summaryrefslogtreecommitdiff
path: root/src/library/scala/collection/Iterator.scala
blob: 20573ca3ab93a9eccd308cedad9a3fcfe6df87b4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2003-2009, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://scala-lang.org/               **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */

// $Id$


package scala.collection

import mutable.{Buffer, ArrayBuffer, ListBuffer, StringBuilder}
import immutable.{List, Stream}
import annotation.{ tailrec }
// import immutable.{List, Nil, ::, Stream}

/** The <code>Iterator</code> object provides various functions for
 *  creating specialized iterators.
 *
 *  @author  Martin Odersky
 *  @author  Matthias Zenger
 *  @version 2.8
 *  @since   2.8
 */
object Iterator {

  val empty = new Iterator[Nothing] {
    def hasNext: Boolean = false
    def next(): Nothing = throw new NoSuchElementException("next on empty iterator")
  }

  /** An iterator with a single element.
   *  @param elem the element
   *  @note  Equivalent, but more efficient than Iterator(elem)
   */
  def single[A](elem: A) = new Iterator[A] {
    private var hasnext = true
    def hasNext: Boolean = hasnext
    def next(): A =
      if (hasnext) { hasnext = false; elem }
      else empty.next()
  }

  /** Creates an iterator with given elements
   *  @param elems  The elements returned one-by-one from the iterator
   */
  def apply[A](elems: A*): Iterator[A] = elems.iterator

  /** An iterator that returns the results of some element computation a number of times.
   *  @param   len  The number of elements returned
   *  @param   elem The element computation determinining each result
   */
  def fill[A](len: Int)(elem: => A) = new Iterator[A] {
    private var i = 0
    def hasNext: Boolean = i < len
    def next(): A =
      if (hasNext) { i += 1; elem }
      else empty.next()
  }

  /** An iterator that returns values of a given function over a range of
   *  integer values starting from 0.
   *
   *  @param end   The argument up to which values are tabulated.
   *  @param f     The function computing the results
   *  @return  An iterator with values `f(0) ... f(end-1)`
   */
  def tabulate[A](end: Int)(f: Int => A) = new Iterator[A] {
    private var i = 0
    def hasNext: Boolean = i < end
    def next(): A =
      if (hasNext) { val result = f(i); i += 1; result }
      else empty.next()
  }

  /** An iterator returning successive values in some integer interval.
   *
   *  @param start the start value of the iterator
   *  @param end   the end value of the iterator (the first value NOT returned)
   *  @return      the iterator with values in range `start, start + 1, ..., end - 1`
   */
  def range(start: Int, end: Int): Iterator[Int] = range(start, end, 1)

  /** An iterator returning equally spaced values in some integer interval.
   *
   *  @param start the start value of the iterator
   *  @param end   the end value of the iterator (the first value NOT returned)
   *  @param step  the increment value of the iterator (must be positive or negative)
   *  @return      the iterator with values in `start, start + step, ...` up to, but excluding `end`
   */
  def range(start: Int, end: Int, step: Int) = new Iterator[Int] {
    if (step == 0) throw new IllegalArgumentException("zero step")
    private var i = start
    def hasNext: Boolean = (step <= 0 || i < end) && (step >= 0 || i > end)
    def next(): Int =
      if (hasNext) { val result = i; i += step; result }
      else empty.next()
  }

  /** An infinite iterator that repeatedly applies a given function to the previous result.
   *
   *  @param start the start value of the iterator
   *  @param f     the function that's repeatedly applied
   *  @return      the iterator returning the infinite sequence of values `start, f(start), f(f(start)), ...`
   */
  def iterate[T](start: T)(f: T => T): Iterator[T] = new Iterator[T] {
    private[this] var acc = start
    def hasNext: Boolean = true
    def next(): T = { val res = acc ; acc = f(acc) ; res }
  }

  /** An infinite-length iterator which returns successive values from some start value.

   *  @param start the start value of the iterator
   *  @return      the iterator returning the infinite sequence of values `start, start + 1, start + 2, ...`
   */
  def from(start: Int): Iterator[Int] = from(start, 1)

  /** An infinite-length iterator returning values equally spaced apart.
   *
   *  @param start the start value of the iterator
   *  @param step  the increment between successive values
   *  @return      the iterator returning the infinite sequence of values `start, start + 1 * step, start + 2 * step, ...`
   */
  def from(start: Int, step: Int): Iterator[Int] = new Iterator[Int] {
    private var i = start
    def hasNext: Boolean = true
    def next(): Int = { val result = i; i += step; result }
  }

  /** Create an infinite iterator based on the given expression
   *  (which is recomputed for every element)
   *
   *  @param elem the element composing the resulting iterator
   *  @return the iterator containing an infinite number of elem
   */
  def continually[A](elem: => A): Iterator[A] = new Iterator[A] {
    def hasNext = true
    def next = elem
  }

