summaryrefslogtreecommitdiff
path: root/src/library/scala/collection/immutable/Stream.scala
blob: 523fda9465a76baa62369d4bdc187d04d830da6b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2003-2009, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://scala-lang.org/               **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */

// $Id: Stream.scala 16287 2008-10-18 13:41:36Z nielsen $


package scala.collection.immutable

import mutable.ListBuffer
import generic._

/**
 * <p>The class <code>Stream</code> implements lazy lists where elements
 * are only evaluated when they are needed. Here is an example:</p>
 * <pre>
 * <b>object</b> Main <b>extends</b> Application {
 *
 *   <b>def</b> from(n: Int): Stream[Int] =
 *     Stream.cons(n, from(n + 1))
 *
 *   <b>def</b> sieve(s: Stream[Int]): Stream[Int] =
 *     Stream.cons(s.head, sieve(s.tail filter { _ % s.head != 0 }))
 *
 *   <b>def</b> primes = sieve(from(2))
 *
 *   primes take 10 print
 * }
 * </pre>
 *
 * @author Martin Odersky, Matthias Zenger
 * @version 1.1 08/08/03
 */
abstract class Stream[+A] extends LinearSequence[A]
                             with TraversableClass[A, Stream]
                             with LinearSequenceTemplate[A, Stream[A]] {
self =>
  override def companion: Companion[Stream] = Stream

  import collection.{Traversable, Iterable, Sequence, Vector}

  /** is this stream empty? */
  def isEmpty: Boolean

  /** The first element of this stream
   *  @throws Predef.NoSuchElementException if the stream is empty.
   */
  def head: A

  /** A stream consisting of the remaining elements of this stream after the first one.
   *  @throws Predef.UnsupportedOperationException if the stream is empty.
   */
  def tail: Stream[A]

  /** Is the tail of this stream defined? */
  protected def tailDefined: Boolean

  // Implementation of abstract method in Traversable

  // New methods in Stream

  /** The stream resulting from the concatenation of this stream with the argument stream.
   *  @param rest   The stream that gets appended to this stream
   */
  def append[B >: A](rest: => Traversable[B]): Stream[B] =
    if (isEmpty) rest.toStream else new Stream.Cons(head, tail append rest)

  /** Force evaluation of the whole stream and return it */
  def force: Stream[A] = {
    var these = this
    while (!these.isEmpty) these = these.tail
    this
  }

  /** Does this stream have more than one elements defined?
   */
  private def hasMoreThanOneElements = false

  /** Prints elements of this stream one by one, separated by commas */
  def print() { print(", ") }

  /** Prints elements of this stream one by one, separated by <code>sep</code>
   *  @param sep   The separator string printed between consecutive elements.
   */
  def print(sep: String) {
    def loop(these: Stream[A], start: String) {
      Console.print(start)
      if (these.isEmpty) Console.print("empty")
      else {
        Console.print(these.head)
        loop(these.tail, sep)
      }
    }
    loop(this, "")
  }

  // Overridden methods from Traversable

  override def toStream: Stream[A] = this

  override def hasDefiniteSize = {
    def loop(s: Stream[A]): Boolean = s.isEmpty || s.tailDefined && loop(s.tail)
    loop(this)
  }

  /** Create a new stream which contains all elements of this stream
   *  followed by all elements of Traversable `that'
   *  @note It's subtle why this works. We know that if the target type
   *  of the Builder That is either a Stream, or one of its supertypes, or undefined,
   *  then StreamBuilder will be chosen for the implicit.
   *  we recognize that fact and optimize to get more laziness.
   */
  override def ++[B >: A, That](that: Traversable[B])(implicit bf: BuilderFactory[B, That, Stream[A]]): That = {
    def loop(these: Stream[A]): Stream[B] =
      if (these.isEmpty) that.toStream else new Stream.Cons(these.head, loop(these.tail))
    if (bf.isInstanceOf[Stream.StreamBuilderFactory[_]]) loop(this).asInstanceOf[That]
    else super.++(that)
  }

