summaryrefslogtreecommitdiff
path: root/src/library/scala/util/parsing/combinator/Parsers.scala
blob: 04e4fa432a71e13e9dc4a6089325b8d12e545bac (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2006-2007, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://scala-lang.org/               **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */

// $Id$

package scala.util.parsing.combinator

import scala.util.parsing.input._
import scala.collection.mutable.{Map=>MutableMap}

// TODO: better error handling (labelling like parsec's <?>)
// TODO: memoisation (like packrat parsers?)

/** <p>
 *    <code>Parsers</code> is a component that <i>provides</i> generic
 *    parser combinators.
 *  </p>
 *  <p>
 *    It <i>requires</i> the type of the elements these parsers should parse
 *    (each parser is polymorphic in the type of result it produces).
 *  </p>
 *  <p>
 *    There are two aspects to the result of a parser: (1) success or failure,
 *    and (2) the result. A <code>Parser[T]</code> provides both kinds of
 *    information.
 *  </p>
 *  <p>
 *    The term ``parser combinator'' refers to the fact that these parsers
 *    are constructed from primitive parsers and composition operators, such
 *    as sequencing, alternation, optionality, repetition, lifting, and so on.
 *  </p>
 *  <p>
 *    A ``primitive parser'' is a parser that accepts or rejects a single
 *    piece of input, based on a certain criterion, such as whether the
 *    input...
 *  </p><ul>
 *    <li> is equal to some given object, </li>
 *    <li> satisfies a certain predicate, </li>
 *    <li> is in the domain of a given partial function,.... </li>
 *  </ul>
 *  <p>
 *    Even more primitive parsers always produce the same result, irrespective
 *    of the input.
 *  </p>
 *
 * @requires Elem the type of elements the provided parsers consume
 *              (When consuming invidual characters, a parser is typically called a ``scanner'',
 *               which produces ``tokens'' that are consumed by what is normally called a ``parser''.
 *               Nonetheless, the same principles apply, regardless of the input type.)</p>
 *<p>
 * @provides Input = Reader[Elem]
 *              The type of input the parsers in this component expect.</p>
 *<p>
 * @provides Parser[+T] extends (Input => ParseResult[T])
 *              Essentially, a `Parser[T]' is a function from `Input' to `ParseResult[T]'.</p>
 *<p>
 * @provides ParseResult[+T] is like an `Option[T]', in the sense that it is either
 *              `Success[T]', which consists of some result (:T) (and the rest of the input) or
 *              `Failure[T]', which provides an error message (and the rest of the input).</p>
 *
 * @author Martin Odersky, Iulian Dragos, Adriaan Moors
 */
trait Parsers {
  /** the type of input elements */
  type Elem

  /** The parser input is an abstract reader of input elements */
  type Input = Reader[Elem]

  /** A base class for parser results.
   *  A result is either successful or not (failure may be fatal, i.e.,
   *  an Error, or not, i.e., a Failure)
   *  On success, provides a result of type <code>T</code>.
   */
  sealed abstract class ParseResult[+T] {
    /** Functional composition of ParseResults
     *
     * @param `f' the function to be lifted over this result
     * @return `f' applied to the result of this `ParseResult', packaged up as a new `ParseResult'
     */
    def map[U](f: T => U): ParseResult[U]

    /** Partial functional composition of ParseResults
     *
     * @param `f' the partial function to be lifted over this result
     * @param error a function that takes the same argument as `f' and produces an error message
     *        to explain why `f' wasn't applicable (it is called when this is the case)
     * @return <i>if `f' f is defined at the result in this `ParseResult',</i>
     *         `f' applied to the result of this `ParseResult', packaged up as a new `ParseResult'.
     *         If `f' is not defined, `Failure'.
     */
    def mapPartial[U](f: PartialFunction[T, U], error: T => String): ParseResult[U]

    def flatMapWithNext[U](f: T => Input => ParseResult[U]): ParseResult[U]

    def append[U >: T](a: => ParseResult[U]): ParseResult[U]