  /** A wrapper class for the <code>flatten</code> method that is added to
   *  class <code>Iterator</code> with implicit conversion
   *  @see iteratorIteratorWrapper.
   */
  class IteratorIteratorOps[A](its: Iterator[Iterator[A]]) {
    /** If `its` is an iterator of iterators, `its.flatten` gives the iterator
     *  that is the concatenation of all iterators in `its`.
     */
    def flatten: Iterator[A] = new Iterator[A] {
      private var it: Iterator[A] = empty
      def hasNext: Boolean = it.hasNext || its.hasNext && { it = its.next(); hasNext }
      def next(): A = if (hasNext) it.next() else empty.next()
    }
  }

  /** An implicit conversion which adds the `flatten` method to class `Iterator` */
  implicit def iteratorIteratorWrapper[A](its: Iterator[Iterator[A]]): IteratorIteratorOps[A] =
    new IteratorIteratorOps[A](its)

  @deprecated("use `xs.iterator' or `Iterator(xs)' instead")
  def fromValues[a](xs: a*) = xs.iterator

  /**
   *  @param xs the array of elements
   *  @see also: IndexedSeq.iterator and slice
   */
  @deprecated("use `xs.iterator' instead")
  def fromArray[a](xs: Array[a]): Iterator[a] =
    fromArray(xs, 0, xs.length)

  /**
   *  @param xs     the array of elements
   *  @param start  the start index
   *  @param length  the length
   *  @see also: IndexedSeq.iterator and slice
   */
  @deprecated("use `xs.slice(start, start + length).iterator' instead")
  def fromArray[a](xs: Array[a], start: Int, length: Int): Iterator[a] =
    xs.slice(start, start + length).iterator

  /**
   *  @param n the product arity
   *  @return  the iterator on <code>Product&lt;n&gt;</code>.
   */
  @deprecated("use product.productIterator instead")
  def fromProduct(n: Product): Iterator[Any] = new Iterator[Any] {
    private var c: Int = 0
    private val cmax = n.productArity
    def hasNext = c < cmax
    def next() = { val a = n productElement c; c += 1; a }
  }

  /** Create an iterator with elements
   *  <code>e<sub>n+1</sub> = step(e<sub>n</sub>)</code>
   *  where <code>e<sub>0</sub> = start</code>
   *  and elements are in the range between <code>start</code> (inclusive)
   *  and <code>end</code> (exclusive)
   *
   *  @param start the start value of the iterator
   *  @param end   the end value of the iterator
   *  @param step  the increment function of the iterator, must be monotonically increasing or decreasing
   *  @return      the iterator with values in range <code>[start;end)</code>.
   */
  @deprecated("use Iterator.iterate(start, end - start)(step) instead")
  def range(start: Int, end: Int, step: Int => Int) = new Iterator[Int] {
    private val up = step(start) > start
    private val down = step(start) < start
    private var i = start
    def hasNext: Boolean = (!up || i < end) && (!down || i > end)
    def next(): Int =
      if (hasNext) { val j = i; i = step(i); j }
      else empty.next()
  }

  /** Create an iterator with elements
   *  <code>e<sub>n+1</sub> = step(e<sub>n</sub>)</code>
   *  where <code>e<sub>0</sub> = start</code>.
   *
   *  @param start the start value of the iterator
   *  @param step  the increment function of the iterator
   *  @return      the iterator starting at value <code>start</code>.
   */
  @deprecated("use iterate(start)(step) instead")
  def from(start: Int, step: Int => Int): Iterator[Int] = new Iterator[Int] {
    private var i = start
    override def hasNext: Boolean = true
    def next(): Int = { val j = i; i = step(i); j }
  }

  /** Create an iterator that is the concantenation of all iterators
   *  returned by a given iterator of iterators.
   *   @param its   The iterator which returns on each call to next
   *                a new iterator whose elements are to be concatenated to the result.
   */
  @deprecated("use its.flatten instead")
  def flatten[T](its: Iterator[Iterator[T]]): Iterator[T] = new Iterator[T] {
    private var cur = its.next
    def hasNext: Boolean = {
      while (!cur.hasNext && its.hasNext) cur = its.next
      cur.hasNext
    }
    def next(): T =
      (if (hasNext) cur else empty).next()
  }
}

import Iterator.empty

/** Iterators are data structures that allow to iterate over a sequence
 *  of elements. They have a <code>hasNext</code> method for checking
 *  if there is a next element available, and a <code>next</code> method
 *  which returns the next element and discards it from the iterator.
 *
 *  @author  Martin Odersky, Matthias Zenger
 *  @version 2.8
 *  @since   2.8
 */
trait Iterator[+A] { self =>

  /** Does this iterator provide another element?
   */
  def hasNext: Boolean

  /** Returns the next element of this iterator.
   */
  def next(): A

  /** Returns a new iterator that iterates only over the first <code>n</code>
   *  elements of this iterator, or the length of the iterator, whichever is smaller.
   *
   *  @param n the number of elements to take
   *  @return  the new iterator
   */
  def take(n: Int): Iterator[A] = new Iterator[A] {
    private var remaining = n
    def hasNext = remaining > 0 && self.hasNext
    def next(): A =
      if (hasNext) { remaining -= 1; self.next }
      else empty.next()
  }

