summaryrefslogtreecommitdiff
path: root/src/library/scalax/collection/generic/IterableTemplate.scala
blob: cc562c308a3ddeb23e95d5b8d0d883876bbb884a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2003-2009, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://scala-lang.org/               **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */

// $Id: Iterable.scala 15188 2008-05-24 15:01:02Z stepancheg $


package scalax.collection.generic

import scalax.collection.mutable.{Buffer, ArrayBuffer, ListBuffer}
import scalax.collection.immutable.{List, Nil, ::, Stream}
import util.control.Breaks._
import Iterable._

/** Collection classes mixing in this class provide a method
 *  <code>elements</code> which returns an iterator over all the
 *  elements contained in the collection.
 *
 *  @note If a collection has a known <code>size</code>, it should also sub-type <code>Collection</code>.
 *        Only potentially unbounded collections should directly sub-class <code>Iterable</code>.
 *  @author Matthias Zenger
 *  @author Martin Odersky
 *  @version 2.8
 */
trait IterableTemplate[+CC[/*+*/B] <: IterableTemplate[CC, B] with Iterable[B], /*+*/A] { self/*: CC[A]*/ =>

  /** The template itself seen as an instance of `CC[A]`.
   * @note: It would be logical to have a self type `CC[A]` instead, then we would not need
   * this method. Unfortunately, tyis runs afoul some pecularities in Scala's member resolution
   * algorithm: If the self type is a CC, then Iterable is one of its supertypes. Iterable
   * defines a number of concrete methods such as newBuilder which are abstract here.
   * The newBuilder method in Iterable[A] has type Builder[Iterable, A]. Because Scala
   * prefers concrete over abstract members, it is this newBuilder which is chosen, instead of
   * the abstract newBuilder in class IterableTemplate of type Builder[CC, A].
   * Even for concrete methods we have a problem because the last mixin in the parents of CC is
   * Iterable, not IterableTemplate. So resolution picks the version in Iterable, which returns
   * again an Iterable, not a CC, as would be required.
   * These problems would be avoided if Scala computed the type of a member as the glb of the types
   * all members in the class and its superclasses types.
   * I think overall this would be a better design.
   */
  protected[this] def thisCC: CC[A] = this.asInstanceOf[CC[A]]

  /** Creates a new iterator over all elements contained in this
   *  object.
   *
   *  @return the new iterator
   */
  def elements: Iterator[A]

  /** Create a new builder for this IterableType
   */
  def newBuilder[B]: Builder[CC, B]

  /** Create a new builder for this IterableType
   *  with a hint what that its size should be size `sizeHint`
   */
  def newBuilder[B](sizeHint: Int): Builder[CC, B] = newBuilder[B]

  /** Is this collection empty? */
  def isEmpty: Boolean = !elements.hasNext

  /** returns true iff this collection has a bound size.
   *  Many APIs in this trait will not work on collections of
   *  unbound sizes.
   */
  def hasDefiniteSize = true

  /** Create a new iterable of type CC which contains all elements of this iterable
   *  followed by all elements of Iterable `that'
   */
  def ++[B >: A](that: Iterable[B]): CC[B] = {
    val b: Builder[CC, B] = (this: IterableTemplate[CC, A]).newBuilder[B]
    b ++= thisCC
    b ++= that
    b.result
  }

  /** Create a new iterable of type CC which contains all elements of this iterable
   *  followed by all elements of Iterator `that'
   */
  def ++[B >: A](that: Iterator[B]): CC[B] = {
    val b = newBuilder[B]
    b ++= thisCC
    b ++= that
    b.result
  }

  /** Returns the iterable resulting from applying the given function
   *  <code>f</code> to each element of this iterable.
   *
   *  @param f function to apply to each element.
   *  @return  <code>f(a<sub>0</sub>), ..., f(a<sub>n</sub>)</code> if this
   *           iterable is <code>a<sub>0</sub>, ..., a<sub>n</sub></code>.
   */
  def map[B](f: A => B): CC[B] = {
    val b = newBuilder[B]
    for (x <- this) b += f(x)
    b.result
  }

