summaryrefslogtreecommitdiff
path: root/src/reflect/scala/reflect/internal/Types.scala
blob: 2f499950302ba914d3e48f3d969bb8b5873c680f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
/* NSC -- new Scala compiler
 * Copyright 2005-2013 LAMP/EPFL
 * @author  Martin Odersky
 */

package scala.reflect
package internal

import scala.collection.{ mutable, immutable, generic }
import generic.Clearable
import scala.ref.WeakReference
import mutable.ListBuffer
import Flags._
import scala.util.control.ControlThrowable
import scala.annotation.tailrec
import util.Statistics
import scala.runtime.ObjectRef
import util.ThreeValues._

/* A standard type pattern match:
  case ErrorType =>
    // internal: error
  case WildcardType =>
    // internal: unknown
  case BoundedWildcardType(bounds) =>
    // internal: unknown
  case NoType =>
  case NoPrefix =>
  case ThisType(sym) =>
    // sym.this.type
  case SuperType(thistpe, supertpe) =>
    // super references
  case SingleType(pre, sym) =>
    // pre.sym.type
  case ConstantType(value) =>
    // Int(2)
  case TypeRef(pre, sym, args) =>
    // pre.sym[targs]
    // Outer.this.C would be represented as TypeRef(ThisType(Outer), C, List())
  case RefinedType(parents, defs) =>
    // parent1 with ... with parentn { defs }
  case ExistentialType(tparams, result) =>
    // result forSome { tparams }
  case AnnotatedType(annots, tp, selfsym) =>
    // tp @annots

  // the following are non-value types; you cannot write them down in Scala source.

  case TypeBounds(lo, hi) =>
    // >: lo <: hi
  case ClassInfoType(parents, defs, clazz) =>
    // same as RefinedType except as body of class
  case MethodType(paramtypes, result) =>
    // (paramtypes)result
    // For instance def m(): T is represented as MethodType(List(), T)
  case NullaryMethodType(result) => // eliminated by uncurry
    // an eval-by-name type
    // For instance def m: T is represented as NullaryMethodType(T)
  case PolyType(tparams, result) =>
    // [tparams]result where result is a (Nullary)MethodType or ClassInfoType

  // The remaining types are not used after phase `typer`.
  case OverloadedType(pre, tparams, alts) =>
    // all alternatives of an overloaded ident
  case AntiPolyType(pre, targs) =>
    // rarely used, disappears when combined with a PolyType
  case TypeVar(inst, constr) =>
    // a type variable
    // Replace occurrences of type parameters with type vars, where
    // inst is the instantiation and constr is a list of bounds.
  case DeBruijnIndex(level, index, args)
    // for dependent method types: a type referring to a method parameter.
  case ErasedValueType(tref)
    // only used during erasure of derived value classes.
*/

trait Types extends api.Types { self: SymbolTable =>
  import definitions._
  import TypesStats._

  private var explainSwitch = false
  private final val emptySymbolSet = immutable.Set.empty[Symbol]

  private final val LogPendingSubTypesThreshold = 50
  private final val LogPendingBaseTypesThreshold = 50
  private final val LogVolatileThreshold = 50

  /** A don't care value for the depth parameter in lubs/glbs and related operations. */
  private final val AnyDepth = -3

  /** Decrement depth unless it is a don't care. */
  private final def decr(depth: Int) = if (depth == AnyDepth) AnyDepth else depth - 1

  private final val printLubs = sys.props contains "scalac.debug.lub"
  private final val traceTypeVars = sys.props contains "scalac.debug.tvar"
  /** In case anyone wants to turn off lub verification without reverting anything. */
  private final val verifyLubs = true
  /** In case anyone wants to turn off type parameter bounds being used
   *  to seed type constraints.
   */
  private final val propagateParameterBoundsToTypeVars = sys.props contains "scalac.debug.prop-constraints"

  protected val enableTypeVarExperimentals = settings.Xexperimental.value

  /** Empty immutable maps to avoid allocations. */
  private val emptySymMap   = immutable.Map[Symbol, Symbol]()
  private val emptySymCount = immutable.Map[Symbol, Int]()

  /** The current skolemization level, needed for the algorithms
   *  in isSameType, isSubType that do constraint solving under a prefix.
   */
  var skolemizationLevel = 0

  /** A log of type variable with their original constraints. Used in order
   *  to undo constraints in the case of isSubType/isSameType failure.
   */
  lazy val undoLog = newUndoLog

  protected def newUndoLog = new UndoLog

  class UndoLog extends Clearable {
    private type UndoPairs = List[(TypeVar, TypeConstraint)]
    //OPT this method is public so we can do `manual inlining`
    var log: UndoPairs = List()

    /*
     * These two methods provide explicit locking mechanism that is overridden in SynchronizedUndoLog.
     *
     * The idea behind explicit locking mechanism is that all public methods that access mutable state
     * will have to obtain the lock for their entire execution so both reads and writes can be kept in
     * right order. Originally, that was achieved by overriding those public methods in
     * `SynchronizedUndoLog` which was fine but expensive. The reason is that those public methods take
     * thunk as argument and if we keep them non-final there's no way to make them inlined so thunks
     * can go away.
     *
     * By using explicit locking we can achieve inlining.
     *
     * NOTE: They are made public for now so we can apply 'manual inlining' (copy&pasting into hot
     * places implementation of `undo` or `undoUnless`). This should be changed back to protected
     * once inliner is fixed.
     */
    def lock(): Unit = ()
    def unlock(): Unit = ()

    // register with the auto-clearing cache manager
    perRunCaches.recordCache(this)

    /** Undo all changes to constraints to type variables upto `limit`. */
    //OPT this method is public so we can do `manual inlining`
    def undoTo(limit: UndoPairs) {
      assertCorrectThread()
      while ((log ne limit) && log.nonEmpty) {
        val (tv, constr) = log.head
        tv.constr = constr
        log = log.tail
      }
    }

    /** No sync necessary, because record should only
     *  be called from within a undo or undoUnless block,
     *  which is already synchronized.
     */
    private[reflect] def record(tv: TypeVar) = {
      log ::= ((tv, tv.constr.cloneInternal))
    }

    def clear() {
      lock()
      try {
        if (settings.debug.value)
          self.log("Clearing " + log.size + " entries from the undoLog.")
        log = Nil
      } finally unlock()
    }
    def size = {
      lock()
      try log.size finally unlock()
    }

    // `block` should not affect constraints on typevars
    def undo[T](block: => T): T = {
      lock()
      try {
        val before = log

        try block
        finally undoTo(before)
      } finally unlock()
    }

    // if `block` evaluates to false, it should not affect constraints on typevars
    def undoUnless(block: => Boolean): Boolean = {
      lock()
      try {
        val before = log
        var result = false

        try result = block
        finally if (!result) undoTo(before)

        result
      } finally unlock()
    }
  }

  /** A map from lists to compound types that have the given list as parents.
   *  This is used to avoid duplication in the computation of base type sequences and baseClasses.
   *  It makes use of the fact that these two operations depend only on the parents,
   *  not on the refinement.
   */
  val intersectionWitness = perRunCaches.newWeakMap[List[Type], WeakReference[Type]]()

  /** A proxy for a type (identified by field `underlying`) that forwards most
   *  operations to it (for exceptions, see WrappingProxy, which forwards even more operations).
   *  every operation that is overridden for some kind of types should be forwarded.
   */
  trait SimpleTypeProxy extends Type {
    def underlying: Type

    // the following operations + those in RewrappingTypeProxy are all operations
    // in class Type that are overridden in some subclass
    // Important to keep this up-to-date when new operations are added!
    override def isTrivial = underlying.isTrivial
    override def isHigherKinded: Boolean = underlying.isHigherKinded
    override def typeConstructor: Type = underlying.typeConstructor
    override def isNotNull = underlying.isNotNull
    override def isError = underlying.isError
    override def isErroneous = underlying.isErroneous
    override def isStable: Boolean = underlying.isStable
    override def isVolatile = underlying.isVolatile
    override def finalResultType = underlying.finalResultType
    override def paramSectionCount = underlying.paramSectionCount
    override def paramss = underlying.paramss
    override def params = underlying.params
    override def paramTypes = underlying.paramTypes
    override def termSymbol = underlying.termSymbol
    override def termSymbolDirect = underlying.termSymbolDirect
    override def typeParams = underlying.typeParams
    override def boundSyms = underlying.boundSyms
    override def typeSymbol = underlying.typeSymbol
    override def typeSymbolDirect = underlying.typeSymbolDirect
    override def widen = underlying.widen
    override def typeOfThis = underlying.typeOfThis
    override def bounds = underlying.bounds
    override def parents = underlying.parents
    override def prefix = underlying.prefix
    override def decls = underlying.decls
    override def baseType(clazz: Symbol) = underlying.baseType(clazz)
    override def baseTypeSeq = underlying.baseTypeSeq
    override def baseTypeSeqDepth = underlying.baseTypeSeqDepth
    override def baseClasses = underlying.baseClasses
  }

  /** A proxy for a type (identified by field `underlying`) that forwards most
   *  operations to it. Every operation that is overridden for some kind of types is
   *  forwarded here. Some operations are rewrapped again.
   */
  trait RewrappingTypeProxy extends SimpleTypeProxy {
    protected def maybeRewrap(newtp: Type) = if (newtp eq underlying) this else rewrap(newtp)
    protected def rewrap(newtp: Type): Type

    // the following are all operations in class Type that are overridden in some subclass
    // Important to keep this up-to-date when new operations are added!
    override def widen = maybeRewrap(underlying.widen)
    override def narrow = underlying.narrow
    override def deconst = maybeRewrap(underlying.deconst)
    override def resultType = maybeRewrap(underlying.resultType)
    override def resultType(actuals: List[Type]) = maybeRewrap(underlying.resultType(actuals))
    override def finalResultType = maybeRewrap(underlying.finalResultType)
    override def paramSectionCount = 0
    override def paramss: List[List[Symbol]] = List()
    override def params: List[Symbol] = List()
    override def paramTypes: List[Type] = List()
    override def typeArgs = underlying.typeArgs
    override def notNull = maybeRewrap(underlying.notNull)
    override def instantiateTypeParams(formals: List[Symbol], actuals: List[Type]) = underlying.instantiateTypeParams(formals, actuals)
    override def skolemizeExistential(owner: Symbol, origin: AnyRef) = underlying.skolemizeExistential(owner, origin)
    override def normalize = maybeRewrap(underlying.normalize)
    override def dealias = maybeRewrap(underlying.dealias)
    override def cloneInfo(owner: Symbol) = maybeRewrap(underlying.cloneInfo(owner))
    override def atOwner(owner: Symbol) = maybeRewrap(underlying.atOwner(owner))
    override def prefixString = underlying.prefixString
    override def isComplete = underlying.isComplete
    override def complete(sym: Symbol) = underlying.complete(sym)
    override def load(sym: Symbol) { underlying.load(sym) }
    override def withAnnotations(annots: List[AnnotationInfo]) = maybeRewrap(underlying.withAnnotations(annots))
    override def withoutAnnotations = maybeRewrap(underlying.withoutAnnotations)
  }

  case object UnmappableTree extends TermTree {
    override def toString = "<unmappable>"
    super.tpe_=(NoType)
    override def tpe_=(t: Type) = if (t != NoType) {
      throw new UnsupportedOperationException("tpe_=("+t+") inapplicable for <empty>")
    }
  }

  abstract class TypeApiImpl extends TypeApi { this: Type =>
    def declaration(name: Name): Symbol = decl(name)
    def nonPrivateDeclaration(name: Name): Symbol = nonPrivateDecl(name)
    def declarations = decls
    def typeArguments = typeArgs
    def erasure = this match {
      case ConstantType(value) => widen.erasure
      case _ =>
        var result: Type = transformedType(this)
        result = result.normalize match { // necessary to deal with erasures of HK types, typeConstructor won't work
          case PolyType(undets, underlying) => existentialAbstraction(undets, underlying) // we don't want undets in the result
          case _ => result
        }
        // erasure screws up all ThisTypes for modules into PackageTypeRefs
        // we need to unscrew them, or certain typechecks will fail mysteriously
        // http://groups.google.com/group/scala-internals/browse_thread/thread/6d3277ae21b6d581
        result = result.map(tpe => tpe match {
          case tpe: PackageTypeRef => ThisType(tpe.sym)
          case _ => tpe
        })
        result
    }
    def substituteSymbols(from: List[Symbol], to: List[Symbol]): Type = substSym(from, to)
    def substituteTypes(from: List[Symbol], to: List[Type]): Type = subst(from, to)

    // the only thingies that we want to splice are: 1) type parameters, 2) abstract type members
    // the thingies that we don't want to splice are: 1) concrete types (obviously), 2) existential skolems
    def isSpliceable = {
      this.isInstanceOf[TypeRef] && typeSymbol.isAbstractType && !typeSymbol.isExistential
    }
  }

  /** Same as a call to narrow unless existentials are visible
   *  after widening the type. In that case, narrow from the widened
   *  type instead of the proxy. This gives buried existentials a
   *  chance to make peace with the other types. See SI-5330.
   */
  private def narrowForFindMember(tp: Type): Type = {
    val w = tp.widen
    // Only narrow on widened type when we have to -- narrow is expensive unless the target is a singleton type.
    if ((tp ne w) && containsExistential(w)) w.narrow
    else tp.narrow
  }

  /** The base class for all types */
  abstract class Type extends TypeApiImpl with Annotatable[Type] {
    /** Types for which asSeenFrom always is the identity, no matter what
     *  prefix or owner.
     */
    def isTrivial: Boolean = false

    /** Is this type higher-kinded, i.e., is it a type constructor @M */
    def isHigherKinded: Boolean = false
    def takesTypeArgs: Boolean = this.isHigherKinded

    /** Does this type denote a stable reference (i.e. singleton type)? */
    def isStable: Boolean = false

    /** Is this type dangerous (i.e. it might contain conflicting
     *  type information when empty, so that it can be constructed
     *  so that type unsoundness results.) A dangerous type has an underlying
     *  type of the form T_1 with T_n { decls }, where one of the
     *  T_i (i > 1) is an abstract type.
     */
    def isVolatile: Boolean = false

    /** Is this type guaranteed not to have `null` as a value? */
    def isNotNull: Boolean = false

    /** Is this type a structural refinement type (it ''refines'' members that have not been inherited) */
    def isStructuralRefinement: Boolean = false

    /** Does this type depend immediately on an enclosing method parameter?
      * I.e., is it a singleton type whose termSymbol refers to an argument of the symbol's owner (which is a method)?
      */
    def isImmediatelyDependent: Boolean = false

    /** Is this type a dependent method type? */
    def isDependentMethodType: Boolean = false

    /** True for WildcardType or BoundedWildcardType. */
    def isWildcard = false

    /** Is this type produced as a repair for an error? */
    def isError: Boolean = typeSymbol.isError || termSymbol.isError

    /** Is this type produced as a repair for an error? */
    def isErroneous: Boolean = ErroneousCollector.collect(this)

    /** Does this type denote a reference type which can be null? */
    // def isNullable: Boolean = false

    /** Can this type only be subtyped by bottom types?
     *  This is assessed to be the case if the class is final,
     *  and all type parameters (if any) are invariant.
     */
    def isFinalType: Boolean =
      typeSymbol.isFinal && (typeSymbol.typeParams forall symbolIsNonVariant) && prefix.isStable

    /** Is this type completed (i.e. not a lazy type)? */
    def isComplete: Boolean = true

    /** If this is a lazy type, assign a new type to `sym`. */
    def complete(sym: Symbol) {}

    /** The term symbol associated with the type
      * Note that the symbol of the normalized type is returned (@see normalize)
      */
    def termSymbol: Symbol = NoSymbol

    /** The type symbol associated with the type
      * Note that the symbol of the normalized type is returned (@see normalize)
      * A type's typeSymbol should if possible not be inspected directly, due to
      * the likelihood that what is true for tp.typeSymbol is not true for
      * tp.sym, due to normalization.
      */
    def typeSymbol: Symbol = NoSymbol

    /** The term symbol ''directly'' associated with the type.
     */
    def termSymbolDirect: Symbol = termSymbol

    /** The type symbol ''directly'' associated with the type.
     *  In other words, no normalization is performed: if this is an alias type,
     *  the symbol returned is that of the alias, not the underlying type.
     */
    def typeSymbolDirect: Symbol = typeSymbol

    /** The base type underlying a type proxy, identity on all other types */
    def underlying: Type = this

    /** Widen from singleton type to its underlying non-singleton
     *  base type by applying one or more `underlying` dereferences,
     *  identity for all other types.
     *
     *  class Outer { class C ; val x: C }
     *  val o: Outer
     *  <o.x.type>.widen = o.C
     */
    def widen: Type = this

    /** Map a constant type or not-null-type to its underlying base type,
     *  identity for all other types.
     */
    def deconst: Type = this

    /** The type of `this` of a class type or reference type. */
    def typeOfThis: Type = typeSymbol.typeOfThis

    /** Map to a singleton type which is a subtype of this type.
     *  The fallback implemented here gives
     *    T.narrow  = T' forSome { type T' <: T with Singleton }
     *  Overridden where we know more about where types come from.
     */
    /*
    Note: this implementation of narrow is theoretically superior to the one
    in use below, but imposed a significant performance penalty.  It was in trunk
    from svn r24960 through r25080.
    */
    /*
    def narrow: Type =
      if (phase.erasedTypes) this
      else commonOwner(this) freshExistential ".type" setInfo singletonBounds(this) tpe
    */

    /** Map to a singleton type which is a subtype of this type.
     *  The fallback implemented here gives:
     *  {{{
     *    T.narrow  =  (T {}).this.type
     *  }}}
     *  Overridden where we know more about where types come from.
     */
    def narrow: Type =
      if (phase.erasedTypes) this
      else {
        val cowner = commonOwner(this)
        refinedType(this :: Nil, cowner, EmptyScope, cowner.pos).narrow
      }