  /** Advances this iterator past the first <code>n</code> elements,
   *  or the length of the iterator, whichever is smaller.
   *
   *  @param n the number of elements to drop
   *  @return  the new iterator
   */
  def drop(n: Int): Iterator[A] = {
    @tailrec
    def loop(left: Int): Iterator[A] =
      if (left > 0 && hasNext) { next; loop(left - 1) }
      else this

    loop(n)
  }

  /** Advances this iterator past the first `from` elements using `drop`,
   *  and then takes `until - from` elements, using `take`.
   *
   *  @param from   The index of the first element of the slice
   *  @param until    The index of the element following the slice
   */
  def slice(from: Int, until: Int): Iterator[A] = drop(from).take(until - from)

  /** Returns a new iterator that maps all elements of this iterator
   *  to new elements using function <code>f</code>.
   */
  def map[B](f: A => B): Iterator[B] = new Iterator[B] {
    def hasNext = self.hasNext
    def next() = f(self.next())
  }

  /** Returns a new iterator that first yields the elements of this
   *  iterator followed by the elements provided by iterator <code>that</code>.
   */
  def ++[B >: A](that: => Iterator[B]) = new Iterator[B] {
    // optimize a little bit to prevent n log n behavior.
    var cur : Iterator[B] = self
    def hasNext = cur.hasNext || (cur eq self) && { cur = that; hasNext }
    def next() = { hasNext; cur.next() }
  }

  /** Applies the given function <code>f</code> to each element of
   *  this iterator, then concatenates the results.
   *
   *  @param f the function to apply on each element.
   *  @return  an iterator over <code>f(a<sub>0</sub>), ... ,
   *           f(a<sub>n</sub>)</code> if this iterator yields the
   *           elements <code>a<sub>0</sub>, ..., a<sub>n</sub></code>.
   */
  def flatMap[B](f: A => Iterator[B]): Iterator[B] = new Iterator[B] {
    private var cur: Iterator[B] = empty
    def hasNext: Boolean =
      cur.hasNext || self.hasNext && { cur = f(self.next); hasNext }
    def next(): B = (if (hasNext) cur else empty).next()
  }

  /** Returns an iterator over all the elements of this iterator that
   *  satisfy the predicate <code>p</code>. The order of the elements
   *  is preserved.
   *
   *  @param p the predicate used to filter the iterator.
   *  @return  the elements of this iterator satisfying <code>p</code>.
   */
  def filter(p: A => Boolean): Iterator[A] = {
    val self = buffered
    new Iterator[A] {
      private def skip() = while (self.hasNext && !p(self.head)) self.next()
      def hasNext = { skip(); self.hasNext }
      def next() = { skip(); self.next() }
    }
  }

  /** !!! Temporary, awaiting more general implementation.
   *  ... better wait longer, this fails once flatMap gets in the mix.
   */
  // def withFilter(p: A => Boolean) = this.toStream withFilter p

  /** Returns an iterator over all the elements of this iterator which
   *  do not satisfy the predicate <code>p</code>.
   *
   *  @param p the predicate used to filter.
   *  @return  the elements of this iterator not satisfying <code>p</code>.
   */

  def filterNot(p: A => Boolean): Iterator[A] = filter(!p(_))

 /** Returns a new iterator based on the partial function <code>pf</code>,
  *  containing <code>pf(x)</code> for all the elements which are defined on pf.
  *  The order of the elements is preserved.
  *
  *  @param pf the partial function which filters and maps the iterator.
  *  @return the new iterator.
  */
  def partialMap[B](pf: PartialFunction[Any, B]): Iterator[B] = {
    val self = buffered
    new Iterator[B] {
      private def skip() = while (self.hasNext && !pf.isDefinedAt(self.head)) self.next()
      def hasNext = { skip(); self.hasNext }
      def next() = { skip(); pf(self.next()) }
    }
  }

  /** Returns an iterator over the longest prefix of this iterator such that
   *  all elements of the result satisfy the predicate <code>p</code>.
   *  The order of the elements is preserved.
   *
   *  @param p the predicate used to filter the iterator.
   *  @return  the longest prefix of this iterator satisfying <code>p</code>.
   */
  def takeWhile(p: A => Boolean): Iterator[A] = {
    val self = buffered
    new Iterator[A] {
      def hasNext = { self.hasNext && p(self.head) }
      def next() = (if (hasNext) self else empty).next()
    }
  }