    def isEmpty = !successful

    /** Returns the embedded result */
    def get: T

    def getOrElse[B >: T](default: => B): B =
        if (isEmpty) default else this.get

    val next: Input

    val successful: Boolean
  }

  /** The success case of ParseResult: contains the result and the remaining input.
   *
   *  @param result The parser's output
   *  @param next   The parser's remaining input
   */
  case class Success[+T](result: T, override val next: Input) extends ParseResult[T] {
    def map[U](f: T => U) = Success(f(result), next)
    def mapPartial[U](f: PartialFunction[T, U], error: T => String): ParseResult[U]
       = if(f.isDefinedAt(result)) Success(f(result), next)
         else Failure(error(result), next)

    def flatMapWithNext[U](f: T => Input => ParseResult[U]): ParseResult[U]
      = f(result)(next)

    def append[U >: T](a: => ParseResult[U]): ParseResult[U] = this

    def get: T = result

    /** The toString method of a Success */
    override def toString = "["+next.pos+"] parsed: "+result

    val successful = true
  }

  var lastNoSuccess: NoSuccess = null

  /** A common super-class for unsuccessful parse results
   */
  sealed abstract class NoSuccess(val msg: String, override val next: Input) extends ParseResult[Nothing] { // when we don't care about the difference between Failure and Error
    val successful = false
    if (!(lastNoSuccess != null && next.pos < lastNoSuccess.next.pos))
      lastNoSuccess = this

    def map[U](f: Nothing => U) = this
    def mapPartial[U](f: PartialFunction[Nothing, U], error: Nothing => String): ParseResult[U] = this

    def flatMapWithNext[U](f: Nothing => Input => ParseResult[U]): ParseResult[U]
      = this

    def get: Nothing = error("No result when parsing failed")
  }

  /** The failure case of ParseResult: contains an error-message and the remaining input.
   * Parsing will back-track when a failure occurs.
   *
   *  @param msg    An error message string describing the failure.
   *  @param next   The parser's unconsumed input at the point where the failure occurred.
   */
  case class Failure(override val msg: String, override val next: Input) extends NoSuccess(msg, next) {
    /** The toString method of a Failure yields an error message */
    override def toString = "["+next.pos+"] failure: "+msg+"\n\n"+next.pos.longString

    def append[U >: Nothing](a: => ParseResult[U]): ParseResult[U] = { val alt = a; alt match {
      case Success(_, _) => alt
      case ns: NoSuccess => if (alt.next.pos < next.pos) this else alt
    }}
  }

  /** The fatal failure case of ParseResult: contains an error-message and the remaining input.
   * No back-tracking is done when a parser returns an `Error'
   *
   *  @param msg    An error message string describing the error.
   *  @param next   The parser's unconsumed input at the point where the error occurred.
   */
  case class Error(override val msg: String, override val next: Input) extends NoSuccess(msg, next) {
    /** The toString method of an Error yields an error message */
    override def toString = "["+next.pos+"] error: "+msg+"\n\n"+next.pos.longString
    def append[U >: Nothing](a: => ParseResult[U]): ParseResult[U] = this
  }


  def Parser[T](f: Input => ParseResult[T]): Parser[T]
    = new Parser[T]{ def apply(in: Input) = f(in) }

  def OnceParser[T](f: Input => ParseResult[T]): Parser[T] with OnceParser[T]
    = new Parser[T] with OnceParser[T] { def apply(in: Input) = f(in) }

  /** The root class of parsers.
   *  Parsers are functions from the Input type to ParseResult
   */
  abstract class Parser[+T] extends (Input => ParseResult[T]) {
    private var name: String = ""
    def named(n: String): this.type = {name=n; this}
    override def toString() = "Parser ("+ name +")"

    /** An unspecified method that defines the behaviour of this parser.
     */
    def apply(in: Input): ParseResult[T]

    def flatMap[U](f: T => Parser[U]): Parser[U]
      = Parser{ in => this(in) flatMapWithNext(f)}

    def map[U](f: T => U): Parser[U] //= flatMap{x => success(f(x))}
      = Parser{ in => this(in) map(f)}

    // no filter yet, dealing with zero is tricky!

    def append[U >: T](p: => Parser[U]): Parser[U]
      = Parser{ in => this(in) append p(in)}


    // the operator formerly known as +++, ++, &, but now, behold the venerable ~
    // it's short, light (looks like whitespace), has few overloaded meaning (thanks to the recent change from ~ to unary_~)
    // and we love it! (or do we like `,` better?)