    /** For a TypeBounds type, itself;
     *  for a reference denoting an abstract type, its bounds,
     *  for all other types, a TypeBounds type all of whose bounds are this type.
     */
    def bounds: TypeBounds = TypeBounds(this, this)

    /** For a class or intersection type, its parents.
     *  For a TypeBounds type, the parents of its hi bound.
     *  inherited by typerefs, singleton types, and refinement types,
     *  The empty list for all other types */
    def parents: List[Type] = List()

    /** For a class with nonEmpty parents, the first parent.
     *  Otherwise some specific fixed top type.
     */
    def firstParent = if (parents.nonEmpty) parents.head else ObjectClass.tpe

    /** For a typeref or single-type, the prefix of the normalized type (@see normalize).
     *  NoType for all other types. */
    def prefix: Type = NoType

    /** A chain of all typeref or singletype prefixes of this type, longest first.
     *  (Only used from safeToString.)
     */
    def prefixChain: List[Type] = this match {
      case TypeRef(pre, _, _) => pre :: pre.prefixChain
      case SingleType(pre, _) => pre :: pre.prefixChain
      case _ => List()
    }

    /** This type, without its type arguments @M */
    def typeConstructor: Type = this

    /** For a typeref, its arguments. The empty list for all other types */
    def typeArgs: List[Type] = List()

    /** A list of placeholder types derived from the type parameters.
     *  Used by RefinedType and TypeRef.
     */
    protected def dummyArgs: List[Type] = typeParams map (_.typeConstructor)

    /** For a (nullary) method or poly type, its direct result type,
     *  the type itself for all other types. */
    def resultType: Type = this

    def resultType(actuals: List[Type]) = this

    /** Only used for dependent method types. */
    def resultApprox: Type = ApproximateDependentMap(resultType)

    /** If this is a TypeRef `clazz`[`T`], return the argument `T`
     *  otherwise return this type
     */
    def remove(clazz: Symbol): Type = this

    /** For a curried/nullary method or poly type its non-method result type,
     *  the type itself for all other types */
    def finalResultType: Type = this

    /** For a method type, the number of its value parameter sections,
     *  0 for all other types */
    def paramSectionCount: Int = 0

    /** For a method or poly type, a list of its value parameter sections,
     *  the empty list for all other types */
    def paramss: List[List[Symbol]] = List()

    /** For a method or poly type, its first value parameter section,
     *  the empty list for all other types */
    def params: List[Symbol] = List()

    /** For a method or poly type, the types of its first value parameter section,
     *  the empty list for all other types */
    def paramTypes: List[Type] = List()

    /** For a (potentially wrapped) poly type, its type parameters,
     *  the empty list for all other types */
    def typeParams: List[Symbol] = List()

    /** For a (potentially wrapped) poly or existential type, its bound symbols,
     *  the empty list for all other types */
    def boundSyms: immutable.Set[Symbol] = emptySymbolSet

    /** Mixin a NotNull trait unless type already has one
     *  ...if the option is given, since it is causing typing bugs.
     */
    def notNull: Type =
      if (!settings.Ynotnull.value || isNotNull || phase.erasedTypes) this
      else NotNullType(this)

    /** Replace formal type parameter symbols with actual type arguments.
     *
     * Amounts to substitution except for higher-kinded types. (See overridden method in TypeRef) -- @M
     */
    def instantiateTypeParams(formals: List[Symbol], actuals: List[Type]): Type =
      if (sameLength(formals, actuals)) this.subst(formals, actuals) else ErrorType

    /** If this type is an existential, turn all existentially bound variables to type skolems.
     *  @param  owner    The owner of the created type skolems
     *  @param  origin   The tree whose type was an existential for which the skolem was created.
     */
    def skolemizeExistential(owner: Symbol, origin: AnyRef): Type = this

    /** A simple version of skolemizeExistential for situations where
     *  owner or unpack location do not matter (typically used in subtype tests)
     */
    def skolemizeExistential: Type = skolemizeExistential(NoSymbol, null)

    /** Reduce to beta eta-long normal form.
     *  Expands type aliases and converts higher-kinded TypeRefs to PolyTypes.
     *  Functions on types are also implemented as PolyTypes.
     *
     *  Example: (in the below, `<List>` is the type constructor of List)
     *    TypeRef(pre, `<List>`, List()) is replaced by
     *    PolyType(X, TypeRef(pre, `<List>`, List(X)))
     */
    def normalize = this // @MAT

    /** Expands type aliases. */
    def dealias = this

    /** Repeatedly apply widen and dealias until they have no effect.
     *  This compensates for the fact that type aliases can hide beneath
     *  singleton types and singleton types can hide inside type aliases.
     */
    def dealiasWiden: Type = (
      if (this ne widen) widen.dealiasWiden
      else if (this ne dealias) dealias.dealiasWiden
      else this
    )

    /** All the types encountered in the course of dealiasing/widening,
     *  including each intermediate beta reduction step (whereas calling
     *  dealias applies as many as possible.)
     */
    def dealiasWidenChain: List[Type] = this :: (
      if (this ne widen) widen.dealiasWidenChain
      else if (this ne betaReduce) betaReduce.dealiasWidenChain
      else Nil
    )

    def etaExpand: Type = this

    /** Performs a single step of beta-reduction on types.
     *  Given:
     *
     *    type C[T] = B[T]
     *    type B[T] = A
     *    class A
     *
     *  The following will happen after `betaReduce` is invoked:
     *    TypeRef(pre, <C>, List(Int)) is replaced by
     *    TypeRef(pre, <B>, List(Int))
     *
     *  Unlike `dealias`, which recursively applies beta reduction, until it's stuck,
     *  `betaReduce` performs exactly one step and then returns.
     */
    def betaReduce: Type = this

    /** For a classtype or refined type, its defined or declared members;
     *  inherited by subtypes and typerefs.
     *  The empty scope for all other types.
     */
    def decls: Scope = EmptyScope

    /** The defined or declared members with name `name` in this type;
     *  an OverloadedSymbol if several exist, NoSymbol if none exist.
     *  Alternatives of overloaded symbol appear in the order they are declared.
     */
    def decl(name: Name): Symbol = findDecl(name, 0)

    /** A list of all non-private members defined or declared in this type. */
    def nonPrivateDecls: List[Symbol] = decls.filterNot(_.isPrivate).toList

    /** The non-private defined or declared members with name `name` in this type;
     *  an OverloadedSymbol if several exist, NoSymbol if none exist.
     *  Alternatives of overloaded symbol appear in the order they are declared.
     */
    def nonPrivateDecl(name: Name): Symbol = findDecl(name, PRIVATE)

    /** A list of all members of this type (defined or inherited)
     *  Members appear in linearization order of their owners.
     *  Members with the same owner appear in reverse order of their declarations.
     */
    def members: Scope = membersBasedOnFlags(0, 0)

    /** A list of all non-private members of this type (defined or inherited) */
    def nonPrivateMembers: Scope = membersBasedOnFlags(BridgeAndPrivateFlags, 0)

    /** A list of all non-private members of this type  (defined or inherited),
     *  admitting members with given flags `admit`
     */
    def nonPrivateMembersAdmitting(admit: Long): Scope = membersBasedOnFlags(BridgeAndPrivateFlags & ~admit, 0)

    /** A list of all implicit symbols of this type  (defined or inherited) */
    def implicitMembers: Scope = membersBasedOnFlags(BridgeFlags, IMPLICIT)

    /** A list of all deferred symbols of this type  (defined or inherited) */
    def deferredMembers: Scope = membersBasedOnFlags(BridgeFlags, DEFERRED)

    /** The member with given name,
     *  an OverloadedSymbol if several exist, NoSymbol if none exist */
    def member(name: Name): Symbol =
      memberBasedOnName(name, BridgeFlags)

    /** The non-private member with given name,
     *  an OverloadedSymbol if several exist, NoSymbol if none exist.
     *  Bridges are excluded from the result
     */
    def nonPrivateMember(name: Name): Symbol =
      memberBasedOnName(name, BridgeAndPrivateFlags)

    /** All members with the given flags, excluding bridges.
     */
    def membersWithFlags(requiredFlags: Long): Scope =
      membersBasedOnFlags(BridgeFlags, requiredFlags)

    /** All non-private members with the given flags, excluding bridges.
     */
    def nonPrivateMembersWithFlags(requiredFlags: Long): Scope =
      membersBasedOnFlags(BridgeAndPrivateFlags, requiredFlags)

    /** The non-private member with given name, admitting members with given flags `admit`.
     *  "Admitting" refers to the fact that members with a PRIVATE, BRIDGE, or VBRIDGE
     *  flag are usually excluded from findMember results, but supplying any of those flags
     *  to this method disables that exclusion.
     *
     *  An OverloadedSymbol if several exist, NoSymbol if none exists.
     */
    def nonPrivateMemberAdmitting(name: Name, admit: Long): Symbol =
      memberBasedOnName(name, BridgeAndPrivateFlags & ~admit)

    /** The non-local member with given name,
     *  an OverloadedSymbol if several exist, NoSymbol if none exist */
    def nonLocalMember(name: Name): Symbol =
      memberBasedOnName(name, BridgeFlags | LOCAL)

    /** Members excluding and requiring the given flags.
     *  Note: unfortunately it doesn't work to exclude DEFERRED this way.
     */
    def membersBasedOnFlags(excludedFlags: Long, requiredFlags: Long): Scope =
      findMembers(excludedFlags, requiredFlags)
//      findMember(nme.ANYNAME, excludedFlags, requiredFlags, false).alternatives

    def memberBasedOnName(name: Name, excludedFlags: Long): Symbol =
      findMember(name, excludedFlags, 0, false)

    /** The least type instance of given class which is a supertype
     *  of this type.  Example:
     *    class D[T]
     *    class C extends p.D[Int]
     *    ThisType(C).baseType(D) = p.D[Int]
     */
    def baseType(clazz: Symbol): Type = NoType

    /** This type as seen from prefix `pre` and class `clazz`. This means:
     *  Replace all thistypes of `clazz` or one of its subclasses
     *  by `pre` and instantiate all parameters by arguments of `pre`.
     *  Proceed analogously for thistypes referring to outer classes.
     *
     *  Example:
     *    class D[T] { def m: T }
     *    class C extends p.D[Int]
     *    T.asSeenFrom(ThisType(C), D)  (where D is owner of m)
     *      = Int
     */
    def asSeenFrom(pre: Type, clazz: Symbol): Type = {
      val start = if (Statistics.canEnable) Statistics.pushTimer(typeOpsStack, asSeenFromNanos)  else null
      try {
        val trivial = (
             this.isTrivial
          || phase.erasedTypes && pre.typeSymbol != ArrayClass
          || skipPrefixOf(pre, clazz)
        )
        if (trivial) this
        else {
          val m     = new AsSeenFromMap(pre.normalize, clazz)
          val tp    = m(this)
          val tp1   = existentialAbstraction(m.capturedParams, tp)

          if (m.capturedSkolems.isEmpty) tp1
          else deriveType(m.capturedSkolems, _.cloneSymbol setFlag CAPTURED)(tp1)
        }
      } finally if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
    }

    /** The info of `sym`, seen as a member of this type.
     *
     *  Example:
     *  {{{
     *    class D[T] { def m: T }
     *    class C extends p.D[Int]
     *    ThisType(C).memberType(m) = Int
     *  }}}
     */
    def memberInfo(sym: Symbol): Type = {
      sym.info.asSeenFrom(this, sym.owner)
    }

    /** The type of `sym`, seen as a member of this type. */
    def memberType(sym: Symbol): Type = sym match {
      case meth: MethodSymbol =>
        meth.typeAsMemberOf(this)
      case _ =>
        computeMemberType(sym)
    }

    def computeMemberType(sym: Symbol): Type = sym.tpeHK match { //@M don't prematurely instantiate higher-kinded types, they will be instantiated by transform, typedTypeApply, etc. when really necessary
      case OverloadedType(_, alts) =>
        OverloadedType(this, alts)
      case tp =>
        tp.asSeenFrom(this, sym.owner)
    }

    /** Substitute types `to` for occurrences of references to
     *  symbols `from` in this type.
     */
    def subst(from: List[Symbol], to: List[Type]): Type =
      if (from.isEmpty) this
      else new SubstTypeMap(from, to) apply this

    /** Substitute symbols `to` for occurrences of symbols `from` in this type.
     *
     * !!! NOTE !!!: If you need to do a substThis and a substSym, the substThis has to come
     * first, as otherwise symbols will immediately get rebound in typeRef to the old
     * symbol.
     */
    def substSym(from: List[Symbol], to: List[Symbol]): Type =
      if ((from eq to) || from.isEmpty) this
      else new SubstSymMap(from, to) apply this

    /** Substitute all occurrences of `ThisType(from)` in this type by `to`.
     *
     * !!! NOTE !!!: If you need to do a substThis and a substSym, the substThis has to come
     * first, as otherwise symbols will immediately get rebound in typeRef to the old
     * symbol.
     */
    def substThis(from: Symbol, to: Type): Type =
      new SubstThisMap(from, to) apply this
    def substThis(from: Symbol, to: Symbol): Type =
      substThis(from, to.thisType)

    /** Performs both substThis and substSym, in that order.
     *
     * [JZ] Reverted `SubstThisAndSymMap` from 334872, which was not the same as
     * `substThis(from, to).substSym(symsFrom, symsTo)`.
     *
     * `SubstThisAndSymMap` performs a breadth-first map over this type, which meant that
     * symbol substitution occured before `ThisType` substitution. Consequently, in substitution
     * of a `SingleType(ThisType(`from`), sym), symbols were rebound to `from` rather than `to`.
     */
    def substThisAndSym(from: Symbol, to: Type, symsFrom: List[Symbol], symsTo: List[Symbol]): Type =
      if (symsFrom eq symsTo) substThis(from, to)
      else substThis(from, to).substSym(symsFrom, symsTo)

    /** Returns all parts of this type which satisfy predicate `p` */
    def filter(p: Type => Boolean): List[Type] = new FilterTypeCollector(p) collect this
    def withFilter(p: Type => Boolean) = new FilterMapForeach(p)

    class FilterMapForeach(p: Type => Boolean) extends FilterTypeCollector(p){
      def foreach[U](f: Type => U): Unit = collect(Type.this) foreach f
      def map[T](f: Type => T): List[T]  = collect(Type.this) map f
    }

    /** Returns optionally first type (in a preorder traversal) which satisfies predicate `p`,
     *  or None if none exists.
     */
    def find(p: Type => Boolean): Option[Type] = new FindTypeCollector(p).collect(this)

    /** Apply `f` to each part of this type */
    def foreach(f: Type => Unit) { new ForEachTypeTraverser(f).traverse(this) }

    /** Apply `pf' to each part of this type on which the function is defined */
    def collect[T](pf: PartialFunction[Type, T]): List[T] = new CollectTypeCollector(pf).collect(this)

    /** Apply `f` to each part of this type; children get mapped before their parents */
    def map(f: Type => Type): Type = new TypeMap {
      def apply(x: Type) = f(mapOver(x))
    } apply this

    /** Is there part of this type which satisfies predicate `p`? */
    def exists(p: Type => Boolean): Boolean = !find(p).isEmpty

    /** Does this type contain a reference to this symbol? */
    def contains(sym: Symbol): Boolean = new ContainsCollector(sym).collect(this)

    /** Does this type contain a reference to this type */
    def containsTp(tp: Type): Boolean = new ContainsTypeCollector(tp).collect(this)

    /** Is this type a subtype of that type? */
    def <:<(that: Type): Boolean = {
      if (Statistics.canEnable) stat_<:<(that)
      else {
        (this eq that) ||
        (if (explainSwitch) explain("<:", isSubType, this, that)
         else isSubType(this, that, AnyDepth))
      }
    }

    /** Is this type a subtype of that type in a pattern context?
     *  Any type arguments on the right hand side are replaced with
     *  fresh existentials, except for Arrays.
     *
     *  See bug1434.scala for an example of code which would fail
     *  if only a <:< test were applied.
     */
    def matchesPattern(that: Type): Boolean = {
      (this <:< that) || ((this, that) match {
        case (TypeRef(_, ArrayClass, List(arg1)), TypeRef(_, ArrayClass, List(arg2))) if arg2.typeSymbol.typeParams.nonEmpty =>
          arg1 matchesPattern arg2
        case (_, TypeRef(_, _, args)) =>
          val newtp = existentialAbstraction(args map (_.typeSymbol), that)
          !(that =:= newtp) && (this <:< newtp)
        case _ =>
          false
      })
    }

    def stat_<:<(that: Type): Boolean = {
      if (Statistics.canEnable) Statistics.incCounter(subtypeCount)
      val start = if (Statistics.canEnable) Statistics.pushTimer(typeOpsStack, subtypeNanos) else null
      val result =
        (this eq that) ||
        (if (explainSwitch) explain("<:", isSubType, this, that)
         else isSubType(this, that, AnyDepth))
      if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
      result
    }

    /** Is this type a weak subtype of that type? True also for numeric types, i.e. Int weak_<:< Long.
     */
    def weak_<:<(that: Type): Boolean = {
      if (Statistics.canEnable) Statistics.incCounter(subtypeCount)
      val start = if (Statistics.canEnable) Statistics.pushTimer(typeOpsStack, subtypeNanos) else null
      val result =
        ((this eq that) ||
         (if (explainSwitch) explain("weak_<:", isWeakSubType, this, that)
          else isWeakSubType(this, that)))
      if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
      result
    }

    /** Is this type equivalent to that type? */
    def =:=(that: Type): Boolean = (
      (this eq that) ||
      (if (explainSwitch) explain("=", isSameType, this, that)
       else isSameType(this, that))
    );

    /** Does this type implement symbol `sym` with same or stronger type? */
    def specializes(sym: Symbol): Boolean =
      if (explainSwitch) explain("specializes", specializesSym, this, sym)
      else specializesSym(this, sym)