  /** Applies the given function <code>f</code> to each element of
   *  this iterable, then concatenates the results.
   *
   *  @param f the function to apply on each element.
   *  @return  <code>f(a<sub>0</sub>) ::: ... ::: f(a<sub>n</sub>)</code> if
   *           this iterable is <code>a<sub>0</sub>, ..., a<sub>n</sub></code>.
   */
  def flatMap[B](f: A => Iterable[B]): CC[B] = {
    val b = newBuilder[B]
    for (x <- this) b ++= f(x)
    b.result
  }

  /** Returns all the elements of this iterable that satisfy the
   *  predicate <code>p</code>. The order of the elements is preserved.
   *  @param p the predicate used to filter the iterable.
   *  @return the elements of this iterable satisfying <code>p</code>.
   */
  def filter(p: A => Boolean): CC[A] = {
    val b = newBuilder[A]
    for (x <- this)
      if (p(x)) b += x
    b.result
  }

  /** Removes all elements of the iterable which satisfy the predicate
   *  <code>p</code>. This is like <code>filter</code> with the
   *  predicate inversed.
   *
   *  @param p the predicate to use to test elements
   *  @return  the iterable without all elements which satisfy <code>p</code>
   */
  def remove(p: A => Boolean): CC[A] = filter(!p(_))

  /** Partitions this iterable in two iterables according to a predicate.
   *
   *  @param p the predicate on which to partition
   *  @return  a pair of iterables: the iterable that satisfies the predicate
   *           <code>p</code> and the iterable that does not.
   *           The relative order of the elements in the resulting iterables
   *           is the same as in the original iterable.
   */
  def partition(p: A => Boolean): (CC[A], CC[A]) = {
    val l, r = newBuilder[A]
    for (x <- this) (if (p(x)) l else r) += x
    (l.result, r.result)
  }

  /** Apply a function <code>f</code> to all elements of this
   *  iterable object.
   *
   *  @note Will not terminate for infinite-sized collections.
   *  @param  f   a function that is applied to every element.
   *  Note this function underlies the implementation of most other bulk operations.
   *  It should be overridden in concrete collectionc classes with efficient implementations.
   */
  def foreach(f: A => Unit): Unit = elements.foreach(f)

  /** Return true iff the given predicate `p` yields true for all elements
   *  of this iterable.
   *
   *  @note May not terminate for infinite-sized collections.
   *  @param   p     the predicate
   */
  def forall(p: A => Boolean): Boolean = {
    var result = true
    breakable {
      for (x <- this)
        if (!p(x)) { result = false; break }
    }
    result
  }

  /** Return true iff there is an element in this iterable for which the
   *  given predicate `p` yields true.
   *
   *  @note May not terminate for infinite-sized collections.
   *  @param   p     the predicate
   */
  def exists(p: A => Boolean): Boolean = {
    var result = false
    breakable {
      for (x <- this)
        if (p(x)) { result = true; break }
    }
    result
  }

  /** Count the number of elements in the iterable which satisfy a predicate.
   *
   *  @param p the predicate for which to count
   *  @return  the number of elements satisfying the predicate <code>p</code>.
   */
  def count(p: A => Boolean): Int = {
    var cnt = 0
    for (x <- this) {
      if (p(x)) cnt += 1
    }
    cnt
  }

  /** Find and return the first element of the iterable object satisfying a
   *  predicate, if any.
   *
   *  @note may not terminate for infinite-sized collections.
   *  @note Might return different results for different runs, unless this iterable is ordered, or
   *        the operator is associative and commutative.
   *  @param p the predicate
   *  @return an option containing the first element in the iterable object
   *  satisfying <code>p</code>, or <code>None</code> if none exists.
   */
  def find(p: A => Boolean): Option[A] = {
    var result: Option[A] = None
    breakable {
      for (x <- this)
        if (p(x)) { result = Some(x); break }
    }
    result
  }

