly, anyval + string + null)
    // equality between variables: SingleType(x) (note that pattern variables cannot relate to each other -- it's always patternVar == nonPatternVar)
    object Const {
      def resetUniques() = {_nextTypeId = 0; _nextValueId = 0; uniques.clear() ; trees.clear()}

      private var _nextTypeId = 0
      def nextTypeId = {_nextTypeId += 1; _nextTypeId}

      private var _nextValueId = 0
      def nextValueId = {_nextValueId += 1; _nextValueId}

      private val uniques = new scala.collection.mutable.HashMap[Type, Const]
      private[SymbolicMatchAnalysis] def unique(tp: Type, mkFresh: => Const): Const =
        uniques.get(tp).getOrElse(
          uniques.find {case (oldTp, oldC) => oldTp =:= tp} match {
            case Some((_, c)) =>
              patmatDebug("unique const: "+ (tp, c))
              c
            case _ =>
              val fresh = mkFresh
              patmatDebug("uniqued const: "+ (tp, fresh))
              uniques(tp) = fresh
              fresh
          })

      private val trees = scala.collection.mutable.HashSet.empty[Tree]

      // hashconsing trees (modulo value-equality)
      private[SymbolicMatchAnalysis] def uniqueTpForTree(t: Tree): Type =
        // a new type for every unstable symbol -- only stable value are uniqued
        // technically, an unreachable value may change between cases
        // thus, the failure of a case that matches on a mutable value does not exclude the next case succeeding
        // (and thuuuuus, the latter case must be considered reachable)
        if (!t.symbol.isStable) t.tpe.narrow
        else trees find (a => a.correspondsStructure(t)(sameValue)) match {
          case Some(orig) =>
            patmatDebug("unique tp for tree: "+ (orig, orig.tpe))
            orig.tpe
          case _ =>
            // duplicate, don't mutate old tree (TODO: use a map tree -> type instead?)
            val treeWithNarrowedType = t.duplicate setType t.tpe.narrow
            patmatDebug("uniqued: "+ (t, t.tpe, treeWithNarrowedType.tpe))
            trees += treeWithNarrowedType
            treeWithNarrowedType.tpe
        }
    }

    sealed abstract class Const {
      def tp: Type
      def wideTp: Type

      def isAny = wideTp.typeSymbol == AnyClass
      def isValue: Boolean //= tp.isStable

      // note: use reference equality on Const since they're hash-consed (doing type equality all the time is too expensive)
      // the equals inherited from AnyRef does just this
    }

    // find most precise super-type of tp that is a class
    // we skip non-class types (singleton types, abstract types) so that we can
    // correctly compute how types relate in terms of the values they rule out
    // e.g., when we know some value must be of type T, can it still be of type S? (this is the positive formulation of what `excludes` on Const computes)
    // since we're talking values, there must have been a class involved in creating it, so rephrase our types in terms of classes
    // (At least conceptually: `true` is an instance of class `Boolean`)
    private def widenToClass(tp: Type): Type =
      if (tp.typeSymbol.isClass) tp
      else tp.baseType(tp.baseClasses.head)

    object TypeConst extends TypeConstExtractor {
      def apply(tp: Type) = {
        if (tp =:= NullTp) NullConst
        else if (tp.isInstanceOf[SingletonType]) ValueConst.fromType(tp)
        else Const.unique(tp, new TypeConst(tp))
      }
      def unapply(c: TypeConst): Some[Type] = Some(c.tp)
    }

    // corresponds to a type test that does not imply any value-equality (well, except for outer checks, which we don't model yet)
    sealed class TypeConst(val tp: Type) extends Const {
      assert(!(tp =:= NullTp))
      private[this] val id: Int = Const.nextTypeId

      val wideTp = widenToClass(tp)
      def isValue = false
      override def toString = tp.toString //+"#"+ id
    }

    // p is a unique type or a constant value
    object ValueConst {
      def fromType(tp: Type) = {
        assert(tp.isInstanceOf[SingletonType])
        val toString = tp match {
          case ConstantType(c) => c.escapedStringValue
          case _ => tp.toString
        }
        Const.unique(tp, new ValueConst(tp, tp.widen, toString))
      }
      def apply(p: Tree) = {
        val tp = p.tpe.normalize
        if (tp =:= NullTp) NullConst
        else {
          val wideTp = widenToClass(tp)

          val narrowTp =
            if (tp.isInstanceOf[SingletonType]) tp
            else p match {
              case Literal(c) =>
                if (c.tpe.typeSymbol == UnitClass) c.tpe
                else ConstantType(c)
              case Ident(_) if p.symbol.isStable =>
                // for Idents, can encode uniqueness of symbol as uniqueness of the corresponding singleton type
                // for Selects, which are handled by the next case, the prefix of the select varies independently of the symbol (see pos/virtpatmat_unreach_select.scala)
                singleType(tp.prefix, p.symbol)
              case _ =>
                Const.uniqueTpForTree(p)
            }

          val toString =
            if (p.hasSymbol && p.symbol.isStable) p.symbol.name.toString // tp.toString
            else p.toString //+"#"+ id

          Const.unique(narrowTp, new ValueConst(narrowTp, checkableType(wideTp), toString)) // must make wide type checkable so that it is comparable to types from TypeConst
        }
      }
    }
    sealed class ValueConst(val tp: Type, val wideTp: Type, override val toString: String) extends Const {
      // patmatDebug("VC"+(tp, wideTp, toString))
      assert(!(tp =:= NullTp)) // TODO: assert(!tp.isStable)
      private[this] val id: Int = Const.nextValueId
      def isValue = true
    }

    lazy val NullTp = ConstantType(Constant(null))
    case object NullConst extends Const {
      def tp     = NullTp
      def wideTp = NullTp

      def isValue = true
      override def toString = "null"
    }


    // turns a case (represented as a list of abstract tests)
    // into a proposition that is satisfiable if the case may match
    def symbolicCase(tests: List[Test], modelNull: Boolean = false): Prop = {
      def symbolic(t: Cond): Prop = t match {
        case AndCond(a, b) => And(symbolic(a), symbolic(b))
        case OrCond(a, b) => Or(symbolic(a), symbolic(b))
        case TrueCond => True
        case FalseCond => False
        case TypeCond(p, pt) => Eq(Var(p), TypeConst(checkableType(pt)))
        case EqualityCond(p, q) => Eq(Var(p), ValueConst(q))
        case NonNullCond(p) => if (!modelNull) True else Not(Eq(Var(p), NullConst))
      }

      val testsBeforeBody = tests.takeWhile(t => !t.treeMaker.isInstanceOf[BodyTreeMaker])
      /\(testsBeforeBody.map(t => symbolic(t.cond)))
    }

    // TODO: model dependencies between variables: if V1 corresponds to (x: List[_]) and V2 is (x.hd), V2 cannot be assigned when V1 = null or V1 = Nil
    // right now hackily implement this by pruning counter-examples
    // unreachability would also benefit from a more faithful representation


    // reachability (dead code)

    // computes the first 0-based case index that is unreachable (if any)
    // a case is unreachable if it implies its preceding cases
    // call C the formula that is satisfiable if the considered case matches
    // call P the formula that is satisfiable if the cases preceding it match
    // the case is reachable if there is a model for -P /\ C,
    // thus, the case is unreachable if there is no model for -(-P /\ C),
    // or, equivalently, P \/ -C, or C => P
    def unreachableCase(prevBinder: Symbol, cases: List[List[TreeMaker]], pt: Type): Option[Int] = {
      val start = if (Statistics.canEnable) Statistics.startTimer(patmatAnaReach) else null