    /** Is this type close enough to that type so that members
     *  with the two type would override each other?
     *  This means:
     *    - Either both types are polytypes with the same number of
     *      type parameters and their result types match after renaming
     *      corresponding type parameters
     *    - Or both types are (nullary) method types with equivalent type parameter types
     *      and matching result types
     *    - Or both types are equivalent
     *    - Or phase.erasedTypes is false and both types are neither method nor
     *      poly types.
     */
    def matches(that: Type): Boolean = matchesType(this, that, !phase.erasedTypes)

    /** Same as matches, except that non-method types are always assumed to match. */
    def looselyMatches(that: Type): Boolean = matchesType(this, that, true)

    /** The shortest sorted upwards closed array of types that contains
     *  this type as first element.
     *
     *  A list or array of types ts is upwards closed if
     *
     *    for all t in ts:
     *      for all typerefs p.s[args] such that t <: p.s[args]
     *      there exists a typeref p'.s[args'] in ts such that
     *      t <: p'.s['args] <: p.s[args],
     *
     *      and
     *
     *      for all singleton types p.s such that t <: p.s
     *      there exists a singleton type p'.s in ts such that
     *      t <: p'.s <: p.s
     *
     *  Sorting is with respect to Symbol.isLess() on type symbols.
     */
    def baseTypeSeq: BaseTypeSeq = baseTypeSingletonSeq(this)

    /** The maximum depth (@see typeDepth)
     *  of each type in the BaseTypeSeq of this type except the first.
     */
    def baseTypeSeqDepth: Int = 1

    /** The list of all baseclasses of this type (including its own typeSymbol)
     *  in reverse linearization order, starting with the class itself and ending
     *  in class Any.
     */
    def baseClasses: List[Symbol] = List()

    /**
     *  @param sym the class symbol
     *  @return    the index of given class symbol in the BaseTypeSeq of this type,
     *             or -1 if no base type with given class symbol exists.
     */
    def baseTypeIndex(sym: Symbol): Int = {
      val bts = baseTypeSeq
      var lo = 0
      var hi = bts.length - 1
      while (lo <= hi) {
        val mid = (lo + hi) / 2
        val btssym = bts.typeSymbol(mid)
        if (sym == btssym) return mid
        else if (sym isLess btssym) hi = mid - 1
        else if (btssym isLess sym) lo = mid + 1
        else abort()
      }
      -1
    }

    /** If this is a poly- or methodtype, a copy with cloned type / value parameters
     *  owned by `owner`. Identity for all other types.
     */
    def cloneInfo(owner: Symbol) = this

    /** Make sure this type is correct as the info of given owner; clone it if not. */
    def atOwner(owner: Symbol) = this

    protected def objectPrefix = "object "
    protected def packagePrefix = "package "
    def trimPrefix(str: String) = str stripPrefix objectPrefix stripPrefix packagePrefix

    /** The string representation of this type used as a prefix */
    def prefixString = trimPrefix(toString) + "#"

   /** Convert toString avoiding infinite recursions by cutting off
     *  after `maxTostringRecursions` recursion levels. Uses `safeToString`
     *  to produce a string on each level.
     */
    override def toString: String = typeToString(this)

    /** Method to be implemented in subclasses.
     *  Converts this type to a string in calling toString for its parts.
     */
    def safeToString: String = super.toString

    /** The string representation of this type, with singletypes explained. */
    def toLongString = {
      val str = toString
      if (str == "type") widen.toString
      else if ((str endsWith ".type") && !typeSymbol.isModuleClass)
        widen match {
          case RefinedType(_, _)                      => "" + widen
          case _                                      => s"$str (with underlying type $widen)"
        }
      else str
    }

    /** The string representation of this type when the direct object in a sentence.
     *  Normally this is no different from the regular representation, but modules
     *  read better as "object Foo" here and "Foo.type" the rest of the time.
     */
    def directObjectString = safeToString

    /** A test whether a type contains any unification type variables.
     *  Overridden with custom logic except where trivially true.
     */
    def isGround: Boolean = this match {
      case ThisType(_) | NoPrefix | WildcardType | NoType | ErrorType | ConstantType(_) =>
        true
      case _ =>
        typeVarToOriginMap(this) eq this
    }

    /** If this is a symbol loader type, load and assign a new type to `sym`. */
    def load(sym: Symbol) {}

    private def findDecl(name: Name, excludedFlags: Int): Symbol = {
      var alts: List[Symbol] = List()
      var sym: Symbol = NoSymbol
      var e: ScopeEntry = decls.lookupEntry(name)
      while (e ne null) {
        if (!e.sym.hasFlag(excludedFlags)) {
          if (sym == NoSymbol) sym = e.sym
          else {
            if (alts.isEmpty) alts = sym :: Nil
            alts = e.sym :: alts
          }
        }
        e = decls.lookupNextEntry(e)
      }
      if (alts.isEmpty) sym
      else (baseClasses.head.newOverloaded(this, alts))
    }

    def findMembers(excludedFlags: Long, requiredFlags: Long): Scope = {
      // if this type contains type variables, put them to sleep for a while -- don't just wipe them out by
      // replacing them by the corresponding type parameter, as that messes up (e.g.) type variables in type refinements
      // without this, the matchesType call would lead to type variables on both sides
      // of a subtyping/equality judgement, which can lead to recursive types being constructed.
      // See (t0851) for a situation where this happens.
      val suspension: List[TypeVar] = if (this.isGround) null else suspendTypeVarsInType(this)

      if (Statistics.canEnable) Statistics.incCounter(findMembersCount)
      val start = if (Statistics.canEnable) Statistics.pushTimer(typeOpsStack, findMembersNanos) else null

      //Console.println("find member " + name.decode + " in " + this + ":" + this.baseClasses)//DEBUG
      var members: Scope = null
      var required = requiredFlags
      var excluded = excludedFlags | DEFERRED
      var continue = true
      var self: Type = null
      while (continue) {
        continue = false
        val bcs0 = baseClasses
        var bcs = bcs0
        while (!bcs.isEmpty) {
          val decls = bcs.head.info.decls
          var entry = decls.elems
          while (entry ne null) {
            val sym = entry.sym
            val flags = sym.flags
            if ((flags & required) == required) {
              val excl = flags & excluded
              if (excl == 0L &&
                  (// omit PRIVATE LOCALS unless selector class is contained in class owning the def.
                   (bcs eq bcs0) ||
                   (flags & PrivateLocal) != PrivateLocal ||
                   (bcs0.head.hasTransOwner(bcs.head)))) {
                if (members eq null) members = newFindMemberScope
                var others: ScopeEntry = members.lookupEntry(sym.name)
                var symtpe: Type = null
                while ((others ne null) && {
                         val other = others.sym
                         (other ne sym) &&
                         ((other.owner eq sym.owner) ||
                          (flags & PRIVATE) != 0 || {
                             if (self eq null) self = narrowForFindMember(this)
                             if (symtpe eq null) symtpe = self.memberType(sym)
                             !(self.memberType(other) matches symtpe)
                          })}) {
                  others = members lookupNextEntry others
                }
                if (others eq null) members enter sym
              } else if (excl == DEFERRED) {
                continue = true
              }
            }
            entry = entry.next
          } // while (entry ne null)
          // excluded = excluded | LOCAL
          bcs = bcs.tail
        } // while (!bcs.isEmpty)
        required |= DEFERRED
        excluded &= ~(DEFERRED.toLong)
      } // while (continue)
      if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
      if (suspension ne null) suspension foreach (_.suspended = false)
      if (members eq null) EmptyScope else members
    }

    /**
     *  Find member(s) in this type. If several members matching criteria are found, they are
     *  returned in an OverloadedSymbol
     *
     *  @param name           The member's name, where nme.ANYNAME means `unspecified`
     *  @param excludedFlags  Returned members do not have these flags
     *  @param requiredFlags  Returned members do have these flags
     *  @param stableOnly     If set, return only members that are types or stable values
     */
    //TODO: use narrow only for modules? (correct? efficiency gain?)
    def findMember(name: Name, excludedFlags: Long, requiredFlags: Long, stableOnly: Boolean): Symbol = {
      // if this type contains type variables, put them to sleep for a while -- don't just wipe them out by
      // replacing them by the corresponding type parameter, as that messes up (e.g.) type variables in type refinements
      // without this, the matchesType call would lead to type variables on both sides
      // of a subtyping/equality judgement, which can lead to recursive types being constructed.
      // See (t0851) for a situation where this happens.
      val suspension: List[TypeVar] = if (this.isGround) null else suspendTypeVarsInType(this)

      if (Statistics.canEnable) Statistics.incCounter(findMemberCount)
      val start = if (Statistics.canEnable) Statistics.pushTimer(typeOpsStack, findMemberNanos) else null

      //Console.println("find member " + name.decode + " in " + this + ":" + this.baseClasses)//DEBUG
      var member: Symbol = NoSymbol
      var members: List[Symbol] = null
      var lastM: ::[Symbol] = null
      var membertpe: Type = null
      var required = requiredFlags
      var excluded = excludedFlags | DEFERRED
      var continue = true
      var self: Type = null

      while (continue) {
        continue = false
        val bcs0 = baseClasses
        var bcs = bcs0
        // omit PRIVATE LOCALS unless selector class is contained in class owning the def.
        def admitPrivateLocal(owner: Symbol): Boolean = {
          val selectorClass = this match {
            case tt: ThisType => tt.sym // SI-7507 the first base class is not necessarily the selector class.
            case _            => bcs0.head
          }
          selectorClass.hasTransOwner(owner)
        }
        while (!bcs.isEmpty) {
          val decls = bcs.head.info.decls
          var entry = decls.lookupEntry(name)
          while (entry ne null) {
            val sym = entry.sym
            val flags = sym.flags
            if ((flags & required) == required) {
              val excl = flags & excluded
              if (excl == 0L &&
                    (
                  (bcs eq bcs0) ||
                  (flags & PrivateLocal) != PrivateLocal ||
                  admitPrivateLocal(bcs.head))) {
                if (name.isTypeName || stableOnly && sym.isStable) {
                  if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
                  if (suspension ne null) suspension foreach (_.suspended = false)
                  return sym
                } else if (member eq NoSymbol) {
                  member = sym
                } else if (members eq null) {
                  if ((member ne sym) &&
                    ((member.owner eq sym.owner) ||
                      (flags & PRIVATE) != 0 || {
                        if (self eq null) self = narrowForFindMember(this)
                        if (membertpe eq null) membertpe = self.memberType(member)
                        !(membertpe matches self.memberType(sym))
                      })) {
                    lastM = new ::(sym, null)
                    members = member :: lastM
                  }
                } else {
                  var others: List[Symbol] = members
                  var symtpe: Type = null
                  while ((others ne null) && {
                    val other = others.head
                    (other ne sym) &&
                      ((other.owner eq sym.owner) ||
                        (flags & PRIVATE) != 0 || {
                          if (self eq null) self = narrowForFindMember(this)
                          if (symtpe eq null) symtpe = self.memberType(sym)
                          !(self.memberType(other) matches symtpe)
                             })}) {
                    others = others.tail
                  }
                  if (others eq null) {
                    val lastM1 = new ::(sym, null)
                    lastM.tl = lastM1
                    lastM = lastM1
                  }
                }
              } else if (excl == DEFERRED) {
                continue = true
              }
            }
            entry = decls lookupNextEntry entry
          } // while (entry ne null)
          // excluded = excluded | LOCAL
          bcs = if (name == nme.CONSTRUCTOR) Nil else bcs.tail
        } // while (!bcs.isEmpty)
        required |= DEFERRED
        excluded &= ~(DEFERRED.toLong)
      } // while (continue)
      if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
      if (suspension ne null) suspension foreach (_.suspended = false)
      if (members eq null) {
        if (member == NoSymbol) if (Statistics.canEnable) Statistics.incCounter(noMemberCount)
        member
      } else {
        if (Statistics.canEnable) Statistics.incCounter(multMemberCount)
        lastM.tl = Nil
        baseClasses.head.newOverloaded(this, members)
      }
    }

    /** The (existential or otherwise) skolems and existentially quantified variables which are free in this type */
    def skolemsExceptMethodTypeParams: List[Symbol] = {
      var boundSyms: List[Symbol] = List()
      var skolems: List[Symbol] = List()
      for (t <- this) {
        t match {
          case ExistentialType(quantified, qtpe) =>
            boundSyms = boundSyms ::: quantified
          case TypeRef(_, sym, _) =>
            if ((sym.isExistentialSkolem || sym.isGADTSkolem) && // treat GADT skolems like existential skolems
                !((boundSyms contains sym) || (skolems contains sym)))
              skolems = sym :: skolems
          case _ =>
        }
      }
      skolems
    }

    // Implementation of Annotatable for all types but AnnotatedType, which
    // overrides these.
    def annotations: List[AnnotationInfo] = Nil
    def withoutAnnotations: Type = this
    def filterAnnotations(p: AnnotationInfo => Boolean): Type = this
    def setAnnotations(annots: List[AnnotationInfo]): Type  = annotatedType(annots, this)
    def withAnnotations(annots: List[AnnotationInfo]): Type = annotatedType(annots, this)

    /** Remove any annotations from this type and from any
     *  types embedded in this type. */
    def stripAnnotations = StripAnnotationsMap(this)

    /** Set the self symbol of an annotated type, or do nothing
     *  otherwise.  */
    def withSelfsym(sym: Symbol) = this

    /** The selfsym of an annotated type, or NoSymbol of anything else */
    def selfsym: Symbol = NoSymbol

    /** The kind of this type; used for debugging */
    def kind: String = "unknown type of class "+getClass()
  }

// Subclasses ------------------------------------------------------------

  /**
   *  A type that can be passed to unique(..) and be stored in the uniques map.
   */
  abstract class UniqueType extends Type with Product {
    final override val hashCode = computeHashCode
    protected def computeHashCode = scala.runtime.ScalaRunTime._hashCode(this)
  }

 /** A base class for types that defer some operations
   *  to their immediate supertype.
   */
  abstract class SubType extends UniqueType {
    def supertype: Type
    override def parents: List[Type] = supertype.parents
    override def decls: Scope = supertype.decls
    override def baseType(clazz: Symbol): Type = supertype.baseType(clazz)
    override def baseTypeSeq: BaseTypeSeq = supertype.baseTypeSeq
    override def baseTypeSeqDepth: Int = supertype.baseTypeSeqDepth
    override def baseClasses: List[Symbol] = supertype.baseClasses
    override def isNotNull = supertype.isNotNull
  }

  case class NotNullType(override val underlying: Type) extends SubType with RewrappingTypeProxy {
    def supertype = underlying
    protected def rewrap(newtp: Type): Type = NotNullType(newtp)
    override def isNotNull: Boolean = true
    override def notNull = this
    override def deconst: Type = underlying //todo: needed?
    override def safeToString: String = underlying.toString + " with NotNull"
    override def kind = "NotNullType"
  }

  /** A base class for types that represent a single value
   *  (single-types and this-types).
   */
  abstract class SingletonType extends SubType with SimpleTypeProxy {
    def supertype = underlying
    override def isTrivial = false
    override def isStable = true
    override def isVolatile = underlying.isVolatile
    override def widen: Type = underlying.widen
    override def baseTypeSeq: BaseTypeSeq = {
      if (Statistics.canEnable) Statistics.incCounter(singletonBaseTypeSeqCount)
      underlying.baseTypeSeq prepend this
    }
    override def isHigherKinded = false // singleton type classifies objects, thus must be kind *
    override def safeToString: String = {
      // Avoiding printing Predef.type and scala.package.type as "type",
      // since in all other cases we omit those prefixes.
      val pre = underlying.typeSymbol.skipPackageObject
      if (pre.isOmittablePrefix) pre.fullName + ".type"
      else prefixString + "type"
    }

/*
    override def typeOfThis: Type = typeSymbol.typeOfThis
    override def bounds: TypeBounds = TypeBounds(this, this)
    override def prefix: Type = NoType
    override def typeArgs: List[Type] = List()
    override def typeParams: List[Symbol] = List()
*/
  }

  /** An object representing an erroneous type */
  case object ErrorType extends Type {
    // todo see whether we can do without
    override def isError: Boolean = true
    override def decls: Scope = new ErrorScope(NoSymbol)
    override def findMember(name: Name, excludedFlags: Long, requiredFlags: Long, stableOnly: Boolean): Symbol = {
      var sym = decls lookup name
      if (sym == NoSymbol) {
        sym = NoSymbol.newErrorSymbol(name)
        decls enter sym
      }
      sym
    }
    override def baseType(clazz: Symbol): Type = this
    override def safeToString: String = "<error>"
    override def narrow: Type = this
    // override def isNullable: Boolean = true
    override def kind = "ErrorType"
  }

  /** An object representing an unknown type, used during type inference.
   *  If you see WildcardType outside of inference it is almost certainly a bug.
   */
  case object WildcardType extends Type {
    override def isWildcard = true
    override def safeToString: String = "?"
    // override def isNullable: Boolean = true
    override def kind = "WildcardType"
  }
  /** BoundedWildcardTypes, used only during type inference, are created in
   *  two places that I can find:
   *
   *    1. If the expected type of an expression is an existential type,
   *       its hidden symbols are replaced with bounded wildcards.
   *    2. When an implicit conversion is being sought based in part on
   *       the name of a method in the converted type, a HasMethodMatching
   *       type is created: a MethodType with parameters typed as
   *       BoundedWildcardTypes.
   */
  case class BoundedWildcardType(override val bounds: TypeBounds) extends Type with BoundedWildcardTypeApi {
    override def isWildcard = true
    override def safeToString: String = "?" + bounds
    override def kind = "BoundedWildcardType"
  }

  object BoundedWildcardType extends BoundedWildcardTypeExtractor

  /** An object representing a non-existing type */
  case object NoType extends Type {
    override def isTrivial: Boolean = true
    override def safeToString: String = "<notype>"
    // override def isNullable: Boolean = true
    override def kind = "NoType"
  }