  /** Create a new stream which contains all elements of this stream
   *  followed by all elements of Iterator `that'
   */
  override def++[B >: A, That](that: Iterator[B])(implicit bf: BuilderFactory[B, That, Stream[A]]): That =
    this ++ that.toStream

  /** Returns the stream resulting from applying the given function
   *  <code>f</code> to each element of this stream.
   *
   *  @param f function to apply to each element.
   *  @return  <code>f(a<sub>0</sub>), ..., f(a<sub>n</sub>)</code> if this
   *           sequence is <code>a<sub>0</sub>, ..., a<sub>n</sub></code>.
   */
  override def map[B, That](f: A => B)(implicit bf: BuilderFactory[B, That, Stream[A]]): That = {
    def loop(these: Stream[A]): Stream[B] =
      if (these.isEmpty) Stream.Empty else new Stream.Cons(f(these.head), loop(these.tail))
    if (bf.isInstanceOf[Stream.StreamBuilderFactory[_]]) loop(this).asInstanceOf[That]
    else super.map(f)
  }

  /** Applies the given function <code>f</code> to each element of
   *  this stream, then concatenates the results.
   *
   *  @param f the function to apply on each element.
   *  @return  <code>f(a<sub>0</sub>) ::: ... ::: f(a<sub>n</sub>)</code> if
   *           this stream is <code>[a<sub>0</sub>, ..., a<sub>n</sub>]</code>.
   */
  override def flatMap[B, That](f: A => Traversable[B])(implicit bf: BuilderFactory[B, That, Stream[A]]): That = {
    def loop(these: Stream[A]): Stream[B] =
      if (these.isEmpty) Stream.Empty
      else {
        val seg = f(these.head)
        if (seg.isEmpty) loop(these.tail)
        else seg.toStream ++ loop(these.tail)
      }
    if (bf.isInstanceOf[Stream.StreamBuilderFactory[_]]) loop(this).asInstanceOf[That]
    else super.flatMap(f)
  }

  /** Returns all the elements of this stream that satisfy the
   *  predicate <code>p</code>. The order of the elements is preserved.
   *
   *  @param p the predicate used to filter the stream.
   *  @return the elements of this stream satisfying <code>p</code>.
   */
  override def filter(p: A => Boolean): Stream[A] = {
    // drops A's for which p yields false
    def loop(these: Stream[A]): Stream[A] =
      if (these.isEmpty) Stream.Empty
      else {
        val b = p(these.head)
        if (!b) loop(these.tail)
        else new Stream.Cons(these.head, these.tail filter p)
      }
    loop(this)
  }

  /** Returns all the elements of this stream that satisfy the
   *  predicate <code>p</code>. The order of the elements is preserved.
   *
   *  @param p the predicate used to filter the stream.
   *  @return the elements of this stream satisfying <code>p</code>.
   */
  override def partition(p: A => Boolean): (Stream[A], Stream[A]) = (filter(p(_)), filterNot(p(_)))

  /** Returns a stream formed from this stream and the specified stream
   *  <code>that</code> by associating each element of the former with
   *  the element at the same position in the latter.
   *  If one of the two streams is longer than the other, its remaining elements are ignored.
   *
   *  @return     <code>Stream({a<sub>0</sub>,b<sub>0</sub>}, ...,
   *              {a<sub>min(m,n)</sub>,b<sub>min(m,n)</sub>)}</code> when
   *              <code>Stream(a<sub>0</sub>, ..., a<sub>m</sub>)
   *              zip Stream(b<sub>0</sub>, ..., b<sub>n</sub>)</code> is invoked.
   */
  override def zip[A1 >: A, B, That](that: Sequence[B])(implicit bf: BuilderFactory[(A1, B), That, Stream[A]]): That = {
    def loop(these: Stream[A], elems2: Iterator[B]): Stream[(A1, B)] =
      if (these.isEmpty || !elems2.hasNext) Stream.Empty
      else new Stream.Cons((these.head, elems2.next), loop(these.tail, elems2))
    if (bf.isInstanceOf[Stream.StreamBuilderFactory[_]]) loop(this, that.iterator).asInstanceOf[That]
    else super.zip[A1, B, That](that)
  }