      // use the same approximator so we share variables,
      // but need different conditions depending on whether we're conservatively looking for failure or success
      // don't rewrite List-like patterns, as List() and Nil need to distinguished for unreachability
      val approx = new TreeMakersToConds(prevBinder)
      def approximate(default: Cond) = approx.approximateMatch(cases, approx.onUnknown { tm =>
        approx.refutableRewrite.applyOrElse(tm, (_: TreeMaker) => default )
      })

      val testCasesOk   = approximate(TrueCond)
      val testCasesFail = approximate(FalseCond)

      prepareNewAnalysis()

      val propsCasesOk   = testCasesOk   map (t => symbolicCase(t, modelNull = true))
      val propsCasesFail = testCasesFail map (t => Not(symbolicCase(t, modelNull = true)))
      val (eqAxiomsFail, symbolicCasesFail) = removeVarEq(propsCasesFail, modelNull = true)
      val (eqAxiomsOk, symbolicCasesOk)     = removeVarEq(propsCasesOk,   modelNull = true)

      try {
        // most of the time eqAxiomsFail == eqAxiomsOk, but the different approximations might cause different variables to disapper in general
        val eqAxiomsCNF =
          if (eqAxiomsFail == eqAxiomsOk) eqFreePropToSolvable(eqAxiomsFail)
          else eqFreePropToSolvable(And(eqAxiomsFail, eqAxiomsOk))

        var prefix     = eqAxiomsCNF
        var prefixRest = symbolicCasesFail
        var current    = symbolicCasesOk
        var reachable  = true
        var caseIndex  = 0

        patmatDebug("reachability, vars:\n"+ ((propsCasesFail flatMap gatherVariables).distinct map (_.describe) mkString ("\n")))
        patmatDebug("equality axioms:\n"+ cnfString(eqAxiomsCNF))

        // invariant (prefixRest.length == current.length) && (prefix.reverse ++ prefixRest == symbolicCasesFail)
        // termination: prefixRest.length decreases by 1
        while (prefixRest.nonEmpty && reachable) {
          val prefHead = prefixRest.head
          caseIndex += 1
          prefixRest = prefixRest.tail
          if (prefixRest.isEmpty) reachable = true
          else {
            prefix = andFormula(eqFreePropToSolvable(prefHead), prefix)
            current = current.tail
            val model = findModelFor(andFormula(eqFreePropToSolvable(current.head), prefix))

            // patmatDebug("trying to reach:\n"+ cnfString(eqFreePropToSolvable(current.head)) +"\nunder prefix:\n"+ cnfString(prefix))
            // if (NoModel ne model) patmatDebug("reached: "+ modelString(model))

            reachable = NoModel ne model
          }
        }

        if (Statistics.canEnable) Statistics.stopTimer(patmatAnaReach, start)

        if (reachable) None else Some(caseIndex)
      } catch {
        case ex: AnalysisBudget.Exception =>
          ex.warn(prevBinder.pos, "unreachability")
          None // CNF budget exceeded
      }
    }

    // exhaustivity

    // TODO: domain of other feasibly enumerable built-in types (char?)
    def enumerateSubtypes(tp: Type): Option[List[Type]] =
      tp.typeSymbol match {
        // TODO case _ if tp.isTupleType => // recurse into component types?
        case UnitClass =>
          Some(List(UnitClass.tpe))
        case BooleanClass =>
          Some((List(ConstantType(Constant(true)), ConstantType(Constant(false)))))
        // TODO case _ if tp.isTupleType => // recurse into component types
        case modSym: ModuleClassSymbol =>
          Some(List(tp))
        // make sure it's not a primitive, else (5: Byte) match { case 5 => ... } sees no Byte
        case sym if !sym.isSealed || isPrimitiveValueClass(sym) =>
          patmatDebug("enum unsealed "+ (tp, sym, sym.isSealed, isPrimitiveValueClass(sym)))
          None
        case sym =>
          val subclasses = (
            sym.sealedDescendants.toList sortBy (_.sealedSortName)
            // symbols which are both sealed and abstract need not be covered themselves, because
            // all of their children must be and they cannot otherwise be created.
            filterNot (x => x.isSealed && x.isAbstractClass && !isPrimitiveValueClass(x)))
          patmatDebug("enum sealed -- subclasses: "+ (sym, subclasses))

          val tpApprox = typer.infer.approximateAbstracts(tp)
          val pre = tpApprox.prefix
          // valid subtypes are turned into checkable types, as we are entering the realm of the dynamic
          val validSubTypes = (subclasses flatMap {sym =>
              // have to filter out children which cannot match: see ticket #3683 for an example
              // compare to the fully known type `tp` (modulo abstract types),
              // so that we can rule out stuff like: sealed trait X[T]; class XInt extends X[Int] --> XInt not valid when enumerating X[String]
              // however, must approximate abstract types in
              val subTp       = appliedType(pre.memberType(sym), sym.typeParams.map(_ => WildcardType))
              val subTpApprox = typer.infer.approximateAbstracts(subTp) // TODO: needed?
              // patmatDebug("subtp"+(subTpApprox <:< tpApprox, subTpApprox, tpApprox))
              if (subTpApprox <:< tpApprox) Some(checkableType(subTp))
              else None
            })
          patmatDebug("enum sealed "+ (tp, tpApprox) + " as "+ validSubTypes)
          Some(validSubTypes)
      }

    // approximate a type to the static type that is fully checkable at run time,
    // hiding statically known but dynamically uncheckable information using existential quantification
    // TODO: this is subject to the availability of TypeTags (since an abstract type with a type tag is checkable at run time)
    def checkableType(tp: Type): Type = {
      // TODO: this is extremely rough...
      // replace type args by wildcards, since they can't be checked (don't use existentials: overkill)
      // TODO: when type tags are available, we will check -- when this is implemented, can we take that into account here?
      // similar to typer.infer.approximateAbstracts
      object typeArgsToWildcardsExceptArray extends TypeMap {
        def apply(tp: Type): Type = tp match {
          case TypeRef(pre, sym, args) if args.nonEmpty && (sym ne ArrayClass) =>
            TypeRef(pre, sym, args map (_ => WildcardType))
          case _ =>
            mapOver(tp)
        }
      }

      val res = typeArgsToWildcardsExceptArray(tp)
      patmatDebug("checkable "+(tp, res))
      res
    }

    // a type is "uncheckable" (for exhaustivity) if we don't statically know its subtypes (i.e., it's unsealed)
    // we consider tuple types with at least one component of a checkable type as a checkable type
    def uncheckableType(tp: Type): Boolean = {
      def tupleComponents(tp: Type) = tp.normalize.typeArgs
      val checkable = (
           (isTupleType(tp) && tupleComponents(tp).exists(tp => !uncheckableType(tp)))
        || enumerateSubtypes(tp).nonEmpty)
      // if (!checkable) patmatDebug("deemed uncheckable: "+ tp)
      !checkable
    }

    def exhaustive(prevBinder: Symbol, cases: List[List[TreeMaker]], pt: Type): List[String] = if (uncheckableType(prevBinder.info)) Nil else {
      // customize TreeMakersToConds (which turns a tree of tree makers into a more abstract DAG of tests)
      // - approximate the pattern `List()` (unapplySeq on List with empty length) as `Nil`,
      //   otherwise the common (xs: List[Any]) match { case List() => case x :: xs => } is deemed unexhaustive
      // - back off (to avoid crying exhaustive too often) when:
      //    - there are guards -->
      //    - there are extractor calls (that we can't secretly/soundly) rewrite
      val start = if (Statistics.canEnable) Statistics.startTimer(patmatAnaExhaust) else null
      var backoff = false

      val approx = new TreeMakersToConds(prevBinder)
      val tests = approx.approximateMatch(cases, approx.onUnknown { tm =>
        approx.fullRewrite.applyOrElse[TreeMaker, Cond](tm, {
          case BodyTreeMaker(_, _) => TrueCond // irrelevant -- will be discarded by symbolCase later
          case _ => // patmatDebug("backing off due to "+ tm)
            backoff = true
            FalseCond
        })
      })

      if (backoff) Nil else {
        val prevBinderTree = approx.binderToUniqueTree(prevBinder)

        prepareNewAnalysis()

        val symbolicCases = tests map (symbolicCase(_, modelNull = false))