  /** Partitions this iterator in two iterators according to a predicate.
   *
   *  @param p the predicate on which to partition
   *  @return  a pair of iterators: the iterator that satisfies the predicate
   *           <code>p</code> and the iterator that does not.
   *           The relative order of the elements in the resulting iterators
   *           is the same as in the original iterator.
   */
  def partition(p: A => Boolean): (Iterator[A], Iterator[A]) = {
    val self = buffered
    class PartitionIterator(p: A => Boolean) extends Iterator[A] {
      var other: PartitionIterator = _
      val lookahead = new scala.collection.mutable.Queue[A]
      def skip() =
        while (self.hasNext && !p(self.head)) {
          other.lookahead += self.next
        }
      def hasNext = !lookahead.isEmpty || { skip(); self.hasNext }
      def next() = if (!lookahead.isEmpty) lookahead.dequeue()
                   else { skip(); self.next() }
    }
    val l = new PartitionIterator(p)
    val r = new PartitionIterator(!p(_))
    l.other = r
    r.other = l
    (l, r)
  }

  /** Skips longest sequence of elements of this iterator which satisfy given
   *  predicate <code>p</code>, and returns an iterator of the remaining elements.
   *
   *  @param p the predicate used to skip elements.
   *  @return  an iterator consisting of the remaining elements
   */
  def dropWhile(p: A => Boolean): Iterator[A] = {
    val self = buffered
    new Iterator[A] {
      var dropped = false
      private def skip() =
        if (!dropped) {
          while (self.hasNext && p(self.head)) self.next()
          dropped = true
        }
      def hasNext = { skip(); self.hasNext }
      def next() = { skip(); self.next() }
    }
  }

  /** Return an iterator formed from this iterator and the specified iterator
   *  <code>that</code> by associating each element of the former with
   *  the element at the same position in the latter.
   *  If one of the two iterators is longer than the other, its remaining
   *  elements are ignored.
   */
  def zip[B](that: Iterator[B]) = new Iterator[(A, B)] {
    def hasNext = self.hasNext && that.hasNext
    def next = (self.next, that.next)
  }

  /** Return a new iterator with a length equal or longer to <code>len</code>.
   *  If the current iterator returns fewer than `len` elements
   *  return `elem` until the required length `len` is reached.
   */
  def padTo[A1 >: A](len: Int, elem: A1) = new Iterator[A1] {
    private var count = 0
    def hasNext = self.hasNext || count < len
    def next = {
      count += 1
      if (self.hasNext) self.next
      else if (count <= len) elem
      else empty.next
    }
  }

  /** Return an iterator that pairs each element of this iterator
   *  with its index, counting from 0.
   *
   */
  def zipWithIndex = new Iterator[(A, Int)] {
    var idx = 0
    def hasNext = self.hasNext
    def next = {
      val ret = (self.next, idx)
      idx += 1
      ret
    }
  }

  /** Returns an iterator formed from this iterator and the specified iterator
   *  <code>that</code> by associating each element of the former with
   *  the element at the same position in the latter.
   *
   *  @param that     iterator <code>that</code> may have a different length
   *                  as the self iterator.
   *  @param thisElem element <code>thisElem</code> is used to fill up the
   *                  resulting iterator if the self iterator is shorter than
   *                  <code>that</code>
   *  @param thatElem element <code>thatElem</code> is used to fill up the
   *                  resulting iterator if <code>that</code> is shorter than
   *                  the self iterator
   *  @return         <code>Iterator((a<sub>0</sub>,b<sub>0</sub>), ...,
   *                  (a<sub>n</sub>,b<sub>n</sub>), (elem,b<sub>n+1</sub>),
   *                  ..., {elem,b<sub>m</sub>})</code>
   *                  when <code>[a<sub>0</sub>, ..., a<sub>n</sub>] zip
   *                  [b<sub>0</sub>, ..., b<sub>m</sub>]</code> is
   *                  invoked where <code>m &gt; n</code>.
   */
  def zipAll[B, A1 >: A, B1 >: B](that: Iterator[B], thisElem: A1, thatElem: B1) = new Iterator[(A1, B1)] {
    def hasNext = self.hasNext || that.hasNext
    def next(): (A1, B1) =
      if (self.hasNext) {
        if (that.hasNext) (self.next(), that.next())
        else (self.next(), thatElem)
      } else {
        if (that.hasNext) (thisElem, that.next())
        else empty.next()
      }
  }

  /** Execute a function <code>f</code> for all elements of this
   *  iterator.
   *
   *  @param  f   a function that is applied to every element.
   */
  def foreach[U](f: A =>  U) { while (hasNext) f(next()) }

  /** Apply a predicate <code>p</code> to all elements of this
   *  iterable object and return <code>true</code> iff the predicate yields
   *  <code>true</code> for all elements.
   *
   *  @param p the predicate
   *  @return  <code>true</code> iff the predicate yields <code>true</code>
   *           for all elements.
   */
  def forall(p: A => Boolean): Boolean = {
    var res = true
    while (res && hasNext) res = p(next())
    res
  }

  /** Apply a predicate <code>p</code> to all elements of this
   *  iterable object and return true iff there is at least one
   *  element for which <code>p</code> yields <code>true</code>.
   *
   *  @param p the predicate
   *  @return  <code>true</code> iff the predicate yields <code>true</code>
   *           for at least one element.
   */
  def exists(p: A => Boolean): Boolean = {
    var res = false
    while (!res && hasNext) res = p(next())
    res
  }