  /** Zips this iterable with its indices. `s.zipWithIndex` is equivalent to
   *  `s zip s.indices`
   */
  override def zipWithIndex[A1 >: A, That](implicit bf: BuilderFactory[(A1, Int), That, Stream[A]]): That =
    this.zip[A1, Int, That](Stream.from(0))

  /** Write all defined elements of this iterable into given string builder.
   *  The written text begins with the string <code>start</code> and is finished by the string
   *  <code>end</code>. Inside, the string representations of defined elements (w.r.t.
   *  the method <code>toString()</code>) are separated by the string
   *  <code>sep</code>. The method will not force evaluation of undefined elements. A
   *  tail of such elements will be represented by a "?" instead.
   */
  override def addString(b: StringBuilder, start: String, sep: String, end: String): StringBuilder = {
    def loop(pre: String, these: Stream[A]) {
      if (these.isEmpty) b append end
      else {
        b append pre append these.head
        if (these.tailDefined) loop(sep, these.tail)
        else b append sep append "?" append end
      }
    }
    b append start
    loop("", this)
    b
  }

  /** Returns the <code>n</code> first elements of this stream, or else the whole
   *  stream, if it has less than <code>n</code> elements.
   *
   *  @param n the number of elements to take.
   *  @return the <code>n</code> first elements of this stream.
   */
  override def take(n: Int): Stream[A] =
    if (n <= 0 || isEmpty) Stream.Empty else new Stream.Cons(head, tail take (n-1))

  /** A substream starting at index `from`
   *  and extending up to (but not including) index `until`.
   *
   *  @note This is equivalent to (but possibly more efficient than)
   *  c.drop(from).take(to - from)
   *
   *  @param start   The index of the first element of the returned subsequence
   *  @param end     The index of the element following the returned subsequence
   *  @throws IndexOutOfBoundsException if <code>from &lt; 0</code>
   *          or <code>length &lt; from + len<code>
   *  @note  Might return different results for different runs, unless this iterable is ordered
   */
  override def slice(start: Int, end: Int): Stream[A] = {
    var len = end
    if (start > 0) len -= start
    drop(start) take len
  }

  /** The stream without its last element.
   *  @throws Predef.UnsupportedOperationException if the stream is empty.
   */
  override def init: Stream[A] =
    if (isEmpty) super.init
    else if (tail.isEmpty) Stream.Empty
    else new Stream.Cons(head, tail.init)

  /** Returns the rightmost <code>n</code> elements from this iterable.
   *  @param n the number of elements to take
   */
  override def takeRight(n: Int): Stream[A] = {
    var these: Stream[A] = this
    var lead = this drop n
    while (!lead.isEmpty) {
      these = these.tail
      lead = lead.tail
    }
    these
  }

  // there's nothing we can do about dropRight, so we just keep the definition in LinearSequence

  /** Returns the longest prefix of this stream whose elements satisfy
   *  the predicate <code>p</code>.
   *
   *  @param p the test predicate.
   */
  override def takeWhile(p: A => Boolean): Stream[A] =
    if (!isEmpty && p(head)) new Stream.Cons(head, tail takeWhile p)
    else Stream.Empty

  /** Returns the longest suffix of this iterable whose first element
   *  does not satisfy the predicate <code>p</code>.
   *
   *  @param p the test predicate.
   */
  override def dropWhile(p: A => Boolean): Stream[A] = {
    var these: Stream[A] = this
    while (!these.isEmpty && p(these.head)) these = these.tail
    these
  }

  /** Builds a new stream from this stream in which any duplicates (wrt to ==) removed.
   *  Among duplicate elements, only the first one is retained in the result stream
   */
  override def removeDuplicates: Stream[A] =
    if (isEmpty) this
    else new Stream.Cons(head, tail.filter(head !=).removeDuplicates)