        // TODO: null tests generate too much noise, so disabled them -- is there any way to bring them back?
        // assuming we're matching on a non-null scrutinee (prevBinder), when does the match fail?
        // val nonNullScrutineeCond =
        //   assume non-null for all the components of the tuple we're matching on (if we're matching on a tuple)
        //   if (isTupleType(prevBinder.tpe))
        //     prevBinder.tpe.typeArgs.mapWithIndex{case (_, i) => NonNullCond(codegen.tupleSel(prevBinderTree)(i))}.reduceLeft(AndCond)
        //   else
        //     NonNullCond(prevBinderTree)
        // val matchFails = And(symbolic(nonNullScrutineeCond), Not(symbolicCases reduceLeft (Or(_, _))))

        // when does the match fail?
        val matchFails = Not(\/(symbolicCases))
        val vars = gatherVariables(matchFails)

  // debug output:
        patmatDebug("analysing:")
        showTreeMakers(cases)
        showTests(tests)

        // patmatDebug("\nvars:\n"+ (vars map (_.describe) mkString ("\n")))
        // patmatDebug("\nmatchFails as CNF:\n"+ cnfString(propToSolvable(matchFails)))

        try {
          // find the models (under which the match fails)
          val matchFailModels = findAllModelsFor(propToSolvable(matchFails))

          val scrutVar = Var(prevBinderTree)
          val counterExamples = matchFailModels.map(modelToCounterExample(scrutVar))

          val pruned = CounterExample.prune(counterExamples).map(_.toString).sorted

          if (Statistics.canEnable) Statistics.stopTimer(patmatAnaExhaust, start)
          pruned
        } catch {
          case ex : AnalysisBudget.Exception =>
            ex.warn(prevBinder.pos, "exhaustivity")
            Nil // CNF budget exceeded
        }
      }
    }

    object CounterExample {
      def prune(examples: List[CounterExample]): List[CounterExample] = {
        val distinct = examples.filterNot(_ == NoExample).toSet
        distinct.filterNot(ce => distinct.exists(other => (ce ne other) && ce.coveredBy(other))).toList
      }
    }

    // a way to construct a value that will make the match fail: a constructor invocation, a constant, an object of some type)
    class CounterExample {
      protected[SymbolicMatchAnalysis] def flattenConsArgs: List[CounterExample] = Nil
      def coveredBy(other: CounterExample): Boolean = this == other || other == WildcardExample
    }
    case class ValueExample(c: ValueConst) extends CounterExample { override def toString = c.toString }
    case class TypeExample(c: Const)  extends CounterExample { override def toString = "(_ : "+ c +")" }
    case class NegativeExample(eqTo: Const, nonTrivialNonEqualTo: List[Const]) extends CounterExample {
      // require(nonTrivialNonEqualTo.nonEmpty, nonTrivialNonEqualTo)
      override def toString = {
        val negation =
          if (nonTrivialNonEqualTo.tail.isEmpty) nonTrivialNonEqualTo.head.toString
          else nonTrivialNonEqualTo.map(_.toString).sorted.mkString("(", ", ", ")")
        "(x: "+ eqTo +" forSome x not in "+ negation +")"
      }
    }
    case class ListExample(ctorArgs: List[CounterExample]) extends CounterExample {
      protected[SymbolicMatchAnalysis] override def flattenConsArgs: List[CounterExample] = ctorArgs match {
        case hd :: tl :: Nil => hd :: tl.flattenConsArgs
        case _ => Nil
      }
      protected[SymbolicMatchAnalysis] lazy val elems = flattenConsArgs

      override def coveredBy(other: CounterExample): Boolean =
        other match {
          case other@ListExample(_) =>
            this == other || ((elems.length == other.elems.length) && (elems zip other.elems).forall{case (a, b) => a coveredBy b})
          case _ => super.coveredBy(other)
        }

      override def toString = elems.mkString("List(", ", ", ")")
    }
    case class TupleExample(ctorArgs: List[CounterExample]) extends CounterExample {
      override def toString = ctorArgs.mkString("(", ", ", ")")

      override def coveredBy(other: CounterExample): Boolean =
        other match {
          case TupleExample(otherArgs) =>
            this == other || ((ctorArgs.length == otherArgs.length) && (ctorArgs zip otherArgs).forall{case (a, b) => a coveredBy b})
          case _ => super.coveredBy(other)
        }
    }
    case class ConstructorExample(cls: Symbol, ctorArgs: List[CounterExample]) extends CounterExample {
      override def toString = cls.decodedName + (if (cls.isModuleClass) "" else ctorArgs.mkString("(", ", ", ")"))
    }

    case object WildcardExample extends CounterExample { override def toString = "_" }
    case object NoExample extends CounterExample { override def toString = "??" }

    def modelToVarAssignment(model: Model): Map[Var, (Seq[Const], Seq[Const])] =
      model.toSeq.groupBy{f => f match {case (sym, value) => sym.variable} }.mapValues{ xs =>
        val (trues, falses) = xs.partition(_._2)
        (trues map (_._1.const), falses map (_._1.const))
        // should never be more than one value in trues...
      }

    def varAssignmentString(varAssignment: Map[Var, (Seq[Const], Seq[Const])]) =
      varAssignment.toSeq.sortBy(_._1.toString).map { case (v, (trues, falses)) =>
         val assignment = "== "+ (trues mkString("(", ", ", ")")) +"  != ("+ (falses mkString(", ")) +")"
         v +"(="+ v.path +": "+ v.staticTpCheckable +") "+ assignment
       }.mkString("\n")

    def modelString(model: Model) = varAssignmentString(modelToVarAssignment(model))

    // return constructor call when the model is a true counter example
    // (the variables don't take into account type information derived from other variables,
    //  so, naively, you might try to construct a counter example like _ :: Nil(_ :: _, _ :: _),
    //  since we didn't realize the tail of the outer cons was a Nil)
    def modelToCounterExample(scrutVar: Var)(model: Model): CounterExample = {
      // x1 = ...
      // x1.hd = ...
      // x1.tl = ...
      // x1.hd.hd = ...
      // ...
      val varAssignment = modelToVarAssignment(model)

      patmatDebug("var assignment for model "+ model +":\n"+ varAssignmentString(varAssignment))

      // chop a path into a list of symbols
      def chop(path: Tree): List[Symbol] = path match {
        case Ident(_) => List(path.symbol)
        case Select(pre, name) => chop(pre) :+ path.symbol
        case _ =>
          // patmatDebug("don't know how to chop "+ path)
          Nil
      }

      // turn the variable assignments into a tree
      // the root is the scrutinee (x1), edges are labelled by the fields that are assigned
      // a node is a variable example (which is later turned into a counter example)
      object VariableAssignment {
        private def findVar(path: List[Symbol]) = path match {
          case List(root) if root == scrutVar.path.symbol => Some(scrutVar)
          case _ => varAssignment.find{case (v, a) => chop(v.path) == path}.map(_._1)
        }

        private val uniques = new scala.collection.mutable.HashMap[Var, VariableAssignment]
        private def unique(variable: Var): VariableAssignment =
          uniques.getOrElseUpdate(variable, {
            val (eqTo, neqTo) = varAssignment.getOrElse(variable, (Nil, Nil)) // TODO
            VariableAssignment(variable, eqTo.toList, neqTo.toList, HashMap.empty)
          })

        def apply(variable: Var): VariableAssignment = {
          val path  = chop(variable.path)
          val pre   = path.init
          val field = path.last

          val newCtor = unique(variable)

          if (pre.isEmpty) newCtor
          else {
            findVar(pre) foreach { preVar =>
              val outerCtor = this(preVar)
              outerCtor.fields(field) = newCtor
            }
            newCtor
          }
        }
      }