 /** Tests if the given value <code>elem</code> is a member of this iterator.
   *
   *  @param elem element whose membership has to be tested.
   */
  def contains(elem: Any): Boolean = exists(_ == elem)

  /** Find and return the first value returned by the iterator satisfying a
   *  predicate, if any.
   *
   *  @param p the predicate
   *  @return  the first element in the iterable object satisfying
   *           <code>p</code>, or <code>None</code> if none exists.
   */
  def find(p: A => Boolean): Option[A] = {
    var res: Option[A] = None
    while (res.isEmpty && hasNext) {
      val e = next()
      if (p(e)) res = Some(e)
    }
    res
  }

  /** Returns index of the first element satisfying a predicate, or -1.
   *
   *  @note may not terminate for infinite-sized collections.
   *  @param  p the predicate
   *  @return   the index of the first element satisfying <code>p</code>,
   *           or -1 if such an element does not exist
   */
  def indexWhere(p: A => Boolean): Int = {
    var i = 0
    var found = false
    while (!found && hasNext) {
      if (p(next())) {
        found = true
      } else {
        i += 1
      }
    }
    if (found) i else -1
  }

  /** Returns the index of the first occurence of the specified
   *  object in this iterable object.
   *
   *  @note may not terminate for infinite-sized collections.
   *  @param  elem  element to search for.
   *  @return the index in this sequence of the first occurence of the
   *          specified element, or -1 if the sequence does not contain
   *          this element.
   */
  def indexOf[B >: A](elem: B): Int = {
    var i = 0
    var found = false
    while (!found && hasNext) {
      if (next() == elem) {
        found = true
      } else {
        i += 1
      }
    }
    if (found) i else -1
  }

  /** Combines the elements of this iterator together using the binary
   *  operator <code>op</code>, from left to right, and starting with
   *  the value <code>z</code>.
   *
   *  @return <code>op(... (op(op(z,a<sub>0</sub>),a<sub>1</sub>) ...),
   *          a<sub>n</sub>)</code> if the iterator yields elements
   *          <code>a<sub>0</sub>, a<sub>1</sub>, ..., a<sub>n</sub></code>.
   */
  def foldLeft[B](z: B)(op: (B, A) => B): B = {
    var acc = z
    while (hasNext) acc = op(acc, next())
    acc
  }

  /** Combines the elements of this iterator together using the binary
   *  operator <code>op</code>, from right to left, and starting with
   *  the value <code>z</code>.
   *
   *  @return <code>a<sub>0</sub> op (... op (a<sub>n</sub> op z)...)</code>
   *          if the iterator yields elements <code>a<sub>0</sub>, a<sub>1</sub>, ...,
   *          a<sub>n</sub></code>.
   */
  def foldRight[B](z: B)(op: (A, B) => B): B =
    if (hasNext) op(next(), foldRight(z)(op)) else z

  /** Similar to <code>foldLeft</code> but can be used as
   *  an operator with the order of iterator and zero arguments reversed.
   *  That is, <code>z /: xs</code> is the same as <code>xs foldLeft z</code>.
   *
   *  @param z the left argument of the first application of <code>op</code>
   *           (evaluation occurs from left to right).
   *  @param op the applied operator.
   *  @return  the result value
   *  @see     <code><a href="#foldLeft">foldLeft</a></code>.
   */
  def /:[B](z: B)(op: (B, A) => B): B = foldLeft(z)(op)

  /** An alias for <code>foldRight</code>.
   *  That is, <code>xs :\ z</code> is the same as <code>xs foldRight z</code>.
   *
   *  @param z the right argument of the first application of <code>op</code>
   *           (evaluation occurs from right to left).
   *  @param op the applied operator.
   *  @return  the result value.
   *  @see     <code><a href="#foldRight">foldRight</a></code>.
   */
  def :\[B](z: B)(op: (A, B) => B): B = foldRight(z)(op)

  /** Combines the elements of this iterator together using the binary
   *  operator <code>op</code>, from left to right.
   *
   *  @param op  The operator to apply
   *  @return <code>op(... op(a<sub>0</sub>,a<sub>1</sub>), ..., a<sub>n</sub>)</code>
   *  if the iterator yields elements
   *          <code>a<sub>0</sub>, a<sub>1</sub>, ..., a<sub>n</sub></code>.
   *  @throws Predef.UnsupportedOperationException if the iterator is empty.
   */
  def reduceLeft[B >: A](op: (B, A) => B): B = {
    if (hasNext) foldLeft[B](next())(op)
    else throw new UnsupportedOperationException("empty.reduceLeft")
  }

  /** Combines the elements of this iterator together using the binary
   *  operator <code>op</code>, from right to left
   *  @param op  The operator to apply
   *
   *  @return <code>a<sub>0</sub> op (... op (a<sub>n-1</sub> op a<sub>n</sub>)...)</code>
   *          if the iterator yields elements <code>a<sub>0</sub>, a<sub>1</sub>, ...,
   *          a<sub>n</sub></code>.