  /** An object representing a non-existing prefix */
  case object NoPrefix extends Type {
    override def isTrivial: Boolean = true
    override def isStable: Boolean = true
    override def prefixString = ""
    override def safeToString: String = "<noprefix>"
    // override def isNullable: Boolean = true
    override def kind = "NoPrefixType"
  }

  /** A class for this-types of the form <sym>.this.type
   */
  abstract case class ThisType(sym: Symbol) extends SingletonType with ThisTypeApi {
    if (!sym.isClass) {
      // SI-6640 allow StubSymbols to reveal what's missing from the classpath before we trip the assertion.
      sym.failIfStub()
      abort(s"ThisType($sym) for sym which is not a class")
    }

    //assert(sym.isClass && !sym.isModuleClass || sym.isRoot, sym)
    override def isTrivial: Boolean = sym.isPackageClass
    override def isNotNull = true
    override def typeSymbol = sym
    override def underlying: Type = sym.typeOfThis
    override def isVolatile = false
    override def isHigherKinded = sym.isRefinementClass && underlying.isHigherKinded
    override def prefixString =
      if (settings.debug.value) sym.nameString + ".this."
      else if (sym.isAnonOrRefinementClass) "this."
      else if (sym.isOmittablePrefix) ""
      else if (sym.isModuleClass) sym.fullNameString + "."
      else sym.nameString + ".this."
    override def safeToString: String =
      if (sym.isEffectiveRoot) "" + sym.name
      else super.safeToString
    override def narrow: Type = this
    override def kind = "ThisType"
  }

  final class UniqueThisType(sym: Symbol) extends ThisType(sym) { }

  object ThisType extends ThisTypeExtractor {
    def apply(sym: Symbol): Type = (
      if (!phase.erasedTypes) unique(new UniqueThisType(sym))
      else if (sym.isImplClass) sym.typeOfThis
      else sym.tpe
    )
  }

  /** A class for singleton types of the form `<prefix>.<sym.name>.type`.
   *  Cannot be created directly; one should always use `singleType` for creation.
   */
  abstract case class SingleType(pre: Type, sym: Symbol) extends SingletonType with SingleTypeApi {
    private var trivial: ThreeValue = UNKNOWN
    override def isTrivial: Boolean = {
      if (trivial == UNKNOWN) trivial = fromBoolean(pre.isTrivial)
      toBoolean(trivial)
    }
    override def isGround = sym.isPackageClass || pre.isGround

    // override def isNullable = underlying.isNullable
    override def isNotNull = underlying.isNotNull
    private[reflect] var underlyingCache: Type = NoType
    private[reflect] var underlyingPeriod = NoPeriod
    override def underlying: Type = {
      val cache = underlyingCache
      if (underlyingPeriod == currentPeriod && cache != null) cache
      else {
        defineUnderlyingOfSingleType(this)
        underlyingCache
      }
    }

    // more precise conceptually, but causes cyclic errors:    (paramss exists (_ contains sym))
    override def isImmediatelyDependent = (sym ne NoSymbol) && (sym.owner.isMethod && sym.isValueParameter)

    override def isVolatile : Boolean = underlying.isVolatile && !sym.isStable
/*
    override def narrow: Type = {
      if (phase.erasedTypes) this
      else {
        val thissym = refinedType(List(this), sym.owner, EmptyScope).typeSymbol
        if (sym.owner != NoSymbol) {
          //Console.println("narrowing module " + sym + thissym.owner);
          thissym.typeOfThis = this
        }
        thissym.thisType
      }
    }
*/
    override def narrow: Type = this

    override def termSymbol = sym
    override def prefix: Type = pre
    override def prefixString = (
      if (sym.skipPackageObject.isOmittablePrefix) ""
      else if (sym.isPackageObjectOrClass) pre.prefixString
      else pre.prefixString + sym.nameString + "."
    )
    override def kind = "SingleType"
  }

  final class UniqueSingleType(pre: Type, sym: Symbol) extends SingleType(pre, sym)

  object SingleType extends SingleTypeExtractor {
    def apply(pre: Type, sym: Symbol): Type = {
      unique(new UniqueSingleType(pre, sym))
    }
  }

  protected def defineUnderlyingOfSingleType(tpe: SingleType) = {
    val period = tpe.underlyingPeriod
    if (period != currentPeriod) {
      tpe.underlyingPeriod = currentPeriod
      if (!isValid(period)) {
        // [Eugene to Paul] needs review
        tpe.underlyingCache = if (tpe.sym == NoSymbol) ThisType(rootMirror.RootClass) else tpe.pre.memberType(tpe.sym).resultType;
        assert(tpe.underlyingCache ne tpe, tpe)
      }
    }
  }

  abstract case class SuperType(thistpe: Type, supertpe: Type) extends SingletonType with SuperTypeApi {
    private var trivial: ThreeValue = UNKNOWN
    override def isTrivial: Boolean = {
      if (trivial == UNKNOWN) trivial = fromBoolean(thistpe.isTrivial && supertpe.isTrivial)
      toBoolean(trivial)
    }
    override def isNotNull = true;
    override def typeSymbol = thistpe.typeSymbol
    override def underlying = supertpe
    override def prefix: Type = supertpe.prefix
    override def prefixString = thistpe.prefixString.replaceAll("""\bthis\.$""", "super.")
    override def narrow: Type = thistpe.narrow
    override def kind = "SuperType"
  }

  final class UniqueSuperType(thistp: Type, supertp: Type) extends SuperType(thistp, supertp)

  object SuperType extends SuperTypeExtractor {
    def apply(thistp: Type, supertp: Type): Type = {
      if (phase.erasedTypes) supertp
      else unique(new UniqueSuperType(thistp, supertp))
    }
  }

  /** A class for the bounds of abstract types and type parameters
   */
  abstract case class TypeBounds(lo: Type, hi: Type) extends SubType with TypeBoundsApi {
    def supertype = hi
    override def isTrivial: Boolean = lo.isTrivial && hi.isTrivial
    override def bounds: TypeBounds = this
    def containsType(that: Type) = that match {
      case TypeBounds(_, _) => that <:< this
      case _                => lo <:< that && that <:< hi
    }
    private def lowerString = if (emptyLowerBound) "" else " >: " + lo
    private def upperString = if (emptyUpperBound) "" else " <: " + hi
    private def emptyLowerBound = typeIsNothing(lo)
    private def emptyUpperBound = typeIsAny(hi)
    def isEmptyBounds = emptyLowerBound && emptyUpperBound

    // override def isNullable: Boolean = NullClass.tpe <:< lo;
    override def safeToString = lowerString + upperString
    override def kind = "TypeBoundsType"
  }

  final class UniqueTypeBounds(lo: Type, hi: Type) extends TypeBounds(lo, hi)

  object TypeBounds extends TypeBoundsExtractor {
    def empty: TypeBounds           = apply(NothingClass.tpe, AnyClass.tpe)
    def upper(hi: Type): TypeBounds = apply(NothingClass.tpe, hi)
    def lower(lo: Type): TypeBounds = apply(lo, AnyClass.tpe)
    def apply(lo: Type, hi: Type): TypeBounds = {
      unique(new UniqueTypeBounds(lo, hi)).asInstanceOf[TypeBounds]
    }
  }

  /** A common base class for intersection types and class types
   */
  abstract class CompoundType extends Type {

    private[reflect] var baseTypeSeqCache: BaseTypeSeq = _
    private[reflect] var baseTypeSeqPeriod = NoPeriod
    private[reflect] var baseClassesCache: List[Symbol] = _
    private[reflect] var baseClassesPeriod = NoPeriod

    override def baseTypeSeq: BaseTypeSeq = {
      val cached = baseTypeSeqCache
      if (baseTypeSeqPeriod == currentPeriod && cached != null && cached != undetBaseTypeSeq)
        cached
      else {
        defineBaseTypeSeqOfCompoundType(this)
        if (baseTypeSeqCache eq undetBaseTypeSeq)
          throw new RecoverableCyclicReference(typeSymbol)

        baseTypeSeqCache
      }
    }

    override def baseTypeSeqDepth: Int = baseTypeSeq.maxDepth

    override def baseClasses: List[Symbol] = {
      val cached = baseClassesCache
      if (baseClassesPeriod == currentPeriod && cached != null) cached
      else {
        defineBaseClassesOfCompoundType(this)
        if (baseClassesCache eq null)
          throw new RecoverableCyclicReference(typeSymbol)

        baseClassesCache
      }
    }

    /** The slightly less idiomatic use of Options is due to
     *  performance considerations. A version using for comprehensions
     *  might be too slow (this is deemed a hotspot of the type checker).
     *
     *  See with Martin before changing this method.
     */
    def memo[A](op1: => A)(op2: Type => A): A = {
      def updateCache(): A = {
        intersectionWitness(parents) = new WeakReference(this)
        op1
      }

      intersectionWitness get parents match {
        case Some(ref) =>
          ref.get match {
            case Some(w) => if (w eq this) op1 else op2(w)
            case None => updateCache()
          }
        case None => updateCache()
      }
    }

    override def baseType(sym: Symbol): Type = {
      val index = baseTypeIndex(sym)
      if (index >= 0) baseTypeSeq(index) else NoType
    }

    override def narrow: Type = typeSymbol.thisType
    override def isNotNull: Boolean = parents exists typeIsNotNull

    override def isStructuralRefinement: Boolean =
      typeSymbol.isAnonOrRefinementClass && (decls exists symbolIsPossibleInRefinement)

    // override def isNullable: Boolean =
    // parents forall (p => p.isNullable && !p.typeSymbol.isAbstractType);

    override def safeToString: String = parentsString(parents) + (
      (if (settings.debug.value || parents.isEmpty || (decls.elems ne null))
        fullyInitializeScope(decls).mkString("{", "; ", "}") else "")
    )
  }

  protected def defineBaseTypeSeqOfCompoundType(tpe: CompoundType) = {
    val period = tpe.baseTypeSeqPeriod
    if (period != currentPeriod) {
      tpe.baseTypeSeqPeriod = currentPeriod
      if (!isValidForBaseClasses(period)) {
        if (tpe.parents exists typeContainsTypeVar) {
          // rename type vars to fresh type params, take base type sequence of
          // resulting type, and rename back all the entries in that sequence
          var tvs = Set[TypeVar]()
          for (p <- tpe.parents)
            for (t <- p) t match {
              case tv: TypeVar => tvs += tv
              case _ =>
            }
          val varToParamMap: Map[Type, Symbol] =
            mapFrom[TypeVar, Type, Symbol](tvs.toList)(_.origin.typeSymbol.cloneSymbol)
          val paramToVarMap = varToParamMap map (_.swap)
          val varToParam = new TypeMap {
            def apply(tp: Type) = varToParamMap get tp match {
              case Some(sym) => sym.tpe
              case _ => mapOver(tp)
            }
          }
          val paramToVar = new TypeMap {
            def apply(tp: Type) = tp match {
              case TypeRef(_, tsym, _) if paramToVarMap.isDefinedAt(tsym) => paramToVarMap(tsym)
              case _ => mapOver(tp)
            }
          }
          val bts = copyRefinedType(tpe.asInstanceOf[RefinedType], tpe.parents map varToParam, varToParam mapOver tpe.decls).baseTypeSeq
          tpe.baseTypeSeqCache = bts lateMap paramToVar
        } else {
          if (Statistics.canEnable) Statistics.incCounter(compoundBaseTypeSeqCount)
          val start = if (Statistics.canEnable) Statistics.pushTimer(typeOpsStack, baseTypeSeqNanos) else null
          try {
            tpe.baseTypeSeqCache = undetBaseTypeSeq
            tpe.baseTypeSeqCache =
              if (tpe.typeSymbol.isRefinementClass)
                tpe.memo(compoundBaseTypeSeq(tpe))(_.baseTypeSeq updateHead tpe.typeSymbol.tpe)
              else
                compoundBaseTypeSeq(tpe)
          } finally {
            if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
          }
          // [Martin] suppressing memo-ization solves the problem with "same type after erasure" errors
          // when compiling with
          // scalac scala.collection.IterableViewLike.scala scala.collection.IterableLike.scala
          // I have not yet figured out precisely why this is the case.
          // My current assumption is that taking memos forces baseTypeSeqs to be computed
          // at stale types (i.e. the underlying typeSymbol has already another type).
          // I do not yet see precisely why this would cause a problem, but it looks
          // fishy in any case.
        }
      }
    }
    //Console.println("baseTypeSeq(" + typeSymbol + ") = " + baseTypeSeqCache.toList);//DEBUG
    if (tpe.baseTypeSeqCache eq undetBaseTypeSeq)
      throw new TypeError("illegal cyclic inheritance involving " + tpe.typeSymbol)
  }

  protected def defineBaseClassesOfCompoundType(tpe: CompoundType) = {
    def computeBaseClasses: List[Symbol] =
      if (tpe.parents.isEmpty) List(tpe.typeSymbol)
      else {
        //Console.println("computing base classes of " + typeSymbol + " at phase " + phase);//DEBUG
        // optimized, since this seems to be performance critical
        val superclazz = tpe.firstParent
        var mixins = tpe.parents.tail
        val sbcs = superclazz.baseClasses
        var bcs = sbcs
        def isNew(clazz: Symbol): Boolean =
          superclazz.baseTypeIndex(clazz) < 0 &&
          { var p = bcs;
            while ((p ne sbcs) && (p.head != clazz)) p = p.tail;
            p eq sbcs
          }
        while (!mixins.isEmpty) {
          def addMixinBaseClasses(mbcs: List[Symbol]): List[Symbol] =
            if (mbcs.isEmpty) bcs
            else if (isNew(mbcs.head)) mbcs.head :: addMixinBaseClasses(mbcs.tail)
            else addMixinBaseClasses(mbcs.tail)
          bcs = addMixinBaseClasses(mixins.head.baseClasses)
          mixins = mixins.tail
        }
        tpe.typeSymbol :: bcs
      }
    val period = tpe.baseClassesPeriod
    if (period != currentPeriod) {
      tpe.baseClassesPeriod = currentPeriod
      if (!isValidForBaseClasses(period)) {
        val start = if (Statistics.canEnable) Statistics.pushTimer(typeOpsStack, baseClassesNanos) else null
        try {
          tpe.baseClassesCache = null
          tpe.baseClassesCache = tpe.memo(computeBaseClasses)(tpe.typeSymbol :: _.baseClasses.tail)
        } finally {
          if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
        }
      }
    }
    if (tpe.baseClassesCache eq null)
      throw new TypeError("illegal cyclic reference involving " + tpe.typeSymbol)
  }

  /** A class representing intersection types with refinements of the form
   *    `<parents_0> with ... with <parents_n> { decls }`
   *  Cannot be created directly;
   *  one should always use `refinedType` for creation.
   */
  case class RefinedType(override val parents: List[Type],
                         override val decls: Scope) extends CompoundType with RefinedTypeApi {

    override def isHigherKinded = (
      parents.nonEmpty &&
      (parents forall typeIsHigherKinded) &&
      !phase.erasedTypes
    )

    override def typeParams =
      if (isHigherKinded) firstParent.typeParams
      else super.typeParams

    //@M may result in an invalid type (references to higher-order args become dangling )
    override def typeConstructor =
      copyRefinedType(this, parents map (_.typeConstructor), decls)

    final override def normalize: Type =
      if (phase.erasedTypes) normalizeImpl
      else {
        if (normalized eq null) normalized = normalizeImpl
        normalized
      }

    private var normalized: Type = _
    private def normalizeImpl = {
      // TODO see comments around def intersectionType and def merge
      def flatten(tps: List[Type]): List[Type] = tps flatMap { case RefinedType(parents, ds) if ds.isEmpty => flatten(parents) case tp => List(tp) }
      val flattened = flatten(parents).distinct
      if (decls.isEmpty && hasLength(flattened, 1)) {
        flattened.head
      } else if (flattened != parents) {
        refinedType(flattened, if (typeSymbol eq NoSymbol) NoSymbol else typeSymbol.owner, decls, NoPosition)
      } else if (isHigherKinded) {
        // MO to AM: This is probably not correct
        // If they are several higher-kinded parents with different bounds we need
        // to take the intersection of their bounds
        typeFun(
          typeParams,
          RefinedType(
            parents map {
              case TypeRef(pre, sym, List()) => TypeRef(pre, sym, dummyArgs)
              case p => p
            },
            decls,
            typeSymbol))
      } else super.normalize
    }

    /** A refined type P1 with ... with Pn { decls } is volatile if
     *  one of the parent types Pi is an abstract type, and
     *  either i > 1, or decls or a following parent Pj, j > 1, contributes
     *  an abstract member.
     *  A type contributes an abstract member if it has an abstract member which
     *  is also a member of the whole refined type. A scope `decls` contributes
     *  an abstract member if it has an abstract definition which is also
     *  a member of the whole type.
     */
    override def isVolatile = {
      def isVisible(m: Symbol) =
        this.nonPrivateMember(m.name).alternatives contains m
      def contributesAbstractMembers(p: Type) =
        p.deferredMembers exists isVisible

      ((parents exists (_.isVolatile))
       ||
       (parents dropWhile (! _.typeSymbol.isAbstractType) match {
         case ps @ (_ :: ps1) =>
           (ps ne parents) ||
           (ps1 exists contributesAbstractMembers) ||
           (decls.iterator exists (m => m.isDeferred && isVisible(m)))
         case _ =>
           false
       }))
    }
    override def kind = "RefinedType"
  }

  final class RefinedType0(parents: List[Type], decls: Scope, clazz: Symbol) extends RefinedType(parents, decls) {
    override def typeSymbol = clazz
  }

  object RefinedType extends RefinedTypeExtractor {
    def apply(parents: List[Type], decls: Scope, clazz: Symbol): RefinedType =
      new RefinedType0(parents, decls, clazz)
  }

  /** Overridden in reflection compiler */
  def validateClassInfo(tp: ClassInfoType) {}