      // node in the tree that describes how to construct a counter-example
      case class VariableAssignment(variable: Var, equalTo: List[Const], notEqualTo: List[Const], fields: scala.collection.mutable.Map[Symbol, VariableAssignment]) {
        // need to prune since the model now incorporates all super types of a constant (needed for reachability)
        private lazy val uniqueEqualTo = equalTo filterNot (subsumed => equalTo.exists(better => (better ne subsumed) && instanceOfTpImplies(better.tp, subsumed.tp)))
        private lazy val prunedEqualTo = uniqueEqualTo filterNot (subsumed => variable.staticTpCheckable <:< subsumed.tp)
        private lazy val ctor       = (prunedEqualTo match { case List(TypeConst(tp)) => tp case _ => variable.staticTpCheckable }).typeSymbol.primaryConstructor
        private lazy val ctorParams = if (ctor == NoSymbol || ctor.paramss.isEmpty) Nil else ctor.paramss.head
        private lazy val cls        = if (ctor == NoSymbol) NoSymbol else ctor.owner
        private lazy val caseFieldAccs = if (cls == NoSymbol) Nil else cls.caseFieldAccessors


        def allFieldAssignmentsLegal: Boolean =
          (fields.keySet subsetOf caseFieldAccs.toSet) && fields.values.forall(_.allFieldAssignmentsLegal)

        private lazy val nonTrivialNonEqualTo = notEqualTo.filterNot{c => c.isAny }

        // NoExample if the constructor call is ill-typed
        // (thus statically impossible -- can we incorporate this into the formula?)
        // beBrief is used to suppress negative information nested in tuples -- it tends to get too noisy
        def toCounterExample(beBrief: Boolean = false): CounterExample =
          if (!allFieldAssignmentsLegal) NoExample
          else {
            patmatDebug("describing "+ (variable, equalTo, notEqualTo, fields, cls, allFieldAssignmentsLegal))
            val res = prunedEqualTo match {
              // a definite assignment to a value
              case List(eq: ValueConst) if fields.isEmpty => ValueExample(eq)

              // constructor call
              // or we did not gather any information about equality but we have information about the fields
              //  --> typical example is when the scrutinee is a tuple and all the cases first unwrap that tuple and only then test something interesting
              case _ if cls != NoSymbol && !isPrimitiveValueClass(cls) &&
                        (  uniqueEqualTo.nonEmpty
                        || (fields.nonEmpty && prunedEqualTo.isEmpty && notEqualTo.isEmpty)) =>

                def args(brevity: Boolean = beBrief) = {
                  // figure out the constructor arguments from the field assignment
                  val argLen = (caseFieldAccs.length min ctorParams.length)

                  (0 until argLen).map(i => fields.get(caseFieldAccs(i)).map(_.toCounterExample(brevity)) getOrElse WildcardExample).toList
                }

                cls match {
                  case ConsClass               => ListExample(args())
                  case _ if isTupleSymbol(cls) => TupleExample(args(true))
                  case _ => ConstructorExample(cls, args())
                }

              // a definite assignment to a type
              case List(eq) if fields.isEmpty => TypeExample(eq)

              // negative information
              case Nil if nonTrivialNonEqualTo.nonEmpty =>
                // negation tends to get pretty verbose
                if (beBrief) WildcardExample
                else {
                  val eqTo = equalTo.headOption getOrElse TypeConst(variable.staticTpCheckable)
                  NegativeExample(eqTo, nonTrivialNonEqualTo)
                }

              // not a valid counter-example, possibly since we have a definite type but there was a field mismatch
              // TODO: improve reasoning -- in the mean time, a false negative is better than an annoying false positive
              case _ => NoExample
            }
            patmatDebug("described as: "+ res)
            res
          }

        override def toString = toCounterExample().toString
      }

      // slurp in information from other variables
      varAssignment.keys.foreach{ v => if (v != scrutVar) VariableAssignment(v) }

      // this is the variable we want a counter example for
      VariableAssignment(scrutVar).toCounterExample()
    }
  }

////
  trait CommonSubconditionElimination extends TreeMakerApproximation { self: OptimizedCodegen =>
    /** a flow-sensitive, generalised, common sub-expression elimination
     * reuse knowledge from performed tests
     * the only sub-expressions we consider are the conditions and results of the three tests (type, type&equality, equality)
     * when a sub-expression is shared, it is stored in a mutable variable
     * the variable is floated up so that its scope includes all of the program that shares it
     * we generalize sharing to implication, where b reuses a if a => b and priors(a) => priors(b) (the priors of a sub expression form the path through the decision tree)
     */
    def doCSE(prevBinder: Symbol, cases: List[List[TreeMaker]], pt: Type): List[List[TreeMaker]] = {
      patmatDebug("before CSE:")
      showTreeMakers(cases)

      val testss = approximateMatchConservative(prevBinder, cases)

      // interpret:
      val dependencies = new scala.collection.mutable.LinkedHashMap[Test, Set[Cond]]
      val tested = new scala.collection.mutable.HashSet[Cond]

      def storeDependencies(test: Test) = {
        val cond = test.cond

        def simplify(c: Cond): Set[Cond] = c match {
          case AndCond(a, b) => simplify(a) ++ simplify(b)
          case OrCond(_, _)   => Set(FalseCond) // TODO: make more precise
          case NonNullCond(_) => Set(TrueCond)  // not worth remembering
          case _ => Set(c)
        }
        val conds = simplify(cond)

        if (conds(FalseCond)) false // stop when we encounter a definite "no" or a "not sure"
        else {
          val nonTrivial = conds filterNot (_ == TrueCond)
          if (nonTrivial nonEmpty) {
            tested ++= nonTrivial

            // is there an earlier test that checks our condition and whose dependencies are implied by ours?
            dependencies find {
              case (priorTest, deps) =>
                ((simplify(priorTest.cond) == nonTrivial) || // our conditions are implied by priorTest if it checks the same thing directly
                 (nonTrivial subsetOf deps)                  // or if it depends on a superset of our conditions
                ) && (deps subsetOf tested)                 // the conditions we've tested when we are here in the match satisfy the prior test, and hence what it tested
            } foreach {
              case (priorTest, _) =>
                // if so, note the dependency in both tests
                priorTest registerReuseBy test
            }

            dependencies(test) = tested.toSet // copies
          }
          true
        }
      }


      testss foreach { tests =>
        tested.clear()
        tests dropWhile storeDependencies
      }
      patmatDebug("dependencies: "+ dependencies)

      // find longest prefix of tests that reuse a prior test, and whose dependent conditions monotonically increase
      // then, collapse these contiguous sequences of reusing tests
      // store the result of the final test and the intermediate results in hoisted mutable variables (TODO: optimize: don't store intermediate results that aren't used)
      // replace each reference to a variable originally bound by a collapsed test by a reference to the hoisted variable
      val reused = new scala.collection.mutable.HashMap[TreeMaker, ReusedCondTreeMaker]
      var okToCall = false
      val reusedOrOrig = (tm: TreeMaker) => {assert(okToCall); reused.getOrElse(tm, tm)}

      // maybe collapse: replace shared prefix of tree makers by a ReusingCondTreeMaker
      // once this has been computed, we'll know which tree makers are reused,
      // and we'll replace those by the ReusedCondTreeMakers we've constructed (and stored in the reused map)
      val collapsed = testss map { tests =>
        // map tests to the equivalent list of treemakers, replacing shared prefixes by a reusing treemaker
        // if there's no sharing, simply map to the tree makers corresponding to the tests
        var currDeps = Set[Cond]()
        val (sharedPrefix, suffix) = tests span { test =>
          (test.cond == TrueCond) || (for(
              reusedTest <- test.reuses;
              nextDeps <- dependencies.get(reusedTest);
              diff <- (nextDeps -- currDeps).headOption;
              _ <- Some(currDeps = nextDeps))
                yield diff).nonEmpty
        }

        val collapsedTreeMakers =
          if (sharedPrefix.isEmpty) None
          else { // even sharing prefixes of length 1 brings some benefit (overhead-percentage for compiler: 26->24%, lib: 19->16%)
            for (test <- sharedPrefix; reusedTest <- test.reuses) reusedTest.treeMaker match {
              case reusedCTM: CondTreeMaker => reused(reusedCTM) = ReusedCondTreeMaker(reusedCTM)
              case _ =>
            }

            patmatDebug("sharedPrefix: "+ sharedPrefix)
            patmatDebug("suffix: "+ sharedPrefix)
            // if the shared prefix contains interesting conditions (!= TrueCond)
            // and the last of such interesting shared conditions reuses another treemaker's test
            // replace the whole sharedPrefix by a ReusingCondTreeMaker
            for (lastShared <- sharedPrefix.reverse.dropWhile(_.cond == TrueCond).headOption;
                 lastReused <- lastShared.reuses)
              yield ReusingCondTreeMaker(sharedPrefix, reusedOrOrig) :: suffix.map(_.treeMaker)
          }

        collapsedTreeMakers getOrElse tests.map(_.treeMaker) // sharedPrefix need not be empty (but it only contains TrueCond-tests, which are dropped above)
      }
      okToCall = true // TODO: remove (debugging)