   *  @throws Predef.UnsupportedOperationException if the iterator is empty.
   */
  def reduceRight[B >: A](op: (A, B) => B): B = {
    if (hasNext) foldRight[B](next())(op)
    else throw new UnsupportedOperationException("empty.reduceRight")
  }

  /** Combines the elements of this iterator together using the binary
   *  operator <code>op</code>, from left to right
   *  @param op  The operator to apply
   *  @return  If the iterable is non-empty, the result of the operations as an Option, otherwise None.
   */
  def reduceLeftOption[B >: A](op: (B, A) => B): Option[B] = {
    if (!hasNext) None else Some(reduceLeft(op))
  }

  /** Combines the elements of this iterable object together using the binary
   *  operator <code>op</code>, from right to left.
   *
   *  @param op  The operator to apply
   *  @return  If the iterable is non-empty, the result of the operations as an Option, otherwise None.
   */
  def reduceRightOption[B >: A](op: (A, B) => B): Option[B] = {
    if (!hasNext) None else Some(reduceRight(op))
  }

  /** Returns a buffered iterator from this iterator.
   */
  def buffered = new BufferedIterator[A] {
    private var hd: A = _
    private var hdDefined: Boolean = false

    def head: A = {
      if (!hdDefined) {
        hd = next()
        hdDefined = true
      }
      hd
    }

    def hasNext =
      hdDefined || self.hasNext

    def next =
      if (hdDefined) {
        hdDefined = false
        hd
      } else self.next
  }

  /** Since I cannot reliably get take(n) to influence the original
   *  iterator (it seems to depend on some ordering issue I don't
   *  understand) this method takes the way one might expect, leaving
   *  the original iterator with 'size' fewer elements.
   */
  private def takeDestructively(size: Int): Seq[A] = {
    val buf = new ArrayBuffer[A]
    var i = 0
    while (self.hasNext && i < size) {
      buf += self.next
      i += 1
    }
    buf
  }

  /** A flexible iterator for transforming an <code>Iterator[A]</code> into an
   *  Iterator[Seq[A]], with configurable sequence size, step, and
   *  strategy for dealing with elements which don't fit evenly.
   *
   *  Typical uses can be achieved via methods `grouped' and `sliding'.
   */
  class GroupedIterator[B >: A](self: Iterator[A], size: Int, step: Int) extends Iterator[Seq[B]] {
    require(size >= 1 && step >= 1)

    private[this] var buffer: ArrayBuffer[B] = ArrayBuffer()  // the buffer
    private[this] var filled = false                          // whether the buffer is "hot"
    private[this] var _partial = true                         // whether we deliver short sequences
    private[this] var pad: Option[() => B] = None             // what to pad short sequences with

    /** Public functions which can be used to configure the iterator before use. */
    def withPadding(x: => B): this.type = {
      pad = Some(() => x)
      this
    }
    def withPartial(x: Boolean): this.type = {
      _partial = x
      if (_partial == true) // reset pad since otherwise it will take precedence
        pad = None

      this
    }

    private def padding(x: Int) = List.fill(x)(pad.get())
    private def gap = (step - size) max 0

    private def go(count: Int) = {
      val prevSize = buffer.size
      def isFirst = prevSize == 0
      // If there is padding defined we insert it immediately
      // so the rest of the code can be oblivious
      val xs: Seq[B] = {
        val res = self takeDestructively count
        // extra checks so we don't calculate length unless there's reason
        if (pad.isDefined && !self.hasNext) {
          val shortBy = count - res.length
          if (shortBy > 0) res ++ padding(shortBy) else res
        }
        else res
      }
      lazy val len = xs.length
      lazy val incomplete = len < count

      // if 0 elements are requested, or if the number of newly obtained
      // elements is less than the gap between sequences, we are done.
      def deliver(howMany: Int) = {
        (howMany > 0 && len > gap) && {
          if (!isFirst)
            buffer trimStart (step min prevSize)

          val available =
            if (isFirst) len
            else howMany min (len - gap)

          buffer ++= (xs takeRight available)
          filled = true
          true
        }
      }

      if (xs.isEmpty) false                         // self ran out of elements
      else if (_partial) deliver(len min size)      // if _partial is true, we deliver regardless
      else if (incomplete) false                    // !_partial && incomplete means no more seqs
      else if (isFirst) deliver(len)                // first element
      else deliver(step min size)                   // the typical case
    }

    // fill() returns false if no more sequences can be produced
    private def fill(): Boolean = {
      if (!self.hasNext) false
      // the first time we grab size, but after that we grab step
      else if (buffer.isEmpty) go(size)
      else go(step)
    }

    def hasNext = filled || fill()
    def next = {
      if (!filled)
        fill()

      filled = false
      buffer.toList
    }
  }

  /** Returns an iterator which groups this iterator into fixed size
   *  blocks.  Example usages:
   *
   *  <pre>
   *    // Returns List(List(1, 2, 3), List(4, 5, 6), List(7)))
   *    (1 to 7).iterator grouped 3 toList
   *    // Returns List(List(1, 2, 3), List(4, 5, 6))
   *    (1 to 7).iterator grouped 3 withPartial false toList
   *    // Returns List(List(1, 2, 3), List(4, 5, 6), List(7, 20, 25)
   *    // Illustrating that withPadding's argument is by-name.
   *    val it2 = Iterator.iterate(20)(_ + 5)
   *    (1 to 7).iterator grouped 3 withPadding it2.next toList
   *  </pre>
   */
  def grouped[B >: A](size: Int): GroupedIterator[B] =
    new GroupedIterator[B](self, size, size)