  /** A class representing a class info
   */
  case class ClassInfoType(
    override val parents: List[Type],
    override val decls: Scope,
    override val typeSymbol: Symbol) extends CompoundType with ClassInfoTypeApi
  {
    validateClassInfo(this)

    /** refs indices */
    private final val NonExpansive = 0
    private final val Expansive = 1

    /** initialization states */
    private final val UnInitialized = 0
    private final val Initializing = 1
    private final val Initialized = 2

    private type RefMap = Map[Symbol, immutable.Set[Symbol]]

    /** All type parameters reachable from given type parameter
     *  by a path which contains at least one expansive reference.
     *  @See Kennedy, Pierce: On Decidability of Nominal Subtyping with Variance
     */
    private[scala] def expansiveRefs(tparam: Symbol) = {
      if (state == UnInitialized) {
        computeRefs()
        while (state != Initialized) propagate()
      }
      getRefs(Expansive, tparam)
    }

    /* The rest of this class is auxiliary code for `expansiveRefs`
     */

    /** The type parameters which are referenced type parameters of this class.
     *  Two entries: refs(0): Non-expansive references
     *               refs(1): Expansive references
     *  Syncnote: This var need not be protected with synchronized, because
     *  it is accessed only from expansiveRefs, which is called only from
     *  Typer.
     */
    private var refs: Array[RefMap] = _

    /** The initialization state of the class: UnInialized --> Initializing --> Initialized
     *  Syncnote: This var need not be protected with synchronized, because
     *  it is accessed only from expansiveRefs, which is called only from
     *  Typer.
     */
    private var state = UnInitialized

    /** Get references for given type parameter
     *  @param  which in {NonExpansive, Expansive}
     *  @param  from  The type parameter from which references originate.
     */
    private def getRefs(which: Int, from: Symbol): Set[Symbol] = refs(which) get from match {
      case Some(set) => set
      case none => Set()
    }

    /** Augment existing refs map with reference <pre>from -> to</pre>
     *  @param  which <- {NonExpansive, Expansive}
     */
    private def addRef(which: Int, from: Symbol, to: Symbol) {
      refs(which) = refs(which) + (from -> (getRefs(which, from) + to))
    }

    /** Augment existing refs map with references <pre>from -> sym</pre>, for
     *  all elements <pre>sym</pre> of set `to`.
     *  @param  which <- {NonExpansive, Expansive}
     */
    private def addRefs(which: Int, from: Symbol, to: Set[Symbol]) {
      refs(which) = refs(which) + (from -> (getRefs(which, from) ++ to))
    }

    /** The ClassInfoType which belongs to the class containing given type parameter
     */
    private def classInfo(tparam: Symbol): ClassInfoType =
      tparam.owner.info.resultType match {
        case ci: ClassInfoType => ci
        case _ => classInfo(ObjectClass) // something's wrong; fall back to safe value
                                         // (this can happen only for erroneous programs).
      }

    private object enterRefs extends TypeMap {
      private var tparam: Symbol = _

      def apply(tp: Type): Type = {
        tp match {
          case tr @ TypeRef(_, sym, args) if args.nonEmpty =>
            val tparams = tr.initializedTypeParams
            if (settings.debug.value && !sameLength(tparams, args))
              debugwarn("Mismatched zip in computeRefs(): " + sym.info.typeParams + ", " + args)

            foreach2(tparams, args) { (tparam1, arg) =>
              if (arg contains tparam) {
                addRef(NonExpansive, tparam, tparam1)
                if (arg.typeSymbol != tparam)
                  addRef(Expansive, tparam, tparam1)
              }
            }
          case _ =>
        }
        mapOver(tp)
      }
      def enter(tparam0: Symbol, parent: Type) {
        this.tparam = tparam0
        this(parent)
      }
    }

    /** Compute initial (one-step) references and set state to `Initializing`.
     */
    private def computeRefs() {
      refs = Array(Map(), Map())
      typeSymbol.typeParams foreach { tparam =>
        parents foreach { p =>
          enterRefs.enter(tparam, p)
        }
      }
      state = Initializing
    }

    /** Propagate to form transitive closure.
     *  Set state to Initialized if no change resulted from propagation.
     *  @return   true iff there as a change in last iteration
     */
    private def propagate(): Boolean = {
      if (state == UnInitialized) computeRefs()
      //Console.println("Propagate "+symbol+", initial expansive = "+refs(Expansive)+", nonexpansive = "+refs(NonExpansive))//DEBUG
      val lastRefs = Array(refs(0), refs(1))
      state = Initialized
      var change = false
      for ((from, targets) <- refs(NonExpansive).iterator)
        for (target <- targets) {
          var thatInfo = classInfo(target)
          if (thatInfo.state != Initialized)
            change = change | thatInfo.propagate()
          addRefs(NonExpansive, from, thatInfo.getRefs(NonExpansive, target))
          addRefs(Expansive, from, thatInfo.getRefs(Expansive, target))
        }
      for ((from, targets) <- refs(Expansive).iterator)
        for (target <- targets) {
          var thatInfo = classInfo(target)
          if (thatInfo.state != Initialized)
            change = change | thatInfo.propagate()
          addRefs(Expansive, from, thatInfo.getRefs(NonExpansive, target))
        }
      change = change || refs(0) != lastRefs(0) || refs(1) != lastRefs(1)
      if (change) state = Initializing
      //else Console.println("Propagate "+symbol+", final expansive = "+refs(Expansive)+", nonexpansive = "+refs(NonExpansive))//DEBUG
      change
    }

    // override def isNullable: Boolean =
    // symbol == AnyClass ||
    // symbol != NothingClass && (symbol isSubClass ObjectClass) && !(symbol isSubClass NonNullClass);

    // override def isNonNull: Boolean = symbol == NonNullClass || super.isNonNull;
    override def kind = "ClassInfoType"

    override def safeToString =
      if (settings.debug.value || decls.size > 1)
        formattedToString
      else
        super.safeToString

    /** A nicely formatted string with newlines and such.
     */
    def formattedToString: String =
      parents.mkString("\n        with ") + (
        if (settings.debug.value || parents.isEmpty || (decls.elems ne null))
         fullyInitializeScope(decls).mkString(" {\n  ", "\n  ", "\n}")
        else ""
      )
  }

  object ClassInfoType extends ClassInfoTypeExtractor

  class PackageClassInfoType(decls: Scope, clazz: Symbol)
  extends ClassInfoType(List(), decls, clazz)

  /** A class representing a constant type.
   *
   *  @param value ...
   */
  abstract case class ConstantType(value: Constant) extends SingletonType with ConstantTypeApi {
    override def underlying: Type = value.tpe
    assert(underlying.typeSymbol != UnitClass)
    override def isTrivial: Boolean = true
    override def isNotNull = value.value != null
    override def deconst: Type = underlying
    override def safeToString: String =
      underlying.toString + "(" + value.escapedStringValue + ")"
    // override def isNullable: Boolean = value.value eq null
    // override def isNonNull: Boolean = value.value ne null
    override def kind = "ConstantType"
  }

  final class UniqueConstantType(value: Constant) extends ConstantType(value)

  object ConstantType extends ConstantTypeExtractor {
    def apply(value: Constant) = unique(new UniqueConstantType(value))
  }

  /* Syncnote: The `volatile` var and `pendingVolatiles` mutable set need not be protected
   * with synchronized, because they are accessed only from isVolatile, which is called only from
   * Typer.
   */
  private var volatileRecursions: Int = 0
  private val pendingVolatiles = new mutable.HashSet[Symbol]

  class ArgsTypeRef(pre0: Type, sym0: Symbol, args0: List[Type]) extends TypeRef(pre0, sym0, args0) {
    require(args0.nonEmpty, this)

    /** No unapplied type params size it has (should have) equally as many args. */
    override def isHigherKinded = false
    override def typeParams = Nil

    override def transform(tp: Type): Type = {
      // This situation arises when a typevar is encountered for which
      // too little information is known to determine its kind, and
      // it later turns out not to have kind *. See SI-4070.  Only
      // logging it for now.
      if (sym.typeParams.size != args.size)
        log("!!! %s.transform(%s), but tparams.isEmpty and args=".format(this, tp, args))

      asSeenFromOwner(tp).instantiateTypeParams(sym.typeParams, args)
    }

    // note: does not go through typeRef. There's no need to because
    // neither `pre` nor `sym` changes.  And there's a performance
    // advantage to call TypeRef directly.
    override def typeConstructor = TypeRef(pre, sym, Nil)
  }

  class ModuleTypeRef(pre0: Type, sym0: Symbol) extends NoArgsTypeRef(pre0, sym0) with ClassTypeRef {
    require(sym.isModuleClass, sym)
    private[this] var narrowedCache: Type = _
    override def isStable = true
    override def narrow = {
      if (narrowedCache eq null)
        narrowedCache = singleType(pre, sym.sourceModule)

      narrowedCache
    }
    final override def isNotNull = true
    override protected def finishPrefix(rest: String) = objectPrefix + rest
    override def directObjectString = super.safeToString
    override def toLongString = toString
    override def safeToString = prefixString + "type"
    override def prefixString = if (sym.isOmittablePrefix) "" else prefix.prefixString + sym.nameString + "."
  }
  class PackageTypeRef(pre0: Type, sym0: Symbol) extends ModuleTypeRef(pre0, sym0) {
    require(sym.isPackageClass, sym)
    override protected def finishPrefix(rest: String) = packagePrefix + rest
  }
  class RefinementTypeRef(pre0: Type, sym0: Symbol) extends NoArgsTypeRef(pre0, sym0) with ClassTypeRef {
    require(sym.isRefinementClass, sym)

    // I think this is okay, but see #1241 (r12414), #2208, and typedTypeConstructor in Typers
    override protected def normalizeImpl: Type = sym.info.normalize
    override protected def finishPrefix(rest: String) = "" + thisInfo
  }

  class NoArgsTypeRef(pre0: Type, sym0: Symbol) extends TypeRef(pre0, sym0, Nil) {
    // A reference (in a Scala program) to a type that has type parameters, but where the reference
    // does not include type arguments. Note that it doesn't matter whether the symbol refers
    // to a java or scala symbol, but it does matter whether it occurs in java or scala code.
    // TypeRefs w/o type params that occur in java signatures/code are considered raw types, and are
    // represented as existential types.
    override def isHigherKinded = typeParams.nonEmpty
    override def typeParams     = if (isDefinitionsInitialized) sym.typeParams else sym.unsafeTypeParams
    private def isRaw           = !phase.erasedTypes && isRawIfWithoutArgs(sym)

    override def instantiateTypeParams(formals: List[Symbol], actuals: List[Type]): Type =
      if (isHigherKinded) {
        if (sameLength(formals intersect typeParams, typeParams))
          copyTypeRef(this, pre, sym, actuals)
        // partial application (needed in infer when bunching type arguments from classes and methods together)
        else
          copyTypeRef(this, pre, sym, dummyArgs).instantiateTypeParams(formals, actuals)
      }
      else
        super.instantiateTypeParams(formals, actuals)

    override def transform(tp: Type): Type = {
      val res = asSeenFromOwner(tp)
      if (isHigherKinded && !isRaw)
        res.instantiateTypeParams(typeParams, dummyArgs)
      else
        res
    }

    override def transformInfo(tp: Type): Type =
      appliedType(asSeenFromOwner(tp), dummyArgs)

    override def narrow =
      if (sym.isModuleClass) singleType(pre, sym.sourceModule)
      else super.narrow

    override def typeConstructor = this
    // eta-expand, subtyping relies on eta-expansion of higher-kinded types

    override protected def normalizeImpl: Type =
      if (isHigherKinded) etaExpand else super.normalizeImpl
  }

  trait ClassTypeRef extends TypeRef {
    // !!! There are scaladoc-created symbols arriving which violate this require.
    // require(sym.isClass, sym)

    override def baseType(clazz: Symbol): Type =
      if (sym == clazz) this
      else transform(sym.info.baseType(clazz))
  }

  trait NonClassTypeRef extends TypeRef {
    require(sym.isNonClassType, sym)

    /* Syncnote: These are pure caches for performance; no problem to evaluate these
     * several times. Hence, no need to protected with synchronzied in a mutli-threaded
     * usage scenario.
     */
    private var relativeInfoCache: Type = _
    private var memberInfoCache: Type = _

    private[Types] def relativeInfo = {
      val memberInfo = pre.memberInfo(sym)
      if (relativeInfoCache == null || (memberInfo ne memberInfoCache)) {
        memberInfoCache = memberInfo
        relativeInfoCache = transformInfo(memberInfo)
      }
      relativeInfoCache
    }

    override def baseType(clazz: Symbol): Type =
      if (sym == clazz) this else baseTypeOfNonClassTypeRef(this, clazz)
  }

  protected def baseTypeOfNonClassTypeRef(tpe: NonClassTypeRef, clazz: Symbol) = try {
    basetypeRecursions += 1
    if (basetypeRecursions < LogPendingBaseTypesThreshold)
      tpe.relativeInfo.baseType(clazz)
    else if (pendingBaseTypes contains tpe)
      if (clazz == AnyClass) clazz.tpe else NoType
    else
      try {
        pendingBaseTypes += tpe
        tpe.relativeInfo.baseType(clazz)
      } finally {
        pendingBaseTypes -= tpe
      }
  } finally {
    basetypeRecursions -= 1
  }

  trait AliasTypeRef extends NonClassTypeRef {
    require(sym.isAliasType, sym)

    override def dealias    = if (typeParamsMatchArgs) betaReduce.dealias else super.dealias
    override def isStable   = normalize.isStable
    override def isVolatile = normalize.isVolatile
    override def narrow     = normalize.narrow
    override def thisInfo   = normalize
    override def prefix     = if (this ne normalize) normalize.prefix else pre
    override def termSymbol = if (this ne normalize) normalize.termSymbol else super.termSymbol
    override def typeSymbol = if (this ne normalize) normalize.typeSymbol else sym

    // beta-reduce, but don't do partial application -- cycles have been checked in typeRef
    override protected def normalizeImpl =
      if (typeParamsMatchArgs) betaReduce.normalize
      else if (isHigherKinded) super.normalizeImpl
      else {
        // if we are overriding a type alias in an erroneous way, don't just
        // return an ErrorType since that will result in useless error msg.
        // Instead let's try to recover from it and rely on refcheck reporting the correct error,
        // if that fails fallback to the old behaviour.
        val overriddenSym = sym.nextOverriddenSymbol
        if (overriddenSym != NoSymbol) pre.memberType(overriddenSym).normalize
        else ErrorType
      }

    // isHKSubType0 introduces synthetic type params so that
    // betaReduce can first apply sym.info to typeArgs before calling
    // asSeenFrom.  asSeenFrom then skips synthetic type params, which
    // are used to reduce HO subtyping to first-order subtyping, but
    // which can't be instantiated from the given prefix and class.
    //
    // this crashes pos/depmet_implicit_tpbetareduce.scala
    // appliedType(sym.info, typeArgs).asSeenFrom(pre, sym.owner)
    override def betaReduce = transform(sym.info.resultType)

    // #3731: return sym1 for which holds: pre bound sym.name to sym and
    // pre1 now binds sym.name to sym1, conceptually exactly the same
    // symbol as sym.  The selection of sym on pre must be updated to the
    // selection of sym1 on pre1, since sym's info was probably updated
    // by the TypeMap to yield a new symbol, sym1 with transformed info.
    // @returns sym1
    override def coevolveSym(pre1: Type): Symbol =
      if (pre eq pre1) sym else (pre, pre1) match {
        // don't look at parents -- it would be an error to override alias types anyway
        case (RefinedType(_, _), RefinedType(_, decls1)) => decls1 lookup sym.name
        // TODO: is there another way a typeref's symbol can refer to a symbol defined in its pre?
        case _                                           => sym
      }
    override def kind = "AliasTypeRef"
  }

  trait AbstractTypeRef extends NonClassTypeRef {
    require(sym.isAbstractType, sym)

    /** Syncnote: Pure performance caches; no need to synchronize in multi-threaded environment
     */
    private var symInfoCache: Type = _
    private var thisInfoCache: Type = _

    override def isVolatile = {
      // need to be careful not to fall into an infinite recursion here
      // because volatile checking is done before all cycles are detected.
      // the case to avoid is an abstract type directly or
      // indirectly upper-bounded by itself. See #2918
      try {
        volatileRecursions += 1
        if (volatileRecursions < LogVolatileThreshold)
          bounds.hi.isVolatile
        else if (pendingVolatiles(sym))
          true // we can return true here, because a cycle will be detected
               // here afterwards and an error will result anyway.
        else
          try {
            pendingVolatiles += sym
            bounds.hi.isVolatile
          } finally {
            pendingVolatiles -= sym
          }
      } finally {
        volatileRecursions -= 1
      }
    }

    override def thisInfo   = {
      val symInfo = sym.info
      if (thisInfoCache == null || (symInfo ne symInfoCache)) {
        symInfoCache = symInfo
        thisInfoCache = transformInfo(symInfo) match {
          // If a subtyping cycle is not detected here, we'll likely enter an infinite
          // loop before a sensible error can be issued.  SI-5093 is one example.
          case x: SubType if x.supertype eq this =>
            throw new RecoverableCyclicReference(sym)
          case tp => tp
        }
      }
      thisInfoCache
    }
    override def isStable = bounds.hi.typeSymbol isSubClass SingletonClass
    override def bounds   = thisInfo.bounds
    // def transformInfo(tp: Type): Type = appliedType(tp.asSeenFrom(pre, sym.owner), typeArgsOrDummies)
    override protected[Types] def baseTypeSeqImpl: BaseTypeSeq = transform(bounds.hi).baseTypeSeq prepend this
    override def kind = "AbstractTypeRef"
  }