  /** Combines the elements of this iterable object together using the binary
   *  function <code>f</code>, from left to right, and starting with
   *  the value <code>z</code>.
   *
   *  @note Will not terminate for infinite-sized collections.
   *  @note Might return different results for different runs, unless this iterable is ordered, or
   *        the operator is associative and commutative.
   *  @return <code>f(... (f(f(z, a<sub>0</sub>), a<sub>1</sub>) ...),
   *          a<sub>n</sub>)</code> if the iterable is
   *          <code>[a<sub>0</sub>, a<sub>1</sub>, ..., a<sub>n</sub>]</code>.
   */
  def foldLeft[B](z: B)(op: (B, A) => B): B = {
    var result = z
    for (x <- this)
      result = op(result, x)
    result
  }

  /** Combines the elements of this iterable together using the binary
   *  function <code>f</code>, from right to left, and starting with
   *  the value <code>z</code>.
   *
   *  @note Will not terminate for infinite-sized collections.
   *  @note Might return different results for different runs, unless this iterable is ordered, or
   *        the operator is associative and commutative.
   *  @return <code>f(a<sub>0</sub>, f(a<sub>1</sub>, f(..., f(a<sub>n</sub>, z)...)))</code>
   *          if the iterable is <code>[a<sub>0</sub>, a1, ..., a<sub>n</sub>]</code>.
   */
  def foldRight[B](z: B)(op: (A, B) => B): B = elements.foldRight(z)(op)

  /** Similar to <code>foldLeft</code> but can be used as
   *  an operator with the order of iterable and zero arguments reversed.
   *  That is, <code>z /: xs</code> is the same as <code>xs foldLeft z</code>
   *  @note Will not terminate for infinite-sized collections.
   *  @note Might return different results for different runs, unless this iterable is ordered, or
   *        the operator is associative and commutative.
   */
  def /: [B](z: B)(op: (B, A) => B): B = foldLeft(z)(op)

  /** An alias for <code>foldRight</code>.
   *  That is, <code>xs :\ z</code> is the same as <code>xs foldRight z</code>
   *  @note Will not terminate for infinite-sized collections.
   *  @note Might return different results for different runs, unless this iterable is ordered, or
   *        the operator is associative and commutative.
   */
  def :\ [B](z: B)(op: (A, B) => B): B = foldRight(z)(op)

  /** Combines the elements of this iterable object together using the binary
   *  operator <code>op</code>, from left to right
   *  @note Will not terminate for infinite-sized collections.
   *  @note Might return different results for different runs, unless this iterable is ordered, or
   *        the operator is associative and commutative.
   *  @param op  The operator to apply
   *  @return <code>op(... op(a<sub>0</sub>,a<sub>1</sub>), ..., a<sub>n</sub>)</code>
      if the iterable object has elements
   *          <code>a<sub>0</sub>, a<sub>1</sub>, ..., a<sub>n</sub></code>.
   *  @throws Predef.UnsupportedOperationException if the iterable object is empty.
   */
  def reduceLeft[B >: A](op: (B, A) => B): B = {
    if (isEmpty) throw new UnsupportedOperationException("empty.reduceLeft")
    var result: B = elements.next
    var first = true
    for (x <- this)
      if (first) first = false
      else result = op(result, x)
    result
  }

  /** Combines the elements of this iterable object together using the binary
   *  operator <code>op</code>, from right to left
   *  @note Will not terminate for infinite-sized collections.
   *  @note Might return different results for different runs, unless this iterable is ordered, or
   *        the operator is associative and commutative.
   *  @param op  The operator to apply
   *
   *  @return <code>a<sub>0</sub> op (... op (a<sub>n-1</sub> op a<sub>n</sub>)...)</code>
   *          if the iterable object has elements <code>a<sub>0</sub>, a<sub>1</sub>, ...,
   *          a<sub>n</sub></code>.
   *
   *  @throws Predef.UnsupportedOperationException if the iterator is empty.
   */
  def reduceRight[B >: A](op: (A, B) => B): B =
    elements.reduceRight(op)

  /** Returns an iterable formed from this iterable and the specified iterable
   *  `other` by associating each element of the former with
   *  the element at the same position in the latter.
   *  If one of the two iterables is longer than the other, its remaining elements are ignored.
   */
  def zip[B](that: Iterable[B]): CC[(A, B)] = {
    val these = this.elements
    val those = that.elements
    val b = this.newBuilder[(A, B)]
    while (these.hasNext && those.hasNext)
      b += ((these.next, those.next))
    b.result
  }