    /** A parser combinator for sequential composition
     *
     * <p> `p ~ q' succeeds if `p' succeeds and `q' succeeds on the input
     *          left over by `p'.</p>
     *
     * @param q a parser that will be executed after `p' (this parser) succeeds
     * @return a `Parser' that -- on success -- returns a `~' (like a Pair, but easier to pattern match on)
     *         that contains the result of `p' and that of `q'.
     *         The resulting parser fails if either `p' or `q' fails.
     */
    def ~ [U](p: => Parser[U]): Parser[~[T, U]] = (for(a <- this; b <- p) yield new ~(a,b)).named("~")

    /** A parser combinator for sequential composition which keeps only the right result
     *
     * <p> `p ~> q' succeeds if `p' succeeds and `q' succeeds on the input
     *           left over by `p'.</p>
     *
     * @param q a parser that will be executed after `p' (this parser) succeeds
     * @return a `Parser' that -- on success -- returns the result of `q'.
     */
    def ~> [U](p: => Parser[U]): Parser[U] = (for(a <- this; b <- p) yield b).named("~>")

    /** A parser combinator for sequential composition which keeps only the left result
     *
     * <p> `p &lt;~ q' succeeds if `p' succeeds and `q' succeeds on the input
     *           left over by `p'.</p>
     *
     * <b>Note:</b> &lt;~ has lower operator precedence than ~ or ~>.
     *
     * @param q a parser that will be executed after `p' (this parser) succeeds
     * @return a `Parser' that -- on success -- returns the result of `p'.
     */
    def <~ [U](p: => Parser[U]): Parser[T] = (for(a <- this; b <- p) yield a).named("<~")

     /* not really useful: V cannot be inferred because Parser is covariant in first type parameter (V is always trivially Nothing)
    def ~~ [U, V](q: => Parser[U])(implicit combine: (T, U) => V): Parser[V] = new Parser[V] {
      def apply(in: Input) = seq(Parser.this, q)((x, y) => combine(x,y))(in)
    }  */

    /** A parser combinator for non-back-tracking sequential composition
     *
     *<p>`p ~! q' succeeds if `p' succeeds and `q' succeeds on the input
     *          left over by `p'. In case of failure, no back-tracking is performed
     *          (in an earlier parser produced by the | combinator).</p>
     *
     * @param q a parser that will be executed after `p' (this parser) succeeds
     * @return a `Parser' that -- on success -- returns a `~' (like a Pair, but easier to pattern match on)
     *         that contains the result of `p' and that of `q'.
     *         The resulting parser fails if either `p' or `q' fails, this failure is fatal.
     */
    def ~! [U](p: => Parser[U]): Parser[~[T, U]]
      = OnceParser{ (for(a <- this; b <- commit(p)) yield new ~(a,b)).named("~!") }

    /** A parser combinator for alternative composition
     *
     *<p>`p | q' succeeds if `p' succeeds or `q' succeeds
     *          Note that `q' is only tried if `p's failure is non-fatal (i.e., back-tracking is
     *          allowed).</p>
     *
     * @param q a parser that will be executed if `p' (this parser) fails (and allows back-tracking)
     * @return a `Parser' that returns the result of the first parser to succeed (out of `p' and `q')
     *         The resulting parser succeeds if (and only if) <ul>
     *           <li> `p' succeeds, <i>or</i>  </li>
     *           <li> if `p' fails allowing back-tracking and `q' succeeds. </li> </ul>
     */
    def | [U >: T](q: => Parser[U]): Parser[U] = append(q).named("|")