      // replace original treemakers that are reused (as determined when computing collapsed),
      // by ReusedCondTreeMakers
      val reusedMakers = collapsed mapConserve (_ mapConserve reusedOrOrig)
      patmatDebug("after CSE:")
      showTreeMakers(reusedMakers)
      reusedMakers
    }

    object ReusedCondTreeMaker {
      def apply(orig: CondTreeMaker) = new ReusedCondTreeMaker(orig.prevBinder, orig.nextBinder, orig.cond, orig.res, orig.pos)
    }
    class ReusedCondTreeMaker(prevBinder: Symbol, val nextBinder: Symbol, cond: Tree, res: Tree, val pos: Position) extends TreeMaker { import CODE._
      lazy val localSubstitution        = Substitution(List(prevBinder), List(CODE.REF(nextBinder)))
      lazy val storedCond               = freshSym(pos, BooleanClass.tpe, "rc") setFlag MUTABLE
      lazy val treesToHoist: List[Tree] = {
        nextBinder setFlag MUTABLE
        List(storedCond, nextBinder) map { b => VAL(b) === codegen.mkZero(b.info) }
      }

      // TODO: finer-grained duplication
      def chainBefore(next: Tree)(casegen: Casegen): Tree = // assert(codegen eq optimizedCodegen)
        atPos(pos)(casegen.asInstanceOf[optimizedCodegen.OptimizedCasegen].flatMapCondStored(cond, storedCond, res, nextBinder, substitution(next).duplicate))

      override def toString = "Memo"+(nextBinder.name, storedCond.name, cond, res, substitution)
    }

    case class ReusingCondTreeMaker(sharedPrefix: List[Test], toReused: TreeMaker => TreeMaker) extends TreeMaker { import CODE._
      val pos = sharedPrefix.last.treeMaker.pos

      lazy val localSubstitution = {
        // replace binder of each dropped treemaker by corresponding binder bound by the most recent reused treemaker
        var mostRecentReusedMaker: ReusedCondTreeMaker = null
        def mapToStored(droppedBinder: Symbol) = if (mostRecentReusedMaker eq null) Nil else List((droppedBinder, REF(mostRecentReusedMaker.nextBinder)))
        val (from, to) = sharedPrefix.flatMap { dropped =>
          dropped.reuses.map(test => toReused(test.treeMaker)).foreach {
            case reusedMaker: ReusedCondTreeMaker =>
              mostRecentReusedMaker = reusedMaker
            case _ =>
          }

          // TODO: have super-trait for retrieving the variable that's operated on by a tree maker
          // and thus assumed in scope, either because it binds it or because it refers to it
          dropped.treeMaker match {
            case dropped: FunTreeMaker =>
              mapToStored(dropped.nextBinder)
            case _ => Nil
          }
        }.unzip
        val rerouteToReusedBinders = Substitution(from, to)

        val collapsedDroppedSubst = sharedPrefix map (t => (toReused(t.treeMaker).substitution))

        collapsedDroppedSubst.foldLeft(rerouteToReusedBinders)(_ >> _)
      }

      lazy val lastReusedTreeMaker = sharedPrefix.reverse.flatMap(tm => tm.reuses map (test => toReused(test.treeMaker))).collectFirst{case x: ReusedCondTreeMaker => x}.head

      def chainBefore(next: Tree)(casegen: Casegen): Tree = {
        // TODO: finer-grained duplication -- MUST duplicate though, or we'll get VerifyErrors since sharing trees confuses lambdalift,
        // and in its confusion it emits illegal casts (diagnosed by Grzegorz: checkcast T ; invokevirtual S.m, where T not a subtype of S)
        casegen.ifThenElseZero(REF(lastReusedTreeMaker.storedCond), substitution(next).duplicate)
      }
      override def toString = "R"+(lastReusedTreeMaker.storedCond.name, substitution)
    }
  }


  //// DCE
  trait DeadCodeElimination extends TreeMakers { self: CodegenCore =>
    // TODO: non-trivial dead-code elimination
    // e.g., the following match should compile to a simple instanceof:
    //   case class Ident(name: String)
    //   for (Ident(name) <- ts) println(name)
    def doDCE(prevBinder: Symbol, cases: List[List[TreeMaker]], pt: Type): List[List[TreeMaker]] = {
      // do minimal DCE
      cases
    }
  }

  //// SWITCHES -- TODO: operate on Tests rather than TreeMakers
  trait SwitchEmission extends TreeMakers with OptimizedMatchMonadInterface { self: CodegenCore =>
    import treeInfo.isGuardedCase

    abstract class SwitchMaker {
      abstract class SwitchableTreeMakerExtractor { def unapply(x: TreeMaker): Option[Tree] }
      val SwitchableTreeMaker: SwitchableTreeMakerExtractor

      def alternativesSupported: Boolean

      // when collapsing guarded switch cases we may sometimes need to jump to the default case
      // however, that's not supported in exception handlers, so when we can't jump when we need it, don't emit a switch
      // TODO: make more fine-grained, as we don't always need to jump
      def canJump: Boolean

      def unchecked: Boolean


      def isDefault(x: CaseDef): Boolean
      def defaultSym: Symbol
      def defaultBody: Tree
      def defaultCase(scrutSym: Symbol = defaultSym, guard: Tree = EmptyTree, body: Tree = defaultBody): CaseDef

      private def sequence[T](xs: List[Option[T]]): Option[List[T]] =
        if (xs exists (_.isEmpty)) None else Some(xs.flatten)

      object GuardAndBodyTreeMakers {
          def unapply(tms: List[TreeMaker]): Option[(Tree, Tree)] = {
            tms match {
              case (btm@BodyTreeMaker(body, _)) :: Nil => Some((EmptyTree, btm.substitution(body)))
              case (gtm@GuardTreeMaker(guard)) :: (btm@BodyTreeMaker(body, _)) :: Nil => Some((gtm.substitution(guard), btm.substitution(body)))
              case _ => None
            }
          }
      }

      private val defaultLabel: Symbol =  newSynthCaseLabel("default")