  /** Returns an iterator which presents a "sliding window" view of
   *  another iterator.  The first argument is the window size, and
   *  the second is how far to advance the window on each iteration;
   *  defaults to 1.  Example usages:
   *
   *  <pre>
   *    // Returns List(List(1, 2, 3), List(2, 3, 4), List(3, 4, 5))
   *    (1 to 5).iterator.sliding(3).toList
   *    // Returns List(List(1, 2, 3, 4), List(4, 5))
   *    (1 to 5).iterator.sliding(4, 3).toList
   *    // Returns List(List(1, 2, 3, 4))
   *    (1 to 5).iterator.sliding(4, 3).withPartial(false).toList
   *    // Returns List(List(1, 2, 3, 4), List(4, 5, 20, 25))
   *    // Illustrating that withPadding's argument is by-name.
   *    val it2 = Iterator.iterate(20)(_ + 5)
   *    (1 to 5).iterator.sliding(4, 3).withPadding(it2.next).toList
   *  </pre>
   */
  def sliding[B >: A](size: Int, step: Int = 1): GroupedIterator[B] =
    new GroupedIterator[B](self, size, step)

  /** Returns the number of elements in this iterator.
   *  @note The iterator is at its end after this method returns.
   */
  def length: Int = {
    var i = 0
    while (hasNext) {
      next(); i += 1
    }
    i
  }

  /** Creates two new iterators that both iterate over the same elements
   *  as this iterator (in the same order).
   *
   *  @return a pair of iterators
   */
  def duplicate: (Iterator[A], Iterator[A]) = {
    val gap = new scala.collection.mutable.Queue[A]
    var ahead: Iterator[A] = null
    class Partner extends Iterator[A] {
      def hasNext: Boolean = self.synchronized {
        (this ne ahead) && !gap.isEmpty || self.hasNext
      }
      def next(): A = self.synchronized {
        if (gap.isEmpty) ahead = this
        if (this eq ahead) {
          val e = self.next()
          gap enqueue e
          e
        } else gap.dequeue
      }
    }
    (new Partner, new Partner)
  }

  /** Returns this iterator with patched values.
   *  @param from     The start index from which to patch
   *  @param ps       The iterator of patch values
   *  @param replaced The number of values in the original iterator that are replaced by the patch.
   */
  def patch[B >: A](from: Int, patchElems: Iterator[B], replaced: Int) = new Iterator[B] {
    private var origElems = self
    private var i = 0
    def hasNext: Boolean =
      if (i < from) origElems.hasNext
      else patchElems.hasNext || origElems.hasNext
    def next(): B = {
      val result: B =
        if (i < from || !patchElems.hasNext) origElems.next()
        else patchElems.next()
      i += 1
      if (i == from) origElems = origElems drop replaced
      result
    }
  }

  /** Fills the given array `xs` with at most `len` elements of
   *  this iterator starting at position `start` until either `len` elements have been copied,
   *  or the end of the iterator is reached, or the end of the array `xs` is reached.
   *
   *  @param  xs the array to fill.
   *  @param  start starting index.
   *  @param  len number of elements to copy
   */
  def copyToArray[B >: A](xs: Array[B], start: Int, len: Int): Unit = {
    var i = start
    val end = start + len min xs.length
    while (hasNext && i < end) {
      xs(i) = next()
      i += 1
    }
  }

  /** Fills the given array <code>xs</code> with the elements of
   *  this iterator starting at position <code>start</code>
   *  until either the end of the current iterator or the end of array `xs` is reached.
   *
   *  @param  xs the array to fill.
   *  @param  start starting index.
   */
  def copyToArray[B >: A](xs: Array[B], start: Int): Unit =
    copyToArray(xs, start, xs.length - start)

  /** Fills the given array <code>xs</code> with the elements of
   *  this iterator starting at position <code>0</code>
   *  until either the end of the current iterator or the end of array `xs` is reached.
   *
   *  @param  xs the array to fill.
   */
  def copyToArray[B >: A](xs: Array[B]): Unit = copyToArray(xs, 0, xs.length)

  /** Copy all elements to a buffer
   *  @param  dest The buffer to which elements are copied
   */
  def copyToBuffer[B >: A](dest: Buffer[B]) {
    while (hasNext) dest += next
  }

  /** Traverse this iterator and return all elements in a list.
   *
   *  @return  A list which enumerates all elements of this iterator.
   */
  def toList: List[A] = {
    val res = new ListBuffer[A]
    while (hasNext) res += next
    res.toList
  }