    // TODO
    /** A parser combinator for alternative with longest match composition
     *
     *<p>`p ||| q' succeeds if `p' succeeds or `q' succeeds
     *          If `p' and `q' both succeed, the parser that consumed the most
     *          characters accepts.</p>
     *
     * @param q a parser that accepts if p consumes less characters.
     * @return a `Parser' that returns the result of the parser consuming the most characteres (out of `p' and `q').
     */
    def ||| [U >: T](q: => Parser[U]): Parser[U] = new Parser[U] {
      def apply(in: Input) = {
        val res1 = Parser.this(in)
        val res2 = q(in)

        (res1, res2) match {
          case (s1 @ Success(_, next1), s2 @ Success(_, next2)) => if (next2.pos < next1.pos) s1 else s2
          case (s1 @ Success(_, _), _) => s1
          case (_, s2 @ Success(_, _)) => s2
          case (e1 @ Error(_, _), _) => e1
          case (f1 @ Failure(_, next1), f2 @ Failure(_, next2)) => if (next2.pos < next1.pos) f1 else f2
          case (f1 @ Failure(_, next1), e2 @ Error(_, next2)) => if (next2.pos < next1.pos) f1 else e2
        }
      }
      override def toString = "|||"
    }

    /** A parser combinator for function application
     *
     *<p>`p ^^ f' succeeds if `p' succeeds; it returns `f' applied to the result of `p'.</p>
     *
     * @param f a function that will be applied to this parser's result (see `map' in `ParseResult').
     * @return a parser that has the same behaviour as the current parser, but whose result is
     *         transformed by `f'.
     */
    def ^^ [U](f: T => U): Parser[U] = map(f).named(toString+"^^")


    def ^^^ [U](r: U): Parser[U] = ^^ (x => r)

    /** A parser combinator for partial function application
     *
     *<p>`p ^? (f, error)' succeeds if `p' succeeds AND `f' is defined at the result of `p';
     *  in that case, it returns `f' applied to the result of `p'. If `f' is not applicable,
     *  error(the result of `p') should explain why.</p>
     *
     * @param f a partial function that will be applied to this parser's result
     *          (see `mapPartial' in `ParseResult').
     * @param error a function that takes the same argument as `f' and produces an error message
     *        to explain why `f' wasn't applicable
     * @return a parser that succeeds if the current parser succeeds <i>and</i> `f' is applicable
     *         to the result. If so, the result will be transformed by `f'.
     */
    def ^? [U](f: PartialFunction[T, U], error: T => String): Parser[U] = Parser{ in =>
      this(in).mapPartial(f, error)}.named(toString+"^?")

    /** A parser combinator for partial function application
     *
     *<p>`p ^? f' succeeds if `p' succeeds AND `f' is defined at the result of `p';
     *  in that case, it returns `f' applied to the result of `p'.</p>
     *
     * @param f a partial function that will be applied to this parser's result
     *          (see `mapPartial' in `ParseResult').
     * @return a parser that succeeds if the current parser succeeds <i>and</i> `f' is applicable
     *         to the result. If so, the result will be transformed by `f'.
     */
    def ^? [U](f: PartialFunction[T, U]): Parser[U] = ^?(f, r => "Constructor function not defined at "+r)


    /** A parser combinator that parameterises a subsequent parser with the result of this one
     *
     *<p>
     * Use this combinator when a parser depends on the result of a previous parser. `p' should be
     * a function that takes the result from the first parser and returns the second parser.</p>
     *
     *<p> `p into fq' (with `fq' typically `{x => q}') first applies `p', and then, if `p' successfully
     *    returned result `r', applies `fq(r)' to the rest of the input. </p>
     *
     *<p> From: G. Hutton. Higher-order functions for parsing. J. Funct. Program., 2(3):323--343, 1992. </p>
     *
     * @param fq a function that, given the result from this parser, returns the second parser to be applied
     * @return a parser that succeeds if this parser succeeds (with result `x') and if then `fq(x)' succeeds
     */
    def into[U](fq: T => Parser[U]): Parser[U] = flatMap(fq)

    // shortcuts for combinators:

    /** Returns into(fq) */
    def >>[U](fq: T => Parser[U])=into(fq)


    /** Returns a parser that repeatedly parses what this parser parses
     *
     * @return rep(this)
     */
    def * = rep(this)

    /** Returns a parser that repeatedly parses what this parser parses, interleaved with the `sep' parser.
     * The `sep' parser specifies how the results parsed by this parser should be combined.
     *
     * @return chainl1(this, sep)
     */
    def *[U >: T](sep: => Parser[(U, U) => U]) = chainl1(this, sep)

    // TODO: improve precedence? a ~ b*(",") = a ~ (b*(","))  should be true

    /** Returns a parser that repeatedly (at least once) parses what this parser parses.
     *
     * @return rep1(this)
     */
    def + = rep1(this)

    /** Returns a parser that optionally parses what this parser parses.
     *
     * @return opt(this)
     */
    def ? = opt(this)
  }

  // TODO: can this implemented in ParseResult, like map?
  /** A helper method for sequential composition of (unit-)parsers
  */
  private def seq[T, U, V](p: => Input => ParseResult[T], q: => Input => ParseResult[U])
                          (compose: (T, U) => V)
                          (in: Input): ParseResult[V]
    = p(in) match {
      case Success(x, next1) => q(next1) match {
          case Success(y, next2) => Success(compose(x, y), next2)
          case ns: NoSuccess => ns
        }
      case ns: NoSuccess => ns
    }

  /** Wrap a parser so that its failures become errors (the | combinator will give up as soon as
   *  it encounters an error, on failure it simply tries the next alternative)
   */
  def commit[T](p: => Parser[T]) = Parser{ in =>
    p(in) match{
      case s @ Success(_, _) => s
      case e @ Error(_, _) => e
      case f @ Failure(msg, next) => Error(msg, next)
    }
  }

	/*trait ElemFun
  case class EFCons(hd: Elem => ElemFun, tl: ElemFun) extends ElemFun
  case class EFNil(res: Boolean) extends ElemFun*/


  /** A parser matching input elements that satisfy a given predicate
   *
   * <p>elem(kind, p) succeeds if the input starts with an element `e' for which p(e) is true.</p>
   *
   * @param  kind   The element kind, used for error messages
   * @param  p      A predicate that determines which elements match.
   * @return
   */
  def elem(kind: String, p: Elem => Boolean) = acceptIf(p)(inEl => kind+" expected")

  /** A parser that matches only the given element `e'
   *
   * <p>elem(e) succeeds if the input starts with an element `e'</p>
   *
   * @param e the `Elem' that must be the next piece of input for the returned parser to succeed
   * @return a `Parser' that succeeds if `e' is the next available input (and returns it).
   */
  def elem(e: Elem): Parser[Elem] = accept(e)


  /** A parser that matches only the given element `e'
   *<p>
   * The method is implicit so that elements can automatically be lifted to their parsers.
   * For example, when parsing `Token's, Identifier("new") (which is a `Token') can be used directly,
   * instead of first creating a `Parser' using accept(Identifier("new")).</p>
   *
   * @param e the `Elem' that must be the next piece of input for the returned parser to succeed
   * @return a `tParser' that succeeds if `e' is the next available input.
   */

  implicit def accept(e: Elem): Parser[Elem] = acceptIf(_ == e)("`"+e+"' expected but " + _ + " found")

  /** A parser that matches only the given list of element `es'
   *
   * <p>accept(es) succeeds if the input subsequently provides the elements in the list `es'.</p>
   *
   * @param  es the list of expected elements
   * @return a Parser that recognizes a specified list of elements
   */
  def accept[ES <% List[Elem]](es: ES): Parser[List[Elem]] = acceptSeq(es)