      /** Collapse guarded cases that switch on the same constant (the last case may be unguarded).
       *
       * Cases with patterns A and B switch on the same constant iff for all values x that match A also match B and vice versa.
       * (This roughly corresponds to equality on trees modulo alpha renaming and reordering of alternatives.)
       *
       * The rewrite only applies if some of the cases are guarded (this must be checked before invoking this method).
       *
       * The rewrite goes through the switch top-down and merges each case with the subsequent cases it is implied by
       * (i.e. it matches if they match, not taking guards into account)
       *
       * If there are no unreachable cases, all cases can be uniquely assigned to a partition of such 'overlapping' cases,
       * save for the default case (thus we jump to it rather than copying it several times).
       * (The cases in a partition are implied by the principal element of the partition.)
       *
       * The overlapping cases are merged into one case with their guards pushed into the body as follows
       * (with P the principal element of the overlapping patterns Pi):
       *
       *    `{case Pi if(G_i) => B_i }*` is rewritten to `case P => {if(G_i) B_i}*`
       *
       * The rewrite fails (and returns Nil) when:
       *   (1) there is a subsequence of overlapping cases that has an unguarded case in the middle;
       *       only the last case of each subsequence of overlapping cases may be unguarded (this is implied by unreachability)
       *
       *   (2) there are overlapping cases that differ (tested by `caseImpliedBy`)
       *       cases with patterns A and B are overlapping if for SOME value x, A matches x implies B matches y OR vice versa  <-- note the difference with case equality defined above
       *       for example `case 'a' | 'b' =>` and `case 'b' =>` are different and overlapping (overlapping and equality disregard guards)
       *
       * The second component of the returned tuple indicates whether we'll need to emit a labeldef to jump to the default case.
       */
      private def collapseGuardedCases(cases: List[CaseDef]): (List[CaseDef], Boolean) = {
        // requires(same.forall(caseEquals(same.head)))
        // requires(same.nonEmpty, same)
        def collapse(same: List[CaseDef], isDefault: Boolean): CaseDef = {
          val commonPattern = same.head.pat
          // jump to default case (either the user-supplied one or the synthetic one)
          // unless we're collapsing the default case: then we re-use the same body as the synthetic catchall (throwing a matcherror, rethrowing the exception)
          val jumpToDefault: Tree =
            if (isDefault || !canJump) defaultBody
            else Apply(Ident(defaultLabel), Nil)

          val guardedBody = same.foldRight(jumpToDefault){
            // the last case may be un-guarded (we know it's the last one since fold's accum == jumpToDefault)
            // --> replace jumpToDefault by the un-guarded case's body
            case (CaseDef(_, EmptyTree, b), `jumpToDefault`)     => b
            case (cd@CaseDef(_, g, b), els) if isGuardedCase(cd) => If(g, b, els)
          }

          // if the cases that we're going to collapse bind variables,
          // must replace them by the single binder introduced by the collapsed case
          val binders = same.collect{case CaseDef(x@Bind(_, _), _, _) if x.symbol != NoSymbol => x.symbol}
          val (pat, guardedBodySubst) =
            if (binders.isEmpty) (commonPattern, guardedBody)
            else {
              // create a single fresh binder to subsume the old binders (and their types)
              // TODO: I don't think the binder's types can actually be different (due to checks in caseEquals)
              // if they do somehow manage to diverge, the lub might not be precise enough and we could get a type error
              // TODO: reuse name exactly if there's only one binder in binders
              val binder = freshSym(binders.head.pos, lub(binders.map(_.tpe)), binders.head.name.toString)

              // the patterns in same are equal (according to caseEquals)
              // we can thus safely pick the first one arbitrarily, provided we correct binding
              val origPatWithoutBind = commonPattern match {
                case Bind(b, orig) => orig
                case o => o
              }
              // need to replace `defaultSym` as well -- it's used in `defaultBody` (see `jumpToDefault` above)
              val unifiedBody = guardedBody.substituteSymbols(defaultSym :: binders, binder :: binders.map(_ => binder))
              (Bind(binder, origPatWithoutBind), unifiedBody)
            }

          atPos(commonPattern.pos)(CaseDef(pat, EmptyTree, guardedBodySubst))
        }

        // requires cases.exists(isGuardedCase) (otherwise the rewrite is pointless)
        var remainingCases = cases
        val collapsed      = scala.collection.mutable.ListBuffer.empty[CaseDef]

        // when some of collapsed cases (except for the default case itself) did not include an un-guarded case
        // we'll need to emit a labeldef for the default case
        var needDefault  = false

        while (remainingCases.nonEmpty) {
          val currCase              = remainingCases.head
          val currIsDefault         = isDefault(CaseDef(currCase.pat, EmptyTree, EmptyTree))
          val (impliesCurr, others) =
            // the default case is implied by all cases, no need to partition (and remainingCases better all be default cases as well)
            if (currIsDefault) (remainingCases.tail, Nil)
            else remainingCases.tail partition (caseImplies(currCase))

          val unguardedComesLastOrAbsent =
            (!isGuardedCase(currCase) && impliesCurr.isEmpty) || { val LastImpliesCurr = impliesCurr.length - 1
            impliesCurr.indexWhere(oc => !isGuardedCase(oc)) match {
              // if all cases are guarded we will have to jump to the default case in the final else
              // (except if we're collapsing the default case itself)
              case -1 =>
                if (!currIsDefault) needDefault = true
                true

              // last case is not guarded, no need to jump to the default here
              // note: must come after case -1 => (since LastImpliesCurr may be -1)
              case LastImpliesCurr => true

              case _ => false
            }}

          if (unguardedComesLastOrAbsent /*(1)*/ && impliesCurr.forall(caseEquals(currCase)) /*(2)*/) {
            collapsed += (
              if (impliesCurr.isEmpty && !isGuardedCase(currCase)) currCase
              else collapse(currCase :: impliesCurr, currIsDefault)
            )

            remainingCases = others
          } else { // fail
            collapsed.clear()
            remainingCases = Nil
          }
        }

        (collapsed.toList, needDefault)
      }

      private def caseEquals(x: CaseDef)(y: CaseDef) = patternEquals(x.pat)(y.pat)
      private def patternEquals(x: Tree)(y: Tree): Boolean = (x, y) match {
        case (Alternative(xs), Alternative(ys)) =>
          xs.forall(x => ys.exists(patternEquals(x))) &&
          ys.forall(y => xs.exists(patternEquals(y)))
        case (Alternative(pats), _) => pats.forall(p => patternEquals(p)(y))
        case (_, Alternative(pats)) => pats.forall(q => patternEquals(x)(q))
        // regular switch
        case (Literal(Constant(cx)), Literal(Constant(cy))) => cx == cy
        case (Ident(nme.WILDCARD), Ident(nme.WILDCARD))     => true
        // type-switch for catch
        case (Bind(_, Typed(Ident(nme.WILDCARD), tpX)), Bind(_, Typed(Ident(nme.WILDCARD), tpY))) => tpX.tpe =:= tpY.tpe
        case _ => false
      }

      // if y matches then x matches for sure (thus, if x comes before y, y is unreachable)
      private def caseImplies(x: CaseDef)(y: CaseDef) = patternImplies(x.pat)(y.pat)
      private def patternImplies(x: Tree)(y: Tree): Boolean = (x, y) match {
        // since alternatives are flattened, must treat them as separate cases
        case (Alternative(pats), _) => pats.exists(p => patternImplies(p)(y))
        case (_, Alternative(pats)) => pats.exists(q => patternImplies(x)(q))
        // regular switch
        case (Literal(Constant(cx)), Literal(Constant(cy))) => cx == cy
        case (Ident(nme.WILDCARD), _)                       => true
        // type-switch for catch
        case (Bind(_, Typed(Ident(nme.WILDCARD), tpX)),
              Bind(_, Typed(Ident(nme.WILDCARD), tpY)))     => instanceOfTpImplies(tpY.tpe, tpX.tpe)
        case _ => false
      }

      private def noGuards(cs: List[CaseDef]): Boolean = !cs.exists(isGuardedCase)

      // must do this before removing guards from cases and collapsing (SI-6011, SI-6048)
      private def unreachableCase(cs: List[CaseDef]): Option[CaseDef] = {
        var cases = cs
        var unreachable: Option[CaseDef] = None

        while (cases.nonEmpty && unreachable.isEmpty) {
          val currCase = cases.head
          if (isDefault(currCase) && cases.tail.nonEmpty) // subsumed by the `else if` that follows, but faster
            unreachable = Some(cases.tail.head)
          else if (!isGuardedCase(currCase) || currCase.guard.tpe =:= ConstantType(Constant(true)))
            unreachable = cases.tail.find(caseImplies(currCase))
          else if (currCase.guard.tpe =:= ConstantType(Constant(false)))
            unreachable = Some(currCase)

          cases = cases.tail
        }

        unreachable
      }

      // empty list ==> failure
      def apply(cases: List[(Symbol, List[TreeMaker])], pt: Type): List[CaseDef] =
        // generate if-then-else for 1 case switch (avoids verify error... can't imagine a one-case switch being faster than if-then-else anyway)
        if (cases.isEmpty || cases.tail.isEmpty) Nil
        else {
          val caseDefs = cases map { case (scrutSym, makers) =>
            makers match {
              // default case
              case GuardAndBodyTreeMakers(guard, body) =>
                Some(defaultCase(scrutSym, guard, body))
              // constant (or typetest for typeSwitch)
              case SwitchableTreeMaker(pattern) :: GuardAndBodyTreeMakers(guard, body) =>
                Some(CaseDef(pattern, guard, body))
              // alternatives
              case AlternativesTreeMaker(_, altss, _) :: GuardAndBodyTreeMakers(guard, body) if alternativesSupported =>
                val switchableAlts = altss map {
                  case SwitchableTreeMaker(pattern) :: Nil =>
                    Some(pattern)
                  case _ =>
                    None
                }