  /** A class for named types of the form
   *    `<prefix>.<sym.name>[args]`
   *  Cannot be created directly; one should always use `typeRef`
   *  for creation. (@M: Otherwise hashing breaks)
   *
   * @M: a higher-kinded type is represented as a TypeRef with sym.typeParams.nonEmpty, but args.isEmpty
   */
  abstract case class TypeRef(pre: Type, sym: Symbol, args: List[Type]) extends UniqueType with TypeRefApi {
    private var trivial: ThreeValue = UNKNOWN
    override def isTrivial: Boolean = {
      if (trivial == UNKNOWN)
        trivial = fromBoolean(!sym.isTypeParameter && pre.isTrivial && areTrivialTypes(args))
      toBoolean(trivial)
    }
    private[reflect] var parentsCache: List[Type]      = _
    private[reflect] var parentsPeriod                 = NoPeriod
    private[reflect] var baseTypeSeqCache: BaseTypeSeq = _
    private[reflect] var baseTypeSeqPeriod             = NoPeriod
    private var normalized: Type                       = _

    //OPT specialize hashCode
    override final def computeHashCode = {
      import scala.util.hashing.MurmurHash3._
      val hasArgs = args.nonEmpty
      var h = productSeed
      h = mix(h, pre.hashCode)
      h = mix(h, sym.hashCode)
      if (hasArgs)
        finalizeHash(mix(h, args.hashCode), 3)
      else
        finalizeHash(h, 2)
    }

    // @M: propagate actual type params (args) to `tp`, by replacing
    // formal type parameters with actual ones. If tp is higher kinded,
    // the "actual" type arguments are types that simply reference the
    // corresponding type parameters (unbound type variables)
    def transform(tp: Type): Type

    // eta-expand, subtyping relies on eta-expansion of higher-kinded types
    protected def normalizeImpl: Type = if (isHigherKinded) etaExpand else super.normalize

    // TODO: test case that is compiled in a specific order and in different runs
    final override def normalize: Type = {
      // arises when argument-dependent types are approximated (see def depoly in implicits)
      if (pre eq WildcardType) WildcardType
      else if (phase.erasedTypes) normalizeImpl
      else {
        if (normalized eq null)
          normalized = normalizeImpl
        normalized
      }
    }

    override def isGround = (
         sym.isPackageClass
      || pre.isGround && args.forall(_.isGround)
    )

    override def etaExpand: Type = {
      // must initialise symbol, see test/files/pos/ticket0137.scala
      val tpars = initializedTypeParams
      if (tpars.isEmpty) this
      else typeFunAnon(tpars, copyTypeRef(this, pre, sym, tpars map (_.tpeHK))) // todo: also beta-reduce?
    }

    // only need to rebind type aliases, as typeRef already handles abstract types
    // (they are allowed to be rebound more liberally)
    def coevolveSym(pre1: Type): Symbol = sym

    //@M! use appliedType on the polytype that represents the bounds (or if aliastype, the rhs)
    def transformInfo(tp: Type): Type = appliedType(asSeenFromOwner(tp), args)

    def thisInfo                  = sym.info
    def initializedTypeParams     = sym.info.typeParams
    def typeParamsMatchArgs       = sameLength(initializedTypeParams, args)
    def asSeenFromOwner(tp: Type) = tp.asSeenFrom(pre, sym.owner)

    override def baseClasses      = thisInfo.baseClasses
    override def baseTypeSeqDepth = baseTypeSeq.maxDepth
    override def isStable         = (sym eq NothingClass) || (sym eq SingletonClass)
    override def prefix           = pre
    override def termSymbol       = super.termSymbol
    override def termSymbolDirect = super.termSymbol
    override def typeArgs         = args
    override def typeOfThis       = transform(sym.typeOfThis)
    override def typeSymbol       = sym
    override def typeSymbolDirect = sym

    override def isNotNull =
      sym.isModuleClass || sym == NothingClass || (sym isNonBottomSubClass NotNullClass) || super.isNotNull

    override def parents: List[Type] = {
      val cache = parentsCache
      if (parentsPeriod == currentPeriod && cache != null) cache
      else {
        defineParentsOfTypeRef(this)
        parentsCache
      }
    }

    override def decls: Scope = {
      sym.info match {
        case TypeRef(_, sym1, _) =>
          assert(sym1 != sym, this) // @MAT was != typeSymbol
        case _ =>
      }
      thisInfo.decls
    }

    protected[Types] def baseTypeSeqImpl: BaseTypeSeq = sym.info.baseTypeSeq map transform

    override def baseTypeSeq: BaseTypeSeq = {
      val cache = baseTypeSeqCache
      if (baseTypeSeqPeriod == currentPeriod && cache != null && cache != undetBaseTypeSeq)
        cache
      else {
        defineBaseTypeSeqOfTypeRef(this)
        if (baseTypeSeqCache == undetBaseTypeSeq)
          throw new RecoverableCyclicReference(sym)

        baseTypeSeqCache
      }
    }

    // ensure that symbol is not a local copy with a name coincidence
    private def needsPreString = (
         settings.debug.value
      || !shorthands(sym.fullName)
      || (sym.ownersIterator exists (s => !s.isClass))
    )
    private def preString  = if (needsPreString) pre.prefixString else ""
    private def argsString = if (args.isEmpty) "" else args.mkString("[", ",", "]")

    def refinementString = (
      if (sym.isStructuralRefinement) (
        fullyInitializeScope(decls) filter (sym => sym.isPossibleInRefinement && sym.isPublic)
          map (_.defString)
          mkString("{", "; ", "}")
      )
      else ""
    )

    protected def finishPrefix(rest: String) = (
      if (sym.isInitialized && sym.isAnonymousClass && !phase.erasedTypes)
        parentsString(thisInfo.parents) + refinementString
      else rest
    )
    private def customToString = sym match {
      case RepeatedParamClass => args.head + "*"
      case ByNameParamClass   => "=> " + args.head
      case _                  =>
        def targs = normalize.typeArgs

        if (isFunctionType(this)) {
          // Aesthetics: printing Function1 as T => R rather than (T) => R
          // ...but only if it's not a tuple, so ((T1, T2)) => R is distinguishable
          // from (T1, T2) => R.
          targs match {
            case in :: out :: Nil if !isTupleType(in) =>
              // A => B => C should be (A => B) => C or A => (B => C).
              // Also if A is byname, then we want (=> A) => B because => is right associative and => A => B
              // would mean => (A => B) which is a different type
              val in_s  = if (isFunctionType(in) || isByNameParamType(in)) "(" + in + ")" else "" + in
              val out_s = if (isFunctionType(out)) "(" + out + ")" else "" + out
              in_s + " => " + out_s
            case xs =>
              xs.init.mkString("(", ", ", ")") + " => " + xs.last
          }
        }
        else if (isTupleType(this))
          targs.mkString("(", ", ", if (hasLength(targs, 1)) ",)" else ")")
        else if (sym.isAliasType && prefixChain.exists(_.termSymbol.isSynthetic) && (this ne this.normalize))
          "" + normalize
        else
          ""
    }
    override def safeToString = {
      val custom = if (settings.debug.value) "" else customToString
      if (custom != "") custom
      else finishPrefix(preString + sym.nameString + argsString)
    }
    override def prefixString = "" + (
      if (settings.debug.value)
        super.prefixString
      else if (sym.isOmittablePrefix)
        ""
      else if (sym.isPackageClass || sym.isPackageObjectOrClass)
        sym.skipPackageObject.fullName + "."
      else if (isStable && nme.isSingletonName(sym.name))
        tpnme.dropSingletonName(sym.name) + "."
      else
        super.prefixString
    )
    override def kind = "TypeRef"
  }

  object TypeRef extends TypeRefExtractor {
    def apply(pre: Type, sym: Symbol, args: List[Type]): Type = unique({
      if (args.nonEmpty) {
        if (sym.isAliasType)              new ArgsTypeRef(pre, sym, args) with AliasTypeRef
        else if (sym.isAbstractType)      new ArgsTypeRef(pre, sym, args) with AbstractTypeRef
        else                              new ArgsTypeRef(pre, sym, args) with ClassTypeRef
      }
      else {
        if (sym.isAliasType)              new NoArgsTypeRef(pre, sym) with AliasTypeRef
        else if (sym.isAbstractType)      new NoArgsTypeRef(pre, sym) with AbstractTypeRef
        else if (sym.isRefinementClass)   new RefinementTypeRef(pre, sym)
        else if (sym.isPackageClass)      new PackageTypeRef(pre, sym)
        else if (sym.isModuleClass)       new ModuleTypeRef(pre, sym)
        else                              new NoArgsTypeRef(pre, sym) with ClassTypeRef
      }
    })
  }

  protected def defineParentsOfTypeRef(tpe: TypeRef) = {
    val period = tpe.parentsPeriod
    if (period != currentPeriod) {
      tpe.parentsPeriod = currentPeriod
      if (!isValidForBaseClasses(period)) {
        tpe.parentsCache = tpe.thisInfo.parents map tpe.transform
      } else if (tpe.parentsCache == null) { // seems this can happen if things are corrupted enough, see #2641
        tpe.parentsCache = List(AnyClass.tpe)
      }
    }
  }

  protected def defineBaseTypeSeqOfTypeRef(tpe: TypeRef) = {
    val period = tpe.baseTypeSeqPeriod
    if (period != currentPeriod) {
      tpe.baseTypeSeqPeriod = currentPeriod
      if (!isValidForBaseClasses(period)) {
        if (Statistics.canEnable) Statistics.incCounter(typerefBaseTypeSeqCount)
        val start = if (Statistics.canEnable) Statistics.pushTimer(typeOpsStack, baseTypeSeqNanos) else null
        try {
          tpe.baseTypeSeqCache = undetBaseTypeSeq
          tpe.baseTypeSeqCache = tpe.baseTypeSeqImpl
        } finally {
          if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
        }
      }
    }
    if (tpe.baseTypeSeqCache == undetBaseTypeSeq)
      throw new TypeError("illegal cyclic inheritance involving " + tpe.sym)
  }

  /** A class representing a method type with parameters.
   *  Note that a parameterless method is represented by a NullaryMethodType:
   *
   *    def m(): Int        MethodType(Nil, Int)
   *    def m: Int          NullaryMethodType(Int)
   */
  case class MethodType(override val params: List[Symbol],
                        override val resultType: Type) extends Type with MethodTypeApi {

    private var trivial: ThreeValue = UNKNOWN
    override def isTrivial: Boolean = {
      if (trivial == UNKNOWN) trivial = fromBoolean(isTrivialResult && areTrivialParams(params))
      toBoolean(trivial)
    }

    private def isTrivialResult =
      resultType.isTrivial && (resultType eq resultType.withoutAnnotations)

    private def areTrivialParams(ps: List[Symbol]): Boolean = ps match {
      case p :: rest =>
        p.tpe.isTrivial && !typesContain(paramTypes, p) && !(resultType contains p) &&
        areTrivialParams(rest)
      case _ =>
        true
    }

    def isImplicit = params.nonEmpty && params.head.isImplicit
    def isJava = false // can we do something like for implicits? I.e. do Java methods without parameters need to be recognized?

    //assert(paramTypes forall (pt => !pt.typeSymbol.isImplClass))//DEBUG
    override def paramSectionCount: Int = resultType.paramSectionCount + 1

    override def paramss: List[List[Symbol]] = params :: resultType.paramss

    override def paramTypes = params map (_.tpe)

    override def boundSyms = resultType.boundSyms ++ params

    override def resultType(actuals: List[Type]) =
      if (isTrivial || phase.erasedTypes) resultType
      else if (/*isDependentMethodType &&*/ sameLength(actuals, params)) {
        val idm = new InstantiateDependentMap(params, actuals)
        val res = idm(resultType)
        existentialAbstraction(idm.existentialsNeeded, res)
      }
      else existentialAbstraction(params, resultType)

    private var isdepmeth: ThreeValue = UNKNOWN
    override def isDependentMethodType: Boolean = {
      if (isdepmeth == UNKNOWN) isdepmeth = fromBoolean(IsDependentCollector.collect(resultType.dealias))
      toBoolean(isdepmeth)
    }

    // implicit args can only be depended on in result type:
    //TODO this may be generalised so that the only constraint is dependencies are acyclic
    def approximate: MethodType = MethodType(params, resultApprox)

    override def finalResultType: Type = resultType.finalResultType

    override def safeToString = paramString(this) + resultType

    override def cloneInfo(owner: Symbol) = {
      val vparams = cloneSymbolsAtOwner(params, owner)
      copyMethodType(this, vparams, resultType.substSym(params, vparams).cloneInfo(owner))
    }

    override def atOwner(owner: Symbol) =
      if (!allSymbolsHaveOwner(params, owner) || (resultType.atOwner(owner) ne resultType))
        cloneInfo(owner)
      else
        this

    override def kind = "MethodType"
  }

  object MethodType extends MethodTypeExtractor

  class JavaMethodType(ps: List[Symbol], rt: Type) extends MethodType(ps, rt) {
    override def isJava = true
  }

  case class NullaryMethodType(override val resultType: Type) extends Type with NullaryMethodTypeApi {
    override def isTrivial = resultType.isTrivial && (resultType eq resultType.withoutAnnotations)
    override def prefix: Type = resultType.prefix
    override def narrow: Type = resultType.narrow
    override def finalResultType: Type = resultType.finalResultType
    override def termSymbol: Symbol = resultType.termSymbol
    override def typeSymbol: Symbol = resultType.typeSymbol
    override def parents: List[Type] = resultType.parents
    override def decls: Scope = resultType.decls
    override def baseTypeSeq: BaseTypeSeq = resultType.baseTypeSeq
    override def baseTypeSeqDepth: Int = resultType.baseTypeSeqDepth
    override def baseClasses: List[Symbol] = resultType.baseClasses
    override def baseType(clazz: Symbol): Type = resultType.baseType(clazz)
    override def boundSyms = resultType.boundSyms
    override def isVolatile = resultType.isVolatile
    override def safeToString: String = "=> "+ resultType
    override def kind = "NullaryMethodType"
  }

  object NullaryMethodType extends NullaryMethodTypeExtractor

  /** A type function or the type of a polymorphic value (and thus of kind *).
   *
   * Before the introduction of NullaryMethodType, a polymorphic nullary method (e.g, def isInstanceOf[T]: Boolean)
   * used to be typed as PolyType(tps, restpe), and a monomorphic one as PolyType(Nil, restpe)
   * This is now: PolyType(tps, NullaryMethodType(restpe)) and NullaryMethodType(restpe)
   * by symmetry to MethodTypes: PolyType(tps, MethodType(params, restpe)) and MethodType(params, restpe)
   *
   * Thus, a PolyType(tps, TypeRef(...)) unambiguously indicates a type function (which results from eta-expanding a type constructor alias).
   * Similarly, PolyType(tps, ClassInfoType(...)) is a type constructor.
   *
   * A polytype is of kind * iff its resultType is a (nullary) method type.
   */
  case class PolyType(override val typeParams: List[Symbol], override val resultType: Type)
       extends Type with PolyTypeApi {
    //assert(!(typeParams contains NoSymbol), this)
    assert(typeParams.nonEmpty, this) // used to be a marker for nullary method type, illegal now (see @NullaryMethodType)

    override def paramSectionCount: Int = resultType.paramSectionCount
    override def paramss: List[List[Symbol]] = resultType.paramss
    override def params: List[Symbol] = resultType.params
    override def paramTypes: List[Type] = resultType.paramTypes
    override def parents: List[Type] = resultType.parents
    override def decls: Scope = resultType.decls
    override def termSymbol: Symbol = resultType.termSymbol
    override def typeSymbol: Symbol = resultType.typeSymbol
    override def boundSyms = immutable.Set[Symbol](typeParams ++ resultType.boundSyms: _*)
    override def prefix: Type = resultType.prefix
    override def baseTypeSeq: BaseTypeSeq = resultType.baseTypeSeq
    override def baseTypeSeqDepth: Int = resultType.baseTypeSeqDepth
    override def baseClasses: List[Symbol] = resultType.baseClasses
    override def baseType(clazz: Symbol): Type = resultType.baseType(clazz)
    override def narrow: Type = resultType.narrow
    override def isVolatile = resultType.isVolatile
    override def finalResultType: Type = resultType.finalResultType

    /** @M: typeDefSig wraps a TypeBounds in a PolyType
     *  to represent a higher-kinded type parameter
     *  wrap lo&hi in polytypes to bind variables
     */
    override def bounds: TypeBounds =
      TypeBounds(typeFun(typeParams, resultType.bounds.lo),
                 typeFun(typeParams, resultType.bounds.hi))

    override def isHigherKinded = !typeParams.isEmpty

    override def safeToString = typeParamsString(this) + resultType

    override def cloneInfo(owner: Symbol) = {
      val tparams = cloneSymbolsAtOwner(typeParams, owner)
      PolyType(tparams, resultType.substSym(typeParams, tparams).cloneInfo(owner))
    }

    override def atOwner(owner: Symbol) =
      if (!allSymbolsHaveOwner(typeParams, owner) || (resultType.atOwner(owner) ne resultType))
        cloneInfo(owner)
      else
        this

    override def kind = "PolyType"
  }

  object PolyType extends PolyTypeExtractor

  /** A creator for existential types which flattens nested existentials.
   */
  def newExistentialType(quantified: List[Symbol], underlying: Type): Type =
    if (quantified.isEmpty) underlying
    else underlying match {
      case ExistentialType(qs, restpe) => newExistentialType(quantified ::: qs, restpe)
      case _                           => ExistentialType(quantified, underlying)
    }

  case class ExistentialType(quantified: List[Symbol],
                             override val underlying: Type) extends RewrappingTypeProxy with ExistentialTypeApi
  {
    override protected def rewrap(newtp: Type) = existentialAbstraction(quantified, newtp)

    override def isTrivial = false
    override def isStable: Boolean = false
    override def bounds = TypeBounds(maybeRewrap(underlying.bounds.lo), maybeRewrap(underlying.bounds.hi))
    override def parents = underlying.parents map maybeRewrap
    override def boundSyms = quantified.toSet
    override def prefix = maybeRewrap(underlying.prefix)
    override def typeArgs = underlying.typeArgs map maybeRewrap
    override def params = underlying.params mapConserve { param =>
      val tpe1 = rewrap(param.tpeHK)
      if (tpe1 eq param.tpeHK) param else param.cloneSymbol.setInfo(tpe1)
    }
    override def paramTypes = underlying.paramTypes map maybeRewrap
    override def instantiateTypeParams(formals: List[Symbol], actuals: List[Type]) = {
//      maybeRewrap(underlying.instantiateTypeParams(formals, actuals))

      val quantified1 = new SubstTypeMap(formals, actuals) mapOver quantified
      val underlying1 = underlying.instantiateTypeParams(formals, actuals)
      if ((quantified1 eq quantified) && (underlying1 eq underlying)) this
      else existentialAbstraction(quantified1, underlying1.substSym(quantified, quantified1))