  /** Returns a new sequence of given length containing the elements of this sequence followed by zero
   *  or more occurrences of given elements.
   */
  override def padTo[B >: A, That](len: Int, elem: B)(implicit bf: BuilderFactory[B, That, Stream[A]]): That = {
    def loop(len: Int, these: Stream[A]): Stream[B] =
      if (these.isEmpty) Stream.fill(len)(elem)
      else new Stream.Cons(these.head, loop(len - 1, these.tail))
    if (bf.isInstanceOf[Stream.StreamBuilderFactory[_]]) loop(len, this).asInstanceOf[That]
    else super.padTo(len, elem)
  }

  /** A list consisting of all elements of this list in reverse order.
   */
  override def reverse: Stream[A] = {
    var result: Stream[A] = Stream.Empty
    var these = this
    while (!these.isEmpty) {
      val r = Stream.consWrapper(result).#::(these.head)
      r.tail // force it!
      result = r
      these = these.tail
    }
    result
  }

  /** Defines the prefix of this object's <code>toString</code> representation as ``Stream''.
   */
  override def stringPrefix = "Stream"
}

/**
 * The object <code>Stream</code> provides helper functions
 * to manipulate streams.
 *
 * @author Martin Odersky, Matthias Zenger
 * @version 1.1 08/08/03
 */
object Stream extends SequenceFactory[Stream] {

  class StreamBuilderFactory[A] extends VirtualBuilderFactory[A]

  implicit def builderFactory[A]: BuilderFactory[A, Stream[A], Coll] = new StreamBuilderFactory[A]

  /** Creates a new builder for a stream */
  def newBuilder[A]: Builder[A, Stream[A]] = new StreamBuilder[A]

  import collection.{Iterable, Sequence, Vector}

  /** A builder for streams
   *  @note: This builder is lazy only in the sense that it does not go downs the spine
   *         of traversables taht are added as a whole. If more layzness can be achieved,
   *         this builder should be bypassed.
   */
  class StreamBuilder[A] extends LazyBuilder[A, Stream[A]] {
    def result: Stream[A] = (for (xs <- parts.iterator; x <- xs.toIterable.iterator) yield x).toStream
  }

  object Empty extends Stream[Nothing] {
    override def isEmpty = true
    override def head = throw new NoSuchElementException("head of empty stream")
    override def tail = throw new UnsupportedOperationException("tail of empty stream")
    def tailDefined = false
  }

  /** The empty stream */
  override def empty[A]: Stream[A] = Empty

  /** A stream consisting of given elements */
  override def apply[A](xs: A*): Stream[A] = xs.toStream

  /** A wrapper class that adds `#::` for cons and `#:::` for concat as operations
   *  to streams.
   */
  class ConsWrapper[A](tl: => Stream[A]) {
    def #::(hd: A): Stream[A] = new Stream.Cons(hd, tl)
    def #:::(prefix: Stream[A]): Stream[A] = prefix append tl
  }

  /** A wrapper method that adds `#::` for cons and `#::: for concat as operations
   *  to streams.
   */
  implicit def consWrapper[A](stream: => Stream[A]): ConsWrapper[A] =
    new ConsWrapper[A](stream)

  /** An extractor that allows to pattern match streams with `#::`.
   */
  object #:: {
    def unapply[A](xs: Stream[A]): Option[(A, Stream[A])] =
      if (xs.isEmpty) None
      else Some((xs.head, xs.tail))
  }

  @deprecated("use #:: instead") lazy val lazy_:: = #::

  /** An alternative way of building and matching Streams using Stream.cons(hd, tl).
   */
  object cons {

    /** A stream consisting of a given first element and remaining elements
     *  @param hd   The first element of the result stream
     *  @param tl   The remaining elements of the result stream
     */
    def apply[A](hd: A, tl: => Stream[A]) = new Cons(hd, tl)

    /** Maps a stream to its head and tail */
    def unapply[A](xs: Stream[A]): Option[(A, Stream[A])] = #::.unapply(xs)
  }

  /** A lazy cons cell, from which streams are built. */
  final class Cons[+A](hd: A, tl: => Stream[A]) extends Stream[A] {
    override def isEmpty = false
    override def head = hd
    private[this] var tlVal: Stream[A] = _
    def tailDefined = tlVal ne null
    override def tail: Stream[A] = {
      if (!tailDefined) { tlVal = tl }
      tlVal
    }
  }