  /** The parser that matches an element in the domain of the partial function `f'
   *<p>
   * If `f' is defined on the first element in the input, `f' is applied to it to produce
   * this parser's result.</p>
   *<p>
   * Example: The parser <code>accept("name", {case Identifier(n) => Name(n)})</code>
   *          accepts an <code>Identifier(n)</code> and returns a <code>Name(n)</code>.</p>
   *
   * @param expected a description of the kind of element this parser expects (for error messages)
   * @param f a partial function that determines when this parser is successful and what its output is
   * @return A parser that succeeds if `f' is applicable to the first element of the input,
   *         applying `f' to it to produce the result.
   */
  def accept[U](expected: String, f: PartialFunction[Elem, U]): Parser[U] = acceptMatch(expected, f)


  def acceptIf(p: Elem => Boolean)(err: Elem => String): Parser[Elem] = Parser { in =>
    if (p(in.first)) Success(in.first, in.rest)
    else Failure(err(in.first), in)
  }

  def acceptMatch[U](expected: String, f: PartialFunction[Elem, U]): Parser[U] = Parser{ in =>
    if (f.isDefinedAt(in.first)) Success(f(in.first), in.rest)
    else Failure(expected+" expected", in)
  }

  def acceptSeq[ES <% Iterable[Elem]](es: ES): Parser[List[Elem]] = es.foldRight[Parser[List[Elem]]](success(Nil)){(x, pxs) => accept(x) ~ pxs ^^ mkList}

  /** A parser that always fails
   *
   * @param msg The error message describing the failure.
   * @return A parser that always fails with the specified error message.
   */
  def failure(msg: String) = Parser{ in => Failure(msg, in) }

  /** A parser that results in an error
   *
   * @param msg The error message describing the failure.
   * @return A parser that always fails with the specified error message.
   */
  def err(msg: String) = Parser{ in => Error(msg, in) }


  /** A parser that always succeeds
   *
   * @param v The result for the parser
   * @return A parser that always succeeds, with the given result `v'
   */
  def success[T](v: T) = Parser{ in => Success(v, in) }

  def log[T](p: => Parser[T])(name: String): Parser[T] = Parser{ in =>
    println("trying "+ name +" at "+ in)
    val r = p(in)
    println(name +" --> "+ r)
    r
  }


  /** A parser generator for repetitions.
   *
   * <p> rep(p)   repeatedly uses `p' to parse the input until `p' fails (the result is a List
   *  of the consecutive results of `p') </p>
   *
   * @param p a `Parser' that is to be applied successively to the input
   * @return A parser that returns a list of results produced by repeatedly applying `p' to the input.
   */
  def rep[T](p: => Parser[T]): Parser[List[T]] = rep1(p) | success(List())

  /** A parser generator for interleaved repetitions.
   *
   * <p> repsep(p, q)   repeatedly uses `p' interleaved with `q' to parse the input, until `p' fails.
   *  (The result is a `List' of the results of `p'.) </p>
   *
   * <p>Example: <code>repsep(term, ",")</code> parses a comma-separated list of term's,
   *          yielding a list of these terms</p>
   *
   * @param p a `Parser' that is to be applied successively to the input
   * @param q a `Parser' that parses the elements that separate the elements parsed by `p'
   * @return A parser that returns a list of results produced by repeatedly applying `p' (interleaved
   *         with `q') to the input.
   *         The results of `p' are collected in a list. The results of `q' are discarded.
   */
  def repsep[T](p: => Parser[T], q: => Parser[Any]): Parser[List[T]] =
    rep1sep(p, q) | success(List())

  /** A parser generator for non-empty repetitions.
   *
   * <p> rep1(p) repeatedly uses `p' to parse the input until `p' fails -- `p' must succeed at least
   *             once (the result is a `List' of the consecutive results of `p')</p>
   *
   * @param p a `Parser' that is to be applied successively to the input
   * @return A parser that returns a list of results produced by repeatedly applying `p' to the input
   *        (and that only succeeds if `p' matches at least once).
   */
  def rep1[T](p: => Parser[T]): Parser[List[T]] = rep1(p, p)