    }
    override def baseType(clazz: Symbol) = maybeRewrap(underlying.baseType(clazz))
    override def baseTypeSeq = underlying.baseTypeSeq map maybeRewrap
    override def isHigherKinded = false

    override def skolemizeExistential(owner: Symbol, origin: AnyRef) =
      deriveType(quantified, tparam => (owner orElse tparam.owner).newExistentialSkolem(tparam, origin))(underlying)

    private def wildcardArgsString(qset: Set[Symbol], args: List[Type]): List[String] = args map {
      case TypeRef(_, sym, _) if (qset contains sym) =>
        "_"+sym.infoString(sym.info)
      case arg =>
        arg.toString
    }

    /** An existential can only be printed with wildcards if:
     *   - the underlying type is a typeref
     *   - every quantified variable appears at most once as a type argument and
     *     nowhere inside a type argument
     *   - no quantified type argument contains a quantified variable in its bound
     *   - the typeref's symbol is not itself quantified
     *   - the prefix is not quanitified
     */
    def isRepresentableWithWildcards = {
      val qset = quantified.toSet
      underlying match {
        case TypeRef(pre, sym, args) =>
          def isQuantified(tpe: Type): Boolean = {
            (tpe exists (t => qset contains t.typeSymbol)) ||
            tpe.typeSymbol.isRefinementClass && (tpe.parents exists isQuantified)
          }
          val (wildcardArgs, otherArgs) = args partition (arg => qset contains arg.typeSymbol)
          wildcardArgs.distinct == wildcardArgs &&
          !(otherArgs exists (arg => isQuantified(arg))) &&
          !(wildcardArgs exists (arg => isQuantified(arg.typeSymbol.info.bounds))) &&
          !(qset contains sym) &&
          !isQuantified(pre)
        case _ => false
    }
    }

    override def safeToString: String = {
      def clauses = {
        val str = quantified map (_.existentialToString) mkString (" forSome { ", "; ", " }")
        if (settings.explaintypes.value) "(" + str + ")" else str
      }
      underlying match {
        case TypeRef(pre, sym, args) if !settings.debug.value && isRepresentableWithWildcards =>
          "" + TypeRef(pre, sym, Nil) + wildcardArgsString(quantified.toSet, args).mkString("[", ", ", "]")
        case MethodType(_, _) | NullaryMethodType(_) | PolyType(_, _) =>
          "(" + underlying + ")" + clauses
        case _ =>
          "" + underlying + clauses
      }
    }

    override def cloneInfo(owner: Symbol) =
      createFromClonedSymbolsAtOwner(quantified, owner, underlying)(newExistentialType)

    override def atOwner(owner: Symbol) =
      if (!allSymbolsHaveOwner(quantified, owner)) cloneInfo(owner) else this

    override def kind = "ExistentialType"

    def withTypeVars(op: Type => Boolean): Boolean = withTypeVars(op, AnyDepth)

    def withTypeVars(op: Type => Boolean, depth: Int): Boolean = {
      val quantifiedFresh = cloneSymbols(quantified)
      val tvars = quantifiedFresh map (tparam => TypeVar(tparam))
      val underlying1 = underlying.instantiateTypeParams(quantified, tvars) // fuse subst quantified -> quantifiedFresh -> tvars
      op(underlying1) && {
        solve(tvars, quantifiedFresh, quantifiedFresh map (x => 0), false, depth) &&
        isWithinBounds(NoPrefix, NoSymbol, quantifiedFresh, tvars map (_.constr.inst))
      }
    }
  }

  object ExistentialType extends ExistentialTypeExtractor

  /** A class containing the alternatives and type prefix of an overloaded symbol.
   *  Not used after phase `typer`.
   */
  case class OverloadedType(pre: Type, alternatives: List[Symbol]) extends Type {
    override def prefix: Type = pre
    override def safeToString =
      (alternatives map pre.memberType).mkString("", " <and> ", "")
    override def kind = "OverloadedType"
  }

  def overloadedType(pre: Type, alternatives: List[Symbol]): Type =
    if (alternatives.tail.isEmpty) pre memberType alternatives.head
    else OverloadedType(pre, alternatives)

  /** A class remembering a type instantiation for some a set of overloaded
   *  polymorphic symbols.
   *  Not used after phase `typer`.
   */
  case class AntiPolyType(pre: Type, targs: List[Type]) extends Type {
    override def safeToString =
      pre.toString + targs.mkString("(with type arguments ", ", ", ")");
    override def memberType(sym: Symbol) = appliedType(pre.memberType(sym), targs)
//     override def memberType(sym: Symbol) = pre.memberType(sym) match {
//       case PolyType(tparams, restp) =>
//         restp.subst(tparams, targs)
// /* I don't think this is needed, as existential types close only over value types
//       case ExistentialType(tparams, qtpe) =>
//         existentialAbstraction(tparams, qtpe.memberType(sym))
// */
//       case ErrorType =>
//         ErrorType
//     }
    override def kind = "AntiPolyType"
  }

  //private var tidCount = 0  //DEBUG

  object HasTypeMember {
    def apply(name: TypeName, tp: Type): Type = {
      val bound = refinedType(List(WildcardType), NoSymbol)
      val bsym = bound.typeSymbol.newAliasType(name)
      bsym setInfo tp
      bound.decls enter bsym
      bound
    }
    def unapply(tp: Type): Option[(TypeName, Type)] = tp match {
      case RefinedType(List(WildcardType), Scope(sym)) => Some((sym.name.toTypeName, sym.info))
      case _ => None
    }
  }

  // Not used yet.
  object HasTypeParams {
    def unapply(tp: Type): Option[(List[Symbol], Type)] = tp match {
      case AnnotatedType(_, tp, _)        => unapply(tp)
      case ExistentialType(tparams, qtpe) => Some((tparams, qtpe))
      case PolyType(tparams, restpe)      => Some((tparams, restpe))
      case _                              => None
    }
  }

  //@M
  // a TypeVar used to be a case class with only an origin and a constr
  // then, constr became mutable (to support UndoLog, I guess),
  // but pattern-matching returned the original constr0 (a bug)
  // now, pattern-matching returns the most recent constr
  object TypeVar {
    @inline final def trace[T](action: String, msg: => String)(value: T): T = {
      if (traceTypeVars) {
        val s = msg match {
          case ""   => ""
          case str  => "( " + str + " )"
        }
        Console.err.println("[%10s] %-25s%s".format(action, value, s))
      }
      value
    }

    /** Create a new TypeConstraint based on the given symbol.
     */
    private def deriveConstraint(tparam: Symbol): TypeConstraint = {
      /** Must force the type parameter's info at this point
       *  or things don't end well for higher-order type params.
       *  See SI-5359.
       */
      val bounds  = tparam.info.bounds
      /** We can seed the type constraint with the type parameter
       *  bounds as long as the types are concrete.  This should lower
       *  the complexity of the search even if it doesn't improve
       *  any results.
       */
      if (propagateParameterBoundsToTypeVars) {
        val exclude = bounds.isEmptyBounds || (bounds exists typeIsNonClassType)

        if (exclude) new TypeConstraint
        else TypeVar.trace("constraint", "For " + tparam.fullLocationString)(new TypeConstraint(bounds))
      }
      else new TypeConstraint
    }
    def untouchable(tparam: Symbol): TypeVar                 = createTypeVar(tparam, untouchable = true)
    def apply(tparam: Symbol): TypeVar                       = createTypeVar(tparam, untouchable = false)
    def apply(origin: Type, constr: TypeConstraint): TypeVar = apply(origin, constr, Nil, Nil)
    def apply(origin: Type, constr: TypeConstraint, args: List[Type], params: List[Symbol]): TypeVar =
      createTypeVar(origin, constr, args, params, untouchable = false)

    /** This is the only place TypeVars should be instantiated.
     */
    private def createTypeVar(origin: Type, constr: TypeConstraint, args: List[Type], params: List[Symbol], untouchable: Boolean): TypeVar = {
      val tv = (
        if (args.isEmpty && params.isEmpty) {
          if (untouchable) new TypeVar(origin, constr) with UntouchableTypeVar
          else new TypeVar(origin, constr) {}
        }
        else if (args.size == params.size) {
          if (untouchable) new AppliedTypeVar(origin, constr, params zip args) with UntouchableTypeVar
          else new AppliedTypeVar(origin, constr, params zip args)
        }
        else if (args.isEmpty) {
          if (untouchable) new HKTypeVar(origin, constr, params) with UntouchableTypeVar
          else new HKTypeVar(origin, constr, params)
        }
        else throw new Error("Invalid TypeVar construction: " + ((origin, constr, args, params)))
      )

      trace("create", "In " + tv.originLocation)(tv)
    }
    private def createTypeVar(tparam: Symbol, untouchable: Boolean): TypeVar =
      createTypeVar(tparam.tpeHK, deriveConstraint(tparam), Nil, tparam.typeParams, untouchable)
  }

  /** Repack existential types, otherwise they sometimes get unpacked in the
   *  wrong location (type inference comes up with an unexpected skolem)
   */
  def repackExistential(tp: Type): Type = (
    if (tp == NoType) tp
    else existentialAbstraction(existentialsInType(tp), tp)
  )

  def containsExistential(tpe: Type) =
    tpe exists typeIsExistentiallyBound

  def existentialsInType(tpe: Type) =
    tpe withFilter typeIsExistentiallyBound map (_.typeSymbol)

  /** Precondition: params.nonEmpty.  (args.nonEmpty enforced structurally.)
   */
  class HKTypeVar(
    _origin: Type,
    _constr: TypeConstraint,
    override val params: List[Symbol]
  ) extends TypeVar(_origin, _constr) {

    require(params.nonEmpty, this)
    override def isHigherKinded          = true
    override protected def typeVarString = params.map(_.name).mkString("[", ", ", "]=>" + originName)
  }

  /** Precondition: zipped params/args nonEmpty.  (Size equivalence enforced structurally.)
   */
  class AppliedTypeVar(
    _origin: Type,
    _constr: TypeConstraint,
    zippedArgs: List[(Symbol, Type)]
  ) extends TypeVar(_origin, _constr) {

    require(zippedArgs.nonEmpty, this)

    override def params: List[Symbol] = zippedArgs map (_._1)
    override def typeArgs: List[Type] = zippedArgs map (_._2)

    override protected def typeVarString = (
      zippedArgs map { case (p, a) => p.name + "=" + a } mkString (origin + "[", ", ", "]")
    )
  }

  trait UntouchableTypeVar extends TypeVar {
    override def untouchable = true
    override def isGround = true
    override def registerTypeEquality(tp: Type, typeVarLHS: Boolean) = tp match {
      case t: TypeVar if !t.untouchable =>
        t.registerTypeEquality(this, !typeVarLHS)
      case _ =>
        super.registerTypeEquality(tp, typeVarLHS)
    }
    override def registerBound(tp: Type, isLowerBound: Boolean, isNumericBound: Boolean = false): Boolean = tp match {
      case t: TypeVar if !t.untouchable =>
        t.registerBound(this, !isLowerBound, isNumericBound)
      case _ =>
        super.registerBound(tp, isLowerBound, isNumericBound)
    }
  }

  /** A class representing a type variable: not used after phase `typer`.
   *
   *  A higher-kinded TypeVar has params (Symbols) and typeArgs (Types).
   *  A TypeVar with nonEmpty typeArgs can only be instantiated by a higher-kinded
   *  type that can be applied to those args.  A TypeVar is much like a TypeRef,
   *  except it has special logic for equality and subtyping.
   *
   *  Precondition for this class, enforced structurally: args.isEmpty && params.isEmpty.
   */
  abstract case class TypeVar(
    val origin: Type,
    var constr: TypeConstraint
  ) extends Type {

    // We don't want case class equality/hashing as TypeVar-s are mutable,
    // and TypeRefs based on them get wrongly `uniqued` otherwise. See SI-7226.
    override def hashCode(): Int = System.identityHashCode(this)
    override def equals(other: Any): Boolean = this eq other.asInstanceOf[AnyRef]

    def untouchable = false   // by other typevars
    override def params: List[Symbol] = Nil
    override def typeArgs: List[Type] = Nil
    override def isHigherKinded = false

    /** The constraint associated with the variable
     *  Syncnote: Type variables are assumed to be used from only one
     *  thread. They are not exposed in api.Types and are used only locally
     *  in operations that are exposed from types. Hence, no syncing of `constr`
     *  or `encounteredHigherLevel` or `suspended` accesses should be necessary.
     */
//    var constr = constr0
    def instValid = constr.instValid
    override def isGround = instValid && constr.inst.isGround

    /** The variable's skolemization level */
    val level = skolemizationLevel

    /** Applies this TypeVar to type arguments, if arity matches.
     *
     * Different applications of the same type constructor variable `?CC`,
     * e.g. `?CC[Int]` and `?CC[String]`, are modeled as distinct instances of `TypeVar`
     * that share a `TypeConstraint`, so that the comparisons `?CC[Int] <:< List[Int]`
     * and `?CC[String] <:< Iterable[String]` result in `?CC` being upper-bounded by `List` and `Iterable`.
     *
     * Applying the wrong number of type args results in a TypeVar whose instance is set to `ErrorType`.
     */
    def applyArgs(newArgs: List[Type]): TypeVar = (
      if (newArgs.isEmpty && typeArgs.isEmpty)
        this
      else if (newArgs.size == params.size) {
        val tv = TypeVar(origin, constr, newArgs, params)
        TypeVar.trace("applyArgs", "In " + originLocation + ", apply args " + newArgs.mkString(", ") + " to " + originName)(tv)
      }
      else
        TypeVar(typeSymbol).setInst(ErrorType)
    )
    // newArgs.length may differ from args.length (could've been empty before)
    //
    // !!! @PP - I need an example of this, since this exception never triggers
    // even though I am requiring the size match.
    //
    // example: when making new typevars, you start out with C[A], then you replace C by ?C, which should yield ?C[A], then A by ?A, ?C[?A]
    // we need to track a TypeVar's arguments, and map over them (see TypeMap::mapOver)
    // TypeVars get applied to different arguments over time (in asSeenFrom)
     // -- see pos/tcpoly_infer_implicit_tuplewrapper.scala
    // thus: make new TypeVar's for every application of a TV to args,
    // inference may generate several TypeVar's for a single type parameter that must be inferred,
    // only one of them is in the set of tvars that need to be solved, but
    // they share the same TypeConstraint instance

    // When comparing to types containing skolems, remember the highest level
    // of skolemization. If that highest level is higher than our initial
    // skolemizationLevel, we can't re-use those skolems as the solution of this
    // typevar, which means we'll need to repack our constr.inst into a fresh
    // existential.
    // were we compared to skolems at a higher skolemizationLevel?
    // EXPERIMENTAL: value will not be considered unless enableTypeVarExperimentals is true
    // see SI-5729 for why this is still experimental
    private var encounteredHigherLevel = false
    private def shouldRepackType = enableTypeVarExperimentals && encounteredHigherLevel

    // <region name="constraint mutators + undoLog">
    // invariant: before mutating constr, save old state in undoLog
    // (undoLog is used to reset constraints to avoid piling up unrelated ones)
    def setInst(tp: Type): this.type = {
//      assert(!(tp containsTp this), this)
      undoLog record this
      // if we were compared against later typeskolems, repack the existential,
      // because skolems are only compatible if they were created at the same level
      val res = if (shouldRepackType) repackExistential(tp) else tp
      constr.inst = TypeVar.trace("setInst", "In " + originLocation + ", " + originName + "=" + res)(res)
      this
    }

    def addLoBound(tp: Type, isNumericBound: Boolean = false) {
      assert(tp != this, tp) // implies there is a cycle somewhere (?)
      //println("addLoBound: "+(safeToString, debugString(tp))) //DEBUG
      undoLog record this
      constr.addLoBound(tp, isNumericBound)
    }

    def addHiBound(tp: Type, isNumericBound: Boolean = false) {
      // assert(tp != this)
      //println("addHiBound: "+(safeToString, debugString(tp))) //DEBUG
      undoLog record this
      constr.addHiBound(tp, isNumericBound)
    }
    // </region>

    // ignore subtyping&equality checks while true -- see findMember
    private[Types] var suspended = false

    /** Called when a TypeVar is involved in a subtyping check.  Result is whether
     *  this TypeVar could plausibly be a [super/sub]type of argument `tp` and if so,
     *  tracks tp as a [lower/upper] bound of this TypeVar.
     *
     *  if (isLowerBound)   this typevar could be a subtype, track tp as a lower bound
     *  if (!isLowerBound)  this typevar could be a supertype, track tp as an upper bound
     *
     *  If isNumericBound is true, the subtype check is performed with weak_<:< instead of <:<.
     */
    def registerBound(tp: Type, isLowerBound: Boolean, isNumericBound: Boolean = false): Boolean = {
      // println("regBound: "+(safeToString, debugString(tp), isLowerBound)) //@MDEBUG
      if (isLowerBound)
        assert(tp != this)