  /** Returns a iterable formed from this iterable and the specified iterable
   *  <code>that</code> by associating each element of the former with
   *  the element at the same position in the latter.
   *
   *  @param that     iterable <code>that</code> may have a different length
   *                  as the self iterable.
   *  @param thisElem element <code>thisElem</code> is used to fill up the
   *                  resulting iterable if the self iterable is shorter than
   *                  <code>that</code>
b   *  @param thatElem element <code>thatElem</code> is used to fill up the
   *                  resulting iterable if <code>that</code> is shorter than
   *                  the self iterable
   *  @return         <code>Iterable((a<sub>0</sub>,b<sub>0</sub>), ...,
   *                  (a<sub>n</sub>,b<sub>n</sub>), (elem,b<sub>n+1</sub>),
   *                  ..., {elem,b<sub>m</sub>})</code>
   *                  when <code>[a<sub>0</sub>, ..., a<sub>n</sub>] zip
   *                  [b<sub>0</sub>, ..., b<sub>m</sub>]</code> is
   *                  invoked where <code>m &gt; n</code>.
   */
  def zipAll[B, A1 >: A, B1 >: B](that: Iterable[B], thisElem: A1, thatElem: B1): CC[(A1, B1)] = {
    val these = this.elements
    val those = that.elements
    val b = newBuilder[(A1, B1)]
    while (these.hasNext && those.hasNext)
      b += ((these.next, those.next))
    while (these.hasNext)
      b += ((these.next, thatElem))
    while (those.hasNext)
      b += ((thisElem, those.next))
    b.result
  }

  /** Zips this iterable with its indices. `s.zipWithIndex` is equivalent to
   *  `s zip s.indices`, but is usually more efficient.
   */
  def zipWithIndex: CC[(A, Int)] = {
    val b = newBuilder[(A, Int)]
    var i = 0
    for (x <- this) {
      b += ((x, i))
      i +=1
    }
    b.result
  }

  /** Copy all elements to a given buffer
   *  @note Will not terminate for infinite-sized collections.
   *  @param  dest   The buffer to which elements are copied
   */
  def copyToBuffer[B >: A](dest: Buffer[B]) {
    for (x <- this) dest += x
  }

  /** Fills the given array <code>xs</code> with at most `len` elements of
   *  this iterable starting at position `start`.
   *  Copying will stop oce either the end of the current iterable is reached or
   *  `len` elements have been copied.
   *
   *  @note Will not terminate for infinite-sized collections.
   *  @param  xs the array to fill.
   *  @param  start starting index.
   *  @param  len number of elements to copy
   *  @pre    the array must be large enough to hold all elements.
   */
  def copyToArray[B >: A](xs: Array[B], start: Int, len: Int) {
    var i = start
    val end = (start + len) min xs.length
    for (x <- this) {
      if (i < end) {
        xs(i) = x
        i += 1
      }
    }
  }

  /** Fills the given array <code>xs</code> with the elements of
   *  this iterable starting at position <code>start</code>
   *  until either the end of the current iterable or the end of array `xs` is reached.
   *
   *  @note Will not terminate for infinite-sized collections.
   *  @param  xs the array to fill.
   *  @param  start starting index.
   *  @pre    the array must be large enough to hold all elements.
   */
  def copyToArray[B >: A](xs: Array[B], start: Int) {
    copyToArray(xs, start, xs.length - start)
  }

  /** Converts this collection to a fresh Array elements.
   *  @note  Will not terminate for infinite-sized collections.
   */
  def toArray[B >: A]: Array[B] = {
    var size = 0
    for (x <- this) size += 1
    val result = new Array[B](size)
    copyToArray(result, 0)
    result
  }

  /**
   *  Create a fresh list with all the elements of this iterable object.
   *  @note Will not terminate for infinite-sized collections.
   */
  def toList: List[A] = (new ListBuffer[A] ++ thisCC).toList

  /**
   *  Returns a sequence containing all of the elements in this iterable object.
   *  @note Will not terminate for infinite-sized collections.
   */
  def toSequence: Sequence[A] = toList