  /** A parser generator for non-empty repetitions.
   *
   * <p> rep1(f, p) first uses `f' (which must succeed) and then repeatedly uses `p' to
   *     parse the input until `p' fails
   *     (the result is a `List' of the consecutive results of `f' and `p')</p>
   *
   * @param first a `Parser' that parses the first piece of input
   * @param p a `Parser' that is to be applied successively to the rest of the input (if any)
   * @return A parser that returns a list of results produced by first applying `f' and then
   *         repeatedly `p' to the input (it only succeeds if `f' matches).
   */
  def rep1[T](first: => Parser[T], p: => Parser[T]): Parser[List[T]] = Parser{ in0 =>
    val xs = new scala.collection.mutable.ListBuffer[T]
    var in = in0

    var res = first(in)

    while(res.successful) {
      xs += res.get
      in = res.next
      res = p(in)
    }

    // assert(res.isInstanceOf[NoSuccess])

    res match {
      case e: Error => e
      case _  =>
        if (!xs.isEmpty) {
          // the next parser should start parsing where p failed,
          // since `!p(in).successful', the next input to be consumed is `in'
          Success(xs.toList, in)  // TODO: I don't think in == res.next holds
        }
        else {
          Failure(res.asInstanceOf[NoSuccess].msg, in0)
        }
    }
  }

  //= first ~ rep(p) ^^ { case ~(x, xs) => x :: xs }


  /** A parser generator for a specified number of repetitions.
   *
   * <p> repN(n, p)  uses `p' exactly `n' time to parse the input
   *       (the result is a `List' of the `n' consecutive results of `p')</p>
   *
   * @param p a `Parser' that is to be applied successively to the input
   * @param n the exact number of times `p' must succeed
   * @return A parser that returns a list of results produced by repeatedly applying `p' to the input
   *        (and that only succeeds if `p' matches exactly `n' times).
   */
  def repN[T](n: Int, p: => Parser[T]): Parser[List[T]] =
    if(n==0) success(Nil) else p ~ repN(n-1, p) ^^ { case ~(x, xs) => x :: xs }

  /** A parser generator for non-empty repetitions.
   *
   *  <p>rep1sep(first, p, q) starts by using `first', followed by repeatedly uses of `p' interleaved with `q'
   *                to parse the input, until `p' fails. `first' must succeed (the result is a `List' of the
   *                consecutive results of `first' and `p')</p>
   *
   * @param first a `Parser' that is to be applied to the first element of input
   * @param p a `Parser' that is to be applied successively to the input
   * @param q a `Parser' that parses the elements that separate the elements parsed by `p'
   *          (interleaved with `q')
   * @return A parser that returns a list of results produced by repeatedly applying `p' to the input
   *         (and that only succeeds if `p' matches at least once).
   *         The results of `p' are collected in a list. The results of `q' are discarded.
   */
  def rep1sep[T](p: => Parser[T], q: => Parser[Any]): Parser[List[T]] =
    p ~ (q ~ rep1sep(p, q) ^^ { case x ~ y => y } | success(List())) ^^ { case x ~ y => x :: y }

  /** A parser generator that, roughly, generalises the rep1sep generator so that `q', which parses the separator,
   * produces a left-associative function that combines the elements it separates.
   *
   * <p> From: J. Fokker. Functional parsers. In J. Jeuring and E. Meijer, editors, Advanced Functional Programming, volume 925 of Lecture Notes in Computer Science, pages 1--23. Springer, 1995.</p>
   *
   * @param p a parser that parses the elements
   * @param q a parser that parses the token(s) separating the elements, yielding a left-associative function that
   *          combines two elements into one
   */
  def chainl1[T](p: => Parser[T], q: => Parser[(T, T) => T]): Parser[T]
    = chainl1(p, p, q)

  /** A parser generator that, roughly, generalises the rep1sep generator so that `q', which parses the separator,
   * produces a left-associative function that combines the elements it separates.
   *
   * @param first a parser that parses the first element
   * @param p a parser that parses the subsequent elements
   * @param q a parser that parses the token(s) separating the elements, yielding a left-associative function that
   *          combines two elements into one
   */
  def chainl1[T, U](first: => Parser[T], p: => Parser[U], q: => Parser[(T, U) => T]): Parser[T]
    = first ~ rep(q ~ p) ^^ {
        case x ~ xs => xs.foldLeft(x){(_, _) match {case (a, f ~ b) => f(a, b)}}
      }