                // succeed if they were all switchable
                sequence(switchableAlts) map { switchableAlts =>
                  CaseDef(Alternative(switchableAlts), guard, body)
                }
              case _ =>
                // patmatDebug("can't emit switch for "+ makers)
                None //failure (can't translate pattern to a switch)
            }
          }

          val caseDefsWithGuards = sequence(caseDefs) match {
            case None      => return Nil
            case Some(cds) => cds
          }

          val allReachable = unchecked || {
            // a switch with duplicate cases yields a verify error,
            // and a switch with duplicate cases and guards cannot soundly be rewritten to an unguarded switch
            // (even though the verify error would disappear, the behaviour would change)
            unreachableCase(caseDefsWithGuards) map (cd => reportUnreachable(cd.body.pos)) isEmpty
          }

          if (!allReachable) Nil
          else if (noGuards(caseDefsWithGuards)) {
            if (isDefault(caseDefsWithGuards.last)) caseDefsWithGuards
            else caseDefsWithGuards :+ defaultCase()
          } else {
            // collapse identical cases with different guards, push guards into body for all guarded cases
            // this translation is only sound if there are no unreachable (duplicate) cases
            // it should only be run if there are guarded cases, and on failure it returns Nil
            val (collapsed, needDefaultLabel) = collapseGuardedCases(caseDefsWithGuards)

            if (collapsed.isEmpty || (needDefaultLabel && !canJump)) Nil
            else {
              def wrapInDefaultLabelDef(cd: CaseDef): CaseDef =
                if (needDefaultLabel) deriveCaseDef(cd){ b =>
                  // TODO: can b.tpe ever be null? can't really use pt, see e.g. pos/t2683 or cps/match1.scala
                  defaultLabel setInfo MethodType(Nil, if (b.tpe != null) b.tpe else pt)
                  LabelDef(defaultLabel, Nil, b)
                } else cd

              val last = collapsed.last
              if (isDefault(last)) {
                if (!needDefaultLabel) collapsed
                else collapsed.init :+ wrapInDefaultLabelDef(last)
              } else collapsed :+ wrapInDefaultLabelDef(defaultCase())
            }
          }
        }
    }

    class RegularSwitchMaker(scrutSym: Symbol, matchFailGenOverride: Option[Tree => Tree], val unchecked: Boolean) extends SwitchMaker {
      val switchableTpe = Set(ByteClass.tpe, ShortClass.tpe, IntClass.tpe, CharClass.tpe)
      val alternativesSupported = true
      val canJump = true

      object SwitchablePattern { def unapply(pat: Tree): Option[Tree] = pat match {
        case Literal(const@Constant((_: Byte ) | (_: Short) | (_: Int  ) | (_: Char ))) =>
          Some(Literal(Constant(const.intValue))) // TODO: Java 7 allows strings in switches
        case _ => None
      }}

      object SwitchableTreeMaker extends SwitchableTreeMakerExtractor {
        def unapply(x: TreeMaker): Option[Tree] = x match {
          case EqualityTestTreeMaker(_, SwitchablePattern(const), _) => Some(const)
          case _ => None
        }
      }

      def isDefault(x: CaseDef): Boolean = x match {
        case CaseDef(Ident(nme.WILDCARD), EmptyTree, _) => true
        case _ => false
      }

      def defaultSym: Symbol = scrutSym
      def defaultBody: Tree  = { import CODE._; matchFailGenOverride map (gen => gen(REF(scrutSym))) getOrElse MATCHERROR(REF(scrutSym)) }
      def defaultCase(scrutSym: Symbol = defaultSym, guard: Tree = EmptyTree, body: Tree = defaultBody): CaseDef = { import CODE._; atPos(body.pos) {
        (DEFAULT IF guard) ==> body
      }}
    }

    override def emitSwitch(scrut: Tree, scrutSym: Symbol, cases: List[List[TreeMaker]], pt: Type, matchFailGenOverride: Option[Tree => Tree], unchecked: Boolean): Option[Tree] = { import CODE._
      val regularSwitchMaker = new RegularSwitchMaker(scrutSym, matchFailGenOverride, unchecked)
      // TODO: if patterns allow switch but the type of the scrutinee doesn't, cast (type-test) the scrutinee to the corresponding switchable type and switch on the result
      if (regularSwitchMaker.switchableTpe(scrutSym.tpe)) {
        val caseDefsWithDefault = regularSwitchMaker(cases map {c => (scrutSym, c)}, pt)
        if (caseDefsWithDefault isEmpty) None // not worth emitting a switch.
        else {
          // match on scrutSym -- converted to an int if necessary -- not on scrut directly (to avoid duplicating scrut)
          val scrutToInt: Tree =
            if (scrutSym.tpe =:= IntClass.tpe) REF(scrutSym)
            else (REF(scrutSym) DOT (nme.toInt))
          Some(BLOCK(
            VAL(scrutSym) === scrut,
            Match(scrutToInt, caseDefsWithDefault) // a switch
          ))
        }
      } else None
    }

    // for the catch-cases in a try/catch
    private object typeSwitchMaker extends SwitchMaker {
      val unchecked = false
      def switchableTpe(tp: Type) = true
      val alternativesSupported = false // TODO: needs either back-end support of flattening of alternatives during typers
      val canJump = false

      // TODO: there are more treemaker-sequences that can be handled by type tests
      // analyze the result of approximateTreeMaker rather than the TreeMaker itself
      object SwitchableTreeMaker extends SwitchableTreeMakerExtractor {
        def unapply(x: TreeMaker): Option[Tree] = x match {
          case tm@TypeTestTreeMaker(_, _, pt, _) if tm.isPureTypeTest => //  -- TODO: use this if binder does not occur in the body
            Some(Bind(tm.nextBinder, Typed(Ident(nme.WILDCARD), TypeTree(pt)) /* not used by back-end */))
          case _ =>
            None
        }
      }

      def isDefault(x: CaseDef): Boolean = x match {
        case CaseDef(Typed(Ident(nme.WILDCARD), tpt), EmptyTree, _) if (tpt.tpe =:= ThrowableClass.tpe)          => true
        case CaseDef(Bind(_, Typed(Ident(nme.WILDCARD), tpt)), EmptyTree, _) if (tpt.tpe =:= ThrowableClass.tpe) => true
        case CaseDef(Ident(nme.WILDCARD), EmptyTree, _)                                                          => true
        case _ => false
      }

      lazy val defaultSym: Symbol = freshSym(NoPosition, ThrowableClass.tpe)
      def defaultBody: Tree       = Throw(CODE.REF(defaultSym))
      def defaultCase(scrutSym: Symbol = defaultSym, guard: Tree = EmptyTree, body: Tree = defaultBody): CaseDef = { import CODE._; atPos(body.pos) {
        (CASE (Bind(scrutSym, Typed(Ident(nme.WILDCARD), TypeTree(ThrowableClass.tpe)))) IF guard) ==> body
      }}
    }