  /** @deprecated use toSequence instead
   */
  @deprecated def toSeq: Sequence[A] = toSequence

  /**
   *  Create a stream which contains all the elements of this iterable object.
   *  @note consider using <code>projection</code> for lazy behavior.
   */
  def toStream: Stream[A] = elements.toStream

  /** Sort the iterable according to the comparison function
   *  <code>&lt;(e1: a, e2: a) =&gt; Boolean</code>,
   *  which should be true iff <code>e1</code> is smaller than
   *  <code>e2</code>.
   *  The sort is stable. That is elements that are equal wrt `lt` appear in the
   *  same order in the sorted iterable as in the original.
   *
   *  @param lt the comparison function
   *  @return   a iterable sorted according to the comparison function
   *            <code>&lt;(e1: a, e2: a) =&gt; Boolean</code>.
   *  @ex <pre>
   *    List("Steve", "Tom", "John", "Bob")
   *      .sort((e1, e2) => (e1 compareTo e2) &lt; 0) =
   *    List("Bob", "John", "Steve", "Tom")</pre>
   *  !!!
  def sortWith(lt : (A,A) => Boolean): CC[A] = {
    val arr = toArray
    Array.sortWith(arr, lt)
    val b = newBuilder[A]
    for (x <- arr) b += x
    b.result
  }
  */

  /** Returns a string representation of this iterable object. The resulting string
   *  begins with the string <code>start</code> and is finished by the string
   *  <code>end</code>. Inside, the string representations of elements (w.r.t.
   *  the method <code>toString()</code>) are separated by the string
   *  <code>sep</code>.
   *
   *  @ex  <code>List(1, 2, 3).mkString("(", "; ", ")") = "(1; 2; 3)"</code>
   *  @param start starting string.
   *  @param sep separator string.
   *  @param end ending string.
   *  @return a string representation of this iterable object.
   */
  def mkString(start: String, sep: String, end: String): String =
    addString(new StringBuilder(), start, sep, end).toString

  /** Returns a string representation of this iterable object. The string
   *  representations of elements (w.r.t. the method <code>toString()</code>)
   *  are separated by the string <code>sep</code>.
   *
   *  @param sep separator string.
   *  @return a string representation of this iterable object.
   */
  def mkString(sep: String): String =
    addString(new StringBuilder(), sep).toString

  /** Converts a collection into a flat <code>String</code> by each element's toString method.
   */
  def mkString =
    addString(new StringBuilder()).toString

  /** Write all elements of this iterable into given string builder.
   *  The written text begins with the string <code>start</code> and is finished by the string
   *  <code>end</code>. Inside, the string representations of elements (w.r.t.
   *  the method <code>toString()</code>) are separated by the string
   *  <code>sep</code>.
   */
  def addString(b: StringBuilder, start: String, sep: String, end: String): StringBuilder = {
    b append start
    var first = true
    for (x <- this) {
      if (first) first = false
      else b append sep
      b append x
    }
    b append end
  }

  /** Write all elements of this string into given string builder.
   *  The string representations of elements (w.r.t. the method <code>toString()</code>)
   *  are separated by the string <code>sep</code>.
   */
  def addString(b: StringBuilder, sep: String): StringBuilder = addString(b, "", sep, "")

  /** Write all elements of this string into given string builder without using
   *  any separator between consecutive elements.
   */
  def addString(b: StringBuilder): StringBuilder = addString(b, "")

  /**
   * returns a projection that can be used to call non-strict <code>filter</code>,
   * <code>map</code>, and <code>flatMap</code> methods that build projections
   * of the collection.
  def projection : Iterable.Projection[A] = new Iterable.Projection[A] {
    def elements = Iterable.this.elements
    override def force = Iterable.this
  }
   */

  override def toString = mkString(stringPrefix + "(", ", ", ")")

  /** Defines the prefix of this object's <code>toString</code> representation.
   */
  def stringPrefix : String = {
    var string = this.getClass.getName
    val idx1 = string.lastIndexOf('.' : Int)
    if (idx1 != -1) string = string.substring(idx1 + 1)
    val idx2 = string.indexOf('$')
    if (idx2 != -1) string = string.substring(0, idx2)
    string
  }