  /** Traverse this iterator and return all elements in a stream.
   *
   *  @return  A stream which enumerates all elements of this iterator.
   */
  def toStream: Stream[A] =
    if (hasNext) Stream.cons(next, toStream) else Stream.empty

  /** Traverse this iterator and return all elements in a sequence.
   *
   *  @return  A sequence which enumerates all elements of this iterator.
   */
  def toSeq: Seq[A] = {
    val buffer = new ArrayBuffer[A]
    this copyToBuffer buffer
    buffer
  }

  /** Returns a string representation of the elements in this iterator. The resulting string
   *  begins with the string <code>start</code> and is finished by the string
   *  <code>end</code>. Inside, the string representations of elements (w.r.t.
   *  the method <code>toString</code>) are separated by the string
   *  <code>sep</code>.
   *  <p/>
   *  Ex: <br/>
   *  <code>List(1, 2, 3).mkString("(", "; ", ")") = "(1; 2; 3)"</code>
   *
   *  @param start starting string.
   *  @param sep separator string.
   *  @param end ending string.
   *  @return a string representation of this iterable object.
   */
  def mkString(start: String, sep: String, end: String): String = {
    val buf = new StringBuilder
    addString(buf, start, sep, end).toString
  }

  /** Returns a string representation of this iterable object. The string
   *  representations of elements (w.r.t. the method <code>toString()</code>)
   *  are separated by the string <code>sep</code>.
   *
   *  @param sep separator string.
   *  @return a string representation of this iterable object.
   */
  def mkString(sep: String): String = mkString("", sep, "")

  /** Returns a string representation of this iterable object. The string
   *  representations of elements (w.r.t. the method <code>toString()</code>)
   *  are concatenated without any separator string.
   *
   *  @return a string representation of this iterable object.
   */
  def mkString: String = mkString("")

  /** Write all elements of this iterator into given string builder.
   *  The written text begins with the string <code>start</code> and is finished by the string
   *  <code>end</code>. Inside, the string representations of elements (w.r.t.
   *  the method <code>toString()</code>) are separated by the string
   *  <code>sep</code>.
   */
  def addString(buf: StringBuilder, start: String, sep: String, end: String): StringBuilder = {
    buf.append(start)
    val elems = this
    if (elems.hasNext) buf.append(elems.next)
    while (elems.hasNext) {
      buf.append(sep); buf.append(elems.next)
    }
    buf.append(end)
  }

  /** Write all elements of this iterator into given string builder.
   *  The string representations of elements (w.r.t. the method <code>toString()</code>)
   *  are separated by the string <code>sep</code>.
   */
  def addString(buf: StringBuilder, sep: String): StringBuilder = addString(buf, "", sep, "")

  /** Write all elements of this string into given string builder without using
   *  any separator between consecutive elements.
   */
  def addString(buf: StringBuilder): StringBuilder = addString(buf, "", "", "")

  override def toString = (if (hasNext) "non-empty" else "empty")+" iterator"

  /** Returns a new iterator that first yields the elements of this
   *  iterator followed by the elements provided by iterator <code>that</code>.
   */
  @deprecated("use <code>++</code>")
  def append[B >: A](that: Iterator[B]) = new Iterator[B] {
    def hasNext = self.hasNext || that.hasNext
    def next() = (if (self.hasNext) self else that).next()
  }

  /** Returns index of the first element satisfying a predicate, or -1. */
  @deprecated("use `indexWhere` instead")
  def findIndexOf(p: A => Boolean): Int = indexWhere(p)

  /** Collect elements into a seq.
   *
   * @return  a sequence which enumerates all elements of this iterator.
   */
  @deprecated("use toSeq instead")
  def collect: Seq[A] = toSeq

  /** Returns a counted iterator from this iterator.
   */
  @deprecated("use zipWithIndex in Iterator")
  def counted = new CountedIterator[A] {
    private var cnt = 0
    def count = cnt
    def hasNext: Boolean = self.hasNext
    def next(): A = { cnt += 1; self.next }
  }

  /** Fills the given array <code>xs</code> with the elements of
   *  this sequence starting at position <code>start</code>.  Like <code>copyToArray</code>,
   *  but designed to accomodate IO stream operations.
   *
   *  @param  xs    the array to fill.
   *  @param  start the starting index.
   *  @param  sz    the maximum number of elements to be read.
   *  @pre          the array must be large enough to hold <code>sz</code> elements.
   */
  @deprecated("use copyToArray instead")
  def readInto[B >: A](xs: Array[B], start: Int, sz: Int) {
    var i = start
    while (hasNext && i - start < sz) {
      xs(i) = next
      i += 1
    }
  }

  @deprecated("use copyToArray instead")
  def readInto[B >: A](xs: Array[B], start: Int) {
    readInto(xs, start, xs.length - start)
  }

  @deprecated("use copyToArray instead")
  def readInto[B >: A](xs: Array[B]) {
    readInto(xs, 0, xs.length)
  }
}