    // TODO: drop null checks
    override def emitTypeSwitch(bindersAndCases: List[(Symbol, List[TreeMaker])], pt: Type): Option[List[CaseDef]] = {
      val caseDefsWithDefault = typeSwitchMaker(bindersAndCases, pt)
      if (caseDefsWithDefault isEmpty) None
      else Some(caseDefsWithDefault)
    }
  }

  trait OptimizedMatchMonadInterface extends MatchMonadInterface {
    override def inMatchMonad(tp: Type): Type = optionType(tp)
    override def pureType(tp: Type): Type     = tp
    override protected def matchMonadSym      = OptionClass
  }

  trait OptimizedCodegen extends CodegenCore with TypedSubstitution with OptimizedMatchMonadInterface {
    override def codegen: AbsCodegen = optimizedCodegen

    // trait AbsOptimizedCodegen extends AbsCodegen {
    //   def flatMapCondStored(cond: Tree, condSym: Symbol, res: Tree, nextBinder: Symbol, next: Tree): Tree
    // }
    // def optimizedCodegen: AbsOptimizedCodegen

    // when we know we're targetting Option, do some inlining the optimizer won't do
    // for example, `o.flatMap(f)` becomes `if(o == None) None else f(o.get)`, similarly for orElse and guard
    //   this is a special instance of the advanced inlining optimization that takes a method call on
    //   an object of a type that only has two concrete subclasses, and inlines both bodies, guarded by an if to distinguish the two cases
    object optimizedCodegen extends CommonCodegen { import CODE._

      /** Inline runOrElse and get rid of Option allocations
       *
       * runOrElse(scrut: scrutTp)(matcher): resTp = matcher(scrut) getOrElse ${catchAll(`scrut`)}
       * the matcher's optional result is encoded as a flag, keepGoing, where keepGoing == true encodes result.isEmpty,
       * if keepGoing is false, the result Some(x) of the naive translation is encoded as matchRes == x
       */
      def matcher(scrut: Tree, scrutSym: Symbol, restpe: Type)(cases: List[Casegen => Tree], matchFailGen: Option[Tree => Tree]): Tree = {
        val matchEnd = newSynthCaseLabel("matchEnd")
        val matchRes = NoSymbol.newValueParameter(newTermName("x"), NoPosition, newFlags = SYNTHETIC) setInfo restpe.withoutAnnotations
        matchEnd setInfo MethodType(List(matchRes), restpe)

        def newCaseSym = newSynthCaseLabel("case") setInfo MethodType(Nil, restpe)
        var _currCase = newCaseSym

        val caseDefs = cases map { (mkCase: Casegen => Tree) =>
          val currCase = _currCase
          val nextCase = newCaseSym
          _currCase = nextCase

          LabelDef(currCase, Nil, mkCase(new OptimizedCasegen(matchEnd, nextCase)))
        }

        // must compute catchAll after caseLabels (side-effects nextCase)
        // catchAll.isEmpty iff no synthetic default case needed (the (last) user-defined case is a default)
        // if the last user-defined case is a default, it will never jump to the next case; it will go immediately to matchEnd
        val catchAllDef = matchFailGen map { matchFailGen =>
          val scrutRef = if(scrutSym ne NoSymbol) REF(scrutSym) else EmptyTree // for alternatives

          LabelDef(_currCase, Nil, matchEnd APPLY (matchFailGen(scrutRef)))
        } toList // at most 1 element

        // scrutSym == NoSymbol when generating an alternatives matcher
        val scrutDef = if(scrutSym ne NoSymbol) List(VAL(scrutSym)  === scrut) else Nil // for alternatives

        // the generated block is taken apart in TailCalls under the following assumptions
          // the assumption is once we encounter a case, the remainder of the block will consist of cases
          // the prologue may be empty, usually it is the valdef that stores the scrut
          // val (prologue, cases) = stats span (s => !s.isInstanceOf[LabelDef])
        Block(
          scrutDef ++ caseDefs ++ catchAllDef,
          LabelDef(matchEnd, List(matchRes), REF(matchRes))
        )
      }

      class OptimizedCasegen(matchEnd: Symbol, nextCase: Symbol) extends CommonCodegen with Casegen {
        def matcher(scrut: Tree, scrutSym: Symbol, restpe: Type)(cases: List[Casegen => Tree], matchFailGen: Option[Tree => Tree]): Tree =
          optimizedCodegen.matcher(scrut, scrutSym, restpe)(cases, matchFailGen)

        // only used to wrap the RHS of a body
        // res: T
        // returns MatchMonad[T]
        def one(res: Tree): Tree = matchEnd APPLY (res) // a jump to a case label is special-cased in typedApply
        protected def zero: Tree = nextCase APPLY ()

        // prev: MatchMonad[T]
        // b: T
        // next: MatchMonad[U]
        // returns MatchMonad[U]
        def flatMap(prev: Tree, b: Symbol, next: Tree): Tree = {
          val tp      = inMatchMonad(b.tpe)
          val prevSym = freshSym(prev.pos, tp, "o")
          val isEmpty = tp member vpmName.isEmpty
          val get     = tp member vpmName.get

          BLOCK(
            VAL(prevSym) === prev,
            // must be isEmpty and get as we don't control the target of the call (prev is an extractor call)
            ifThenElseZero(NOT(prevSym DOT isEmpty), Substitution(b, prevSym DOT get)(next))
          )
        }

        // cond: Boolean
        // res: T
        // nextBinder: T
        // next == MatchMonad[U]
        // returns MatchMonad[U]
        def flatMapCond(cond: Tree, res: Tree, nextBinder: Symbol, next: Tree): Tree =
          ifThenElseZero(cond, BLOCK(
            VAL(nextBinder) === res,
            next
          ))

        // guardTree: Boolean
        // next: MatchMonad[T]
        // returns MatchMonad[T]
        def flatMapGuard(guardTree: Tree, next: Tree): Tree =
          ifThenElseZero(guardTree, next)

        def flatMapCondStored(cond: Tree, condSym: Symbol, res: Tree, nextBinder: Symbol, next: Tree): Tree =
          ifThenElseZero(cond, BLOCK(
            condSym    === TRUE_typed,
            nextBinder === res,
            next
          ))
      }

    }
  }


  trait MatchOptimizations extends CommonSubconditionElimination
                              with DeadCodeElimination
                              with SwitchEmission
                              with OptimizedCodegen
                              with SymbolicMatchAnalysis
                              with DPLLSolver { self: TreeMakers =>
    override def optimizeCases(prevBinder: Symbol, cases: List[List[TreeMaker]], pt: Type, unchecked: Boolean): (List[List[TreeMaker]], List[Tree]) = {
      if (!unchecked) {
        unreachableCase(prevBinder, cases, pt) foreach { caseIndex =>
          reportUnreachable(cases(caseIndex).last.pos)
        }
        val counterExamples = exhaustive(prevBinder, cases, pt)
        if (counterExamples.nonEmpty)
          reportMissingCases(prevBinder.pos, counterExamples)
      }

      val optCases = doCSE(prevBinder, doDCE(prevBinder, cases, pt), pt)
      val toHoist = (
        for (treeMakers <- optCases)
          yield treeMakers.collect{case tm: ReusedCondTreeMaker => tm.treesToHoist}
        ).flatten.flatten.toList
      (optCases, toHoist)
    }
  }
}

object PatternMatchingStats {
  val patmatNanos         = Statistics.newTimer     ("time spent in patmat", "patmat")
  val patmatAnaDPLL       = Statistics.newSubTimer  ("  of which DPLL", patmatNanos)
  val patmatCNF           = Statistics.newSubTimer  ("  of which in CNF conversion", patmatNanos)
  val patmatCNFSizes      = Statistics.newQuantMap[Int, Statistics.Counter]("  CNF size counts", "patmat")(Statistics.newCounter(""))
  val patmatAnaVarEq      = Statistics.newSubTimer  ("  of which variable equality", patmatNanos)
  val patmatAnaExhaust    = Statistics.newSubTimer  ("  of which in exhaustivity", patmatNanos)
  val patmatAnaReach      = Statistics.newSubTimer  ("  of which in unreachability", patmatNanos)
}