  /** Creates a view of this iterable @see IterableView
   */
  def view: IterableView[CC, A] = new IterableView[CC, A] { // !!! Martin: We should maybe infer the type parameters here?
    val origin = thisCC
    val elements: Iterator[A] = self.elements
  }

// The following methods return non-deterministic results, unless this iterable is an OrderedIterable

  /** The first element of this iterable.
   *
   *  @note  Might return different results for different runs, unless this iterable is ordered
   *  @throws Predef.NoSuchElementException if the iterable is empty.
   */
  def head: A = if (isEmpty) throw new NoSuchElementException else elements.next

   /** @deprecated  use head instead */
  @deprecated def first: A = head

  /** Returns as an option the first element of this iterable
   *  or <code>None</code> if iterable is empty.
   *  @note  Might return different results for different runs, unless this iterable is ordered
   */
  def headOption: Option[A] = if (isEmpty) None else Some(head)

  /** @deprecated use headOption instead
   *  <code>None</code> if iterable is empty.
   */
  @deprecated def firstOption: Option[A] = headOption

  /** An iterable consisting of all elements of this iterable
   *  except the first one.
   *  @note  Might return different results for different runs, unless this iterable is ordered
   */
  def tail: CC[A] = drop(1)

  /** Return an iterable consisting only of the first <code>n</code>
   *  elements of this iterable, or else the whole iterable, if it has less
   *  than <code>n</code> elements.
   *
   *  @param n the number of elements to take
   *  @note  Might return different results for different runs, unless this iterable is ordered
   */
  def take(n: Int): CC[A] = {
    val b = newBuilder[A]
    var i = 0
    breakable {
      for (x <- this) {
        b += x
        i += 1
        if (i == n) break
      }
    }
    b.result
  }

  /** Returns this iterable without its <code>n</code> first elements
   *  If this iterable has less than <code>n</code> elements, the empty
   *  iterable is returned.
   *
   *  @param n the number of elements to drop
   *  @return  the new iterable
   *  @note  Might return different results for different runs, unless this iterable is ordered
   */
  def drop(n: Int): CC[A] = {
    val b = newBuilder[A]
    var i = 0
    for (x <- this) {
      if (i >= n) b += x
      i += 1
    }
    b.result
  }

  /** A sub-iterable starting at index `from`
   *  and extending up to (but not including) index `until`.
   *
   *  @note c.slice(from, to)  is equivalent to (but possibly more efficient than)
   *  c.drop(from).take(to - from)
   *
   *  @param from   The index of the first element of the returned subsequence
   *  @param until  The index of the element following the returned subsequence
   *  @throws IndexOutOfBoundsException if <code>from &lt; 0</code>
   *          or <code>length &lt; from + len<code>
   *  @note  Might return different results for different runs, unless this iterable is ordered
   */
  def slice(from: Int, until: Int): CC[A] = {
    val b = newBuilder[A]
    var i = 0
    breakable {
      for (x <- this) {
        if (i >= from) b += x
        i += 1
        if (i == until) break
      }
    }
    b.result
  }

  /** Split the iterable at a given point and return the two parts thus
   *  created.
   *
   *  @param n the position at which to split
   *  @return  a pair of iterables composed of the first <code>n</code>
   *           elements, and the other elements.
   *  @note  Might return different results for different runs, unless this iterable is ordered
   */
  def splitAt(n: Int): (CC[A], CC[A]) = {
    val l, r = newBuilder[A]
    var i = 0
    for (x <- this)
      (if (i < n) l else r) += x
    (l.result, r.result)
  }

  /** A sub-iterable view  starting at index `from`
   *  and extending up to (but not including) index `until`.
   *
   *  @param from   The index of the first element of the slice
   *  @param until  The index of the element following the slice
   *  @note  The difference between `view` and `slice` is that `view` produces
   *         a view of the current iterable, whereas `slice` produces a new iterable.
   *
   *  @note  Might return different results for different runs, unless this iterable is ordered
   *  @note view(from, to)  is equivalent to view.slice(from, to)
   */
  def view(from: Int, until: Int): IterableView[CC, A] = view.slice(from, until)
}