  /** A parser generator that generalises the rep1sep generator so that `q', which parses the separator,
   * produces a right-associative function that combines the elements it separates. Additionally,
   * The right-most (last) element and the left-most combinating function have to be supplied.
   *
   * rep1sep(p: Parser[T], q) corresponds to chainr1(p, q ^^ cons, cons, Nil) (where val cons = (x: T, y: List[T]) => x :: y)
   *
   * @param p a parser that parses the elements
   * @param q a parser that parses the token(s) separating the elements, yielding a right-associative function that
   *          combines two elements into one
   * @param combine the "last" (left-most) combination function to be applied
   * @param first   the "first" (right-most) element to be combined
   */
  def chainr1[T, U](p: => Parser[T], q: => Parser[(T, U) => U], combine: (T, U) => U, first: U): Parser[U]
    = p ~ rep(q ~ p) ^^ {
        case x ~ xs => (new ~(combine, x) :: xs).
                            foldRight(first){(_, _) match {case (f ~ a, b) => f(a, b)}}
      }

  /** A parser generator for optional sub-phrases.
   *
   *  <p>opt(p) is a parser that returns `Some(x)' if `p' returns `x' and `None' if `p' fails</p>
   *
   * @param p A `Parser' that is tried on the input
   * @return a `Parser' that always succeeds: either with the result provided by `p' or
   *         with the empty result
   */
  def opt[T](p: => Parser[T]): Parser[Option[T]] =
    p ^^ (x => Some(x)) | success(None)

  /** Wrap a parser so that its failures&errors become success and vice versa -- it never consumes any input
   */
  def not[T](p: => Parser[T]): Parser[Unit] = Parser { in =>
    p(in) match {
      case s @ Success(_, _) => Failure("Expected failure", in)
      case e @ Error(_, _) => Success((), in)
      case f @ Failure(msg, next) => Success((), in)
    }
  }


  /** `positioned' decorates a parser's result with the start position of the input it consumed.
   *
   * @param p a `Parser' whose result conforms to `Positional'.
   * @return A parser that has the same behaviour as `p', but which marks its result with the
   *         start position of the input it consumed, if it didn't already have a position.
   */
  def positioned[T <: Positional](p: => Parser[T]): Parser[T] = Parser { in =>
    p(in) match {
      case Success(t, in1) => Success(if (t.pos == NoPosition) t setPos in.pos else t, in1)
      case ns: NoSuccess => ns
    }
  }

  /** <p>
   *    A parser generator delimiting whole phrases (i.e. programs).
   *  </p>
   *  <p>
   *    <code>phrase(p)</code> succeeds if <code>p</code> succeeds and
   *    no input is left over after <code>p</code>.
   *  </p>
   *
   *  @param p the parser that must consume all input for the resulting parser
   *           to succeed.
   *  @return  a parser that has the same result as `p', but that only succeeds
   *           if <code>p</code> consumed all the input.
   */
  def phrase[T](p: Parser[T]) = new Parser[T] {
    lastNoSuccess = null
    def apply(in: Input) = p(in) match {
      case s @ Success(out, in1) =>
        if (in1.atEnd)
          s
        else if (lastNoSuccess == null || lastNoSuccess.next.pos < in1.pos)
          Failure("end of input expected", in1)
        else
          lastNoSuccess
      case _ => lastNoSuccess
    }
  }

  def mkList[T] = (_: ~[T, List[T]]) match { case x ~ xs => x :: xs }
  case class ~[+a, +b](_1: a, _2: b) {
    override def toString = "("+ _1 +"~"+ _2 +")"
  }

  /** A parser whose ~ combinator disallows back-tracking.
   */
  trait OnceParser[+T] extends Parser[T] {
    override def ~ [U](p: => Parser[U]): Parser[~[T, U]]
      = OnceParser{ (for(a <- this; b <- commit(p)) yield new ~(a,b)).named("~") }
  }
}