  /** An infinite stream that repeatedly applies a given function to a start value.
   *
   *  @param start the start value of the stream
   *  @param f     the function that's repeatedly applied
   *  @return      the stream returning the infinite sequence of values `start, f(start), f(f(start)), ...`
   */
  def iterate(start: Int)(f: Int => Int): Stream[Int] = new Cons(start, iterate(f(start))(f))

  override def iterate(start: Int, len: Int)(f: Int => Int): Stream[Int] =
    iterate(start)(f) take len

  /**
   * Create an infinite stream starting at <code>start</code>
   * and incrementing by step <code>step</code>
   *
   * @param start the start value of the stream
   * @param step the increment value of the stream
   * @return the stream starting at value <code>start</code>.
   */
  def from(start: Int, step: Int): Stream[Int] =
    new Cons(start, from(start+step, step))

  /**
   * Create an infinite stream starting at <code>start</code>
   * and incrementing by 1.
   *
   * @param start the start value of the stream
   * @return the stream starting at value <code>start</code>.
   */
  def from(start: Int): Stream[Int] = from(start, 1)

  /**
   * Create an infinite stream containing the given element expression (which is computed for each
   * occurrence)
   * @param elem the element composing the resulting stream
   * @return the stream containing an inifinite number of elem
   */
  @deprecated("use `fill' instead")
  def continually[A](elem: => A): Stream[A] = new Cons(elem, continually(elem))

  override def fill[A](n: Int)(elem: => A): Stream[A] =
    if (n <= 0) Empty else new Cons(elem, fill(n-1)(elem))

  override def tabulate[A](n: Int)(f: Int => A): Stream[A] = {
    def loop(i: Int) =
      if (i >= n) Empty else new Cons(f(i), tabulate(i+1)(f))
    loop(0)
  }

  override def range(start: Int, end: Int, step: Int): Stream[Int] =
    if (if (step < 0) start <= end else end <= start) Empty
    else new Cons(start, range(start + step, end, step))

  /** A stream containing all elements of a given iterator, in the order they are produced.
   *  @param it   The iterator producing the stream's elements
   */
  @deprecated("use it.toStream instead")
  def fromIterator[A](it: Iterator[A]): Stream[A] = it.toStream

  /** The concatenation of a sequence of streams
   */
  @deprecated("use xs.flatten instead")
  def concat[A](xs: Iterable[Stream[A]]): Stream[A] = concat(xs.iterator)

  /** The concatenation of all streams returned by an iterator
   */
  @deprecated("use xs.toStream.flatten instead")
  def concat[A](xs: Iterator[Stream[A]]): Stream[A] = xs.toStream.flatten

  /**
   * Create a stream with element values
   * <code>v<sub>n+1</sub> = step(v<sub>n</sub>)</code>
   * where <code>v<sub>0</sub> = start</code>
   * and elements are in the range between <code>start</code> (inclusive)
   * and <code>end</code> (exclusive)
   * @param start the start value of the stream
   * @param end the end value of the stream
   * @param step the increment function of the stream, must be monotonically increasing or decreasing
   * @return the stream starting at value <code>start</code>.
   */
  @deprecated("use `iterate' instead.")
  def range(start: Int, end: Int, step: Int => Int): Stream[Int] =
    iterate(start, end - start)(step)

  /**
   * Create an infinite stream containing the given element.
   *
   * @param elem the element composing the resulting stream
   * @return the stream containing an inifinite number of elem
   */
  @deprecated("use fill(elem) instead")
  def const[A](elem: A): Stream[A] = cons(elem, const(elem))

  /** Create a stream containing several copies of an element.
   *
   *  @param n    the length of the resulting stream
   *  @param elem the element composing the resulting stream
   *  @return     the stream composed of n elements all equal to elem
   */
  @deprecated("use fill(n, elem) instead")
  def make[A](n: Int, elem: A): Stream[A] = fill(n)(elem)
}