      // side effect: adds the type to upper or lower bounds
      def addBound(tp: Type) {
        if (isLowerBound) addLoBound(tp, isNumericBound)
        else addHiBound(tp, isNumericBound)
      }
      // swaps the arguments if it's an upper bound
      def checkSubtype(tp1: Type, tp2: Type) = {
        val lhs = if (isLowerBound) tp1 else tp2
        val rhs = if (isLowerBound) tp2 else tp1

        if (isNumericBound) lhs weak_<:< rhs
        else lhs <:< rhs
      }

      /** Simple case: type arguments can be ignored, because either this typevar has
       *  no type parameters, or we are comparing to Any/Nothing.
       *
       *  The latter condition is needed because HK unification is limited to constraints of the shape
       *  {{{
       *    TC1[T1,..., TN] <: TC2[T'1,...,T'N]
       *  }}}
       *  which would preclude the following important constraints:
       *  {{{
       *    Nothing <: ?TC[?T]
       *    ?TC[?T] <: Any
       *  }}}
       */
      def unifySimple = {
        val sym = tp.typeSymbol
        if (sym == NothingClass || sym == AnyClass) { // kind-polymorphic
          // SI-7126 if we register some type alias `T=Any`, we can later end
          // with malformed types like `T[T]` during type inference in
          // `handlePolymorphicCall`. No such problem if we register `Any`.
          addBound(sym.tpe)
          true
        } else if (params.isEmpty) {
          addBound(tp)
          true
        } else false
      }

      /** Full case: involving a check of the form
       *  {{{
       *    TC1[T1,..., TN] <: TC2[T'1,...,T'N]
       *  }}}
       *  Checks subtyping of higher-order type vars, and uses variances as defined in the
       *  type parameter we're trying to infer (the result will be sanity-checked later).
       */
      def unifyFull(tpe: Type): Boolean = {
        def unifySpecific(tp: Type) = {
          sameLength(typeArgs, tp.typeArgs) && {
            val lhs = if (isLowerBound) tp.typeArgs else typeArgs
            val rhs = if (isLowerBound) typeArgs else tp.typeArgs
            // This is a higher-kinded type var with same arity as tp.
            // If so (see SI-7517), side effect: adds the type constructor itself as a bound.
            isSubArgs(lhs, rhs, params, AnyDepth) && { addBound(tp.typeConstructor); true }
          }
        }
        // The type with which we can successfully unify can be hidden
        // behind singleton types and type aliases.
        tpe.dealiasWidenChain exists unifySpecific
      }

      // There's a <: test taking place right now, where tp is a concrete type and this is a typevar
      // attempting to satisfy that test. Either the test will be unsatisfiable, in which case
      // registerBound will return false; or the upper or lower bounds of this type var will be
      // supplemented with the type being tested against.
      //
      // Eventually the types which have accumulated in the upper and lower bounds will be lubbed
      // (resp. glbbed) to instantiate the typevar.
      //
      // The only types which are eligible for unification are those with the same number of
      // typeArgs as this typevar, or Any/Nothing, which are kind-polymorphic. For the upper bound,
      // any parent or base type of `tp` may be tested here (leading to a corresponding relaxation
      // in the upper bound.) The universe of possible glbs, being somewhat more infinite, is not
      // addressed here: all lower bounds are retained and their intersection calculated when the
      // bounds are solved.
      //
      // In a side-effect free universe, checking tp and tp.parents beofre checking tp.baseTypeSeq
      // would be pointless. In this case, each check we perform causes us to lose specificity: in
      // the end the best we'll do is the least specific type we tested against, since the typevar
      // does not see these checks as "probes" but as requirements to fulfill.
      // TODO: can the `suspended` flag be used to poke around without leaving a trace?
      //
      // So the strategy used here is to test first the type, then the direct parents, and finally
      // to fall back on the individual base types. This warrants eventual re-examination.

      // AM: I think we could use the `suspended` flag to avoid side-effecting during unification
      if (suspended)         // constraint accumulation is disabled
        checkSubtype(tp, origin)
      else if (constr.instValid)  // type var is already set
        checkSubtype(tp, constr.inst)
      else isRelatable(tp) && {
        unifySimple || unifyFull(tp) || (
          // only look harder if our gaze is oriented toward Any
          isLowerBound && (
            (tp.parents exists unifyFull) || (
              // @PP: Is it going to be faster to filter out the parents we just checked?
              // That's what's done here but I'm not sure it matters.
              tp.baseTypeSeq.toList.tail filterNot (tp.parents contains _) exists unifyFull
            )
          )
        )
      }
    }

    def registerTypeEquality(tp: Type, typeVarLHS: Boolean): Boolean = {
//      println("regTypeEq: "+(safeToString, debugString(tp), tp.getClass, if (typeVarLHS) "in LHS" else "in RHS", if (suspended) "ZZ" else if (constr.instValid) "IV" else "")) //@MDEBUG
//      println("constr: "+ constr)
      def checkIsSameType(tp: Type) =
        if(typeVarLHS) constr.inst =:= tp
        else           tp          =:= constr.inst

      if (suspended) tp =:= origin
      else if (constr.instValid) checkIsSameType(tp)
      else isRelatable(tp) && {
        val newInst = wildcardToTypeVarMap(tp)
        (constr isWithinBounds newInst) && { setInst(tp); true }
      }
    }

    /**
     * `?A.T =:= tp` is rewritten as the constraint `?A <: {type T = tp}`
     *
     * TODO: make these constraints count (incorporate them into implicit search in `applyImplicitArgs`)
     * (`T` corresponds to @param sym)
     */
    def registerTypeSelection(sym: Symbol, tp: Type): Boolean = {
      registerBound(HasTypeMember(sym.name.toTypeName, tp), false)
    }

    private def isSkolemAboveLevel(tp: Type) = tp.typeSymbol match {
      case ts: TypeSkolem => ts.level > level
      case _              => false
    }
    // side-effects encounteredHigherLevel
    private def containsSkolemAboveLevel(tp: Type) =
      (tp exists isSkolemAboveLevel) && { encounteredHigherLevel = true ; true }

     /** Can this variable be related in a constraint to type `tp`?
      *  This is not the case if `tp` contains type skolems whose
      *  skolemization level is higher than the level of this variable.
      */
    def isRelatable(tp: Type) = (
         shouldRepackType               // short circuit if we already know we've seen higher levels
      || !containsSkolemAboveLevel(tp)  // side-effects tracking boolean
      || enableTypeVarExperimentals     // -Xexperimental: always say we're relatable, track consequences
    )

    override def normalize: Type = (
      if (constr.instValid) constr.inst
      // get here when checking higher-order subtyping of the typevar by itself
      // TODO: check whether this ever happens?
      else if (isHigherKinded) logResult("Normalizing HK $this")(typeFun(params, applyArgs(params map (_.typeConstructor))))
      else super.normalize
    )
    override def typeSymbol = origin.typeSymbol
    override def isStable = origin.isStable
    override def isVolatile = origin.isVolatile

    private def tparamsOfSym(sym: Symbol) = sym.info match {
      case PolyType(tparams, _) if tparams.nonEmpty =>
        tparams map (_.defString) mkString("[", ",", "]")
      case _ => ""
    }
    def originName = origin.typeSymbolDirect.decodedName
    def originLocation = {
      val sym  = origin.typeSymbolDirect
      val encl = sym.owner.logicallyEnclosingMember

      // This should display somewhere between one and three
      // things which enclose the origin: at most, a class, a
      // a method, and a term.  At least, a class.
      List(
        Some(encl.enclClass),
        if (encl.isMethod) Some(encl) else None,
        if (sym.owner.isTerm && (sym.owner != encl)) Some(sym.owner) else None
      ).flatten map (s => s.decodedName + tparamsOfSym(s)) mkString "#"
    }
    private def levelString = if (settings.explaintypes.value) level else ""
    protected def typeVarString = originName
    override def safeToString = (
      if ((constr eq null) || (constr.inst eq null)) "TVar<" + originName + "=null>"
      else if (constr.inst ne NoType) "=?" + constr.inst
      else (if(untouchable) "!?" else "?") + levelString + originName
    )
    override def kind = "TypeVar"

    def cloneInternal = {
      // cloning a suspended type variable when it's suspended will cause the clone
      // to never be resumed with the current implementation
      assert(!suspended, this)
      TypeVar.trace("clone", originLocation)(
        TypeVar(origin, constr.cloneInternal, typeArgs, params) // @M TODO: clone args/params?
      )
    }
  }

  /** A type carrying some annotations. Created by the typechecker
   *  when eliminating ''Annotated'' trees (see typedAnnotated).
   *
   *  @param annotations the list of annotations on the type
   *  @param underlying the type without the annotation
   *  @param selfsym a "self" symbol with type `underlying`;
   *    only available if -Yself-in-annots is turned on. Can be `NoSymbol`
   *    if it is not used.
   */
  case class AnnotatedType(override val annotations: List[AnnotationInfo],
                           override val underlying: Type,
                           override val selfsym: Symbol)
  extends RewrappingTypeProxy with AnnotatedTypeApi {

    assert(!annotations.isEmpty, "" + underlying)

    override protected def rewrap(tp: Type) = copy(underlying = tp)

    override def isTrivial: Boolean = underlying.isTrivial && annotations.forall(_.isTrivial)

    override def safeToString = annotations.mkString(underlying + " @", " @", "")

    override def filterAnnotations(p: AnnotationInfo => Boolean): Type = {
      val (yes, no) = annotations partition p
      if (yes.isEmpty) underlying
      else if (no.isEmpty) this
      else copy(annotations = yes)
    }
    override def setAnnotations(annots: List[AnnotationInfo]): Type =
      if (annots.isEmpty) underlying
      else copy(annotations = annots)

    /** Add a number of annotations to this type */
    override def withAnnotations(annots: List[AnnotationInfo]): Type =
      if (annots.isEmpty) this
      else copy(annots ::: this.annotations)

    /** Remove any annotations from this type.
     *  TODO - is it allowed to nest AnnotatedTypes? If not then let's enforce
     *  that at creation.  At the moment if they do ever turn up nested this
     *  recursively calls withoutAnnotations.
     */
    override def withoutAnnotations = underlying.withoutAnnotations

    /** Set the self symbol */
    override def withSelfsym(sym: Symbol) = copy(selfsym = sym)

    /** Drop the annotations on the bounds, unless the low and high
     *  bounds are exactly tp.
     */
    override def bounds: TypeBounds = underlying.bounds match {
      case TypeBounds(_: this.type, _: this.type) => TypeBounds(this, this)
      case oftp                                   => oftp
    }

    // ** Replace formal type parameter symbols with actual type arguments. * /
    override def instantiateTypeParams(formals: List[Symbol], actuals: List[Type]) = {
      val annotations1 = annotations.map(info => AnnotationInfo(info.atp.instantiateTypeParams(
          formals, actuals), info.args, info.assocs).setPos(info.pos))
      val underlying1 = underlying.instantiateTypeParams(formals, actuals)
      if ((annotations1 eq annotations) && (underlying1 eq underlying)) this
      else AnnotatedType(annotations1, underlying1, selfsym)
    }

    /** Return the base type sequence of tp, dropping the annotations, unless the base type sequence of tp
      * is precisely tp itself. */
    override def baseTypeSeq: BaseTypeSeq = {
       val oftp = underlying.baseTypeSeq
       if ((oftp.length == 1) && (oftp(0) eq underlying))
         baseTypeSingletonSeq(this)
       else
         oftp
     }

    override def kind = "AnnotatedType"
  }

  /** Creator for AnnotatedTypes.  It returns the underlying type if annotations.isEmpty
   *  rather than walking into the assertion.
   */
  def annotatedType(annots: List[AnnotationInfo], underlying: Type, selfsym: Symbol = NoSymbol): Type =
    if (annots.isEmpty) underlying
    else AnnotatedType(annots, underlying, selfsym)

  object AnnotatedType extends AnnotatedTypeExtractor

  /** A class representing types with a name. When an application uses
   *  named arguments, the named argument types for calling isApplicable
   *  are represented as NamedType.
   */
  case class NamedType(name: Name, tp: Type) extends Type {
    override def safeToString: String = name.toString +": "+ tp
  }

  /** A De Bruijn index referring to a previous type argument. Only used
   *  as a serialization format.
   */
  case class DeBruijnIndex(level: Int, idx: Int, args: List[Type]) extends Type {
    override def safeToString: String = "De Bruijn index("+level+","+idx+")"
  }

  /** A binder defining data associated with De Bruijn indices. Only used
   *  as a serialization format.
   */
  case class DeBruijnBinder(pnames: List[Name], ptypes: List[Type], restpe: Type) extends Type {
    override def safeToString = {
      val kind = if (pnames.head.isTypeName) "poly" else "method"
      "De Bruijn "+kind+"("+(pnames mkString ",")+";"+(ptypes mkString ",")+";"+restpe+")"
    }
  }

  /** A temporary type representing the erasure of a user-defined value type.
   *  Created during phase erasure, eliminated again in posterasure.
   *
   *  @param   original  The underlying type before erasure
   */
  abstract case class ErasedValueType(original: TypeRef) extends UniqueType {
    override def safeToString = "ErasedValueType("+original+")"
  }

  final class UniqueErasedValueType(original: TypeRef) extends ErasedValueType(original)

  object ErasedValueType {
    def apply(original: TypeRef): Type = {
      assert(original.sym ne NoSymbol, "ErasedValueType over NoSymbol")
      unique(new UniqueErasedValueType(original))
    }
  }

  /** A class representing an as-yet unevaluated type.
   */
  abstract class LazyType extends Type {
    override def isComplete: Boolean = false
    override def complete(sym: Symbol)
    override def safeToString = "<?>"
    override def kind = "LazyType"
  }

  /** A marker trait representing an as-yet unevaluated type
   *  which doesn't assign flags to the underlying symbol.
   */
  trait FlagAgnosticCompleter extends LazyType

  /** A marker trait representing an as-yet unevaluated type
   *  which assigns flags to the underlying symbol.
   */
  trait FlagAssigningCompleter extends LazyType

  abstract class LazyPolyType(override val typeParams: List[Symbol]) extends LazyType {
    override def safeToString =
      (if (typeParams.isEmpty) "" else typeParamsString(this)) + super.safeToString
  }

  // def mkLazyType(tparams: Symbol*)(f: Symbol => Unit): LazyType = (
  //   if (tparams.isEmpty) new LazyType { override def complete(sym: Symbol) = f(sym) }
  //   else new LazyPolyType(tparams.toList) { override def complete(sym: Symbol) = f(sym) }
  // )

// Creators ---------------------------------------------------------------

  /** Rebind symbol `sym` to an overriding member in type `pre`. */
  private def rebind(pre: Type, sym: Symbol): Symbol = {
    if (!sym.isOverridableMember || sym.owner == pre.typeSymbol) sym
    else pre.nonPrivateMember(sym.name).suchThat(sym => sym.isType || sym.isStable) orElse sym
  }

  /** Convert a `super` prefix to a this-type if `sym` is abstract or final. */
  private def removeSuper(tp: Type, sym: Symbol): Type = tp match {
    case SuperType(thistp, _) =>
      if (sym.isEffectivelyFinal || sym.isDeferred) thistp
      else tp
    case _ =>
      tp
  }

  /** The canonical creator for single-types */
  def singleType(pre: Type, sym: Symbol): Type = {
    if (phase.erasedTypes)
      sym.tpe.resultType
    else if (sym.isRootPackage)
      ThisType(sym.moduleClass)
    else {
      var sym1 = rebind(pre, sym)
      val pre1 = removeSuper(pre, sym1)
      if (pre1 ne pre) sym1 = rebind(pre1, sym1)
      SingleType(pre1, sym1)
    }
  }

  /** the canonical creator for a refined type with a given scope */
  def refinedType(parents: List[Type], owner: Symbol, decls: Scope, pos: Position): Type = {
    if (phase.erasedTypes)
      if (parents.isEmpty) ObjectClass.tpe else parents.head
    else {
      val clazz = owner.newRefinementClass(pos)
      val result = RefinedType(parents, decls, clazz)
      clazz.setInfo(result)
      result
    }
  }

  /** The canonical creator for a refined type with an initially empty scope.
   *
   *  @param parents ...
   *  @param owner   ...
   *  @return        ...
   */
  def refinedType(parents: List[Type], owner: Symbol): Type =
    refinedType(parents, owner, newScope, owner.pos)

  def copyRefinedType(original: RefinedType, parents: List[Type], decls: Scope) =
    if ((parents eq original.parents) && (decls eq original.decls)) original
    else {
      val owner = if (original.typeSymbol == NoSymbol) NoSymbol else original.typeSymbol.owner
      val result = refinedType(parents, owner)
      val syms1 = decls.toList
      for (sym <- syms1)
        result.decls.enter(sym.cloneSymbol(result.typeSymbol))
      val syms2 = result.decls.toList
      val resultThis = result.typeSymbol.thisType
      for (sym <- syms2)
        sym modifyInfo (_ substThisAndSym(original.typeSymbol, resultThis, syms1, syms2))

      result
    }

  /** The canonical creator for typerefs
   *  todo: see how we can clean this up a bit
   */
  def typeRef(pre: Type, sym: Symbol, args: List[Type]): Type = {
    // type alias selections are rebound in TypeMap ("coevolved",
    // actually -- see #3731) e.g., when type parameters that are
    // referenced by the alias are instantiated in the prefix. See
    // pos/depmet_rebind_typealias.

    val sym1 = if (sym.isAbstractType) rebind(pre, sym) else sym
    // don't expand cyclical type alias
    // we require that object is initialized, thus info.typeParams instead of typeParams.
    if (sym1.isAliasType && sameLength(sym1.info.typeParams, args) && !sym1.lockOK)
      throw new RecoverableCyclicReference(sym1)

    val pre1 = pre match {
      case x: SuperType if sym1.isEffectivelyFinal || sym1.isDeferred =>
        x.thistpe
      case _ => pre
    }
    if (pre eq pre1)                                TypeRef(pre, sym1, args)
    else if (sym1.isAbstractType && !sym1.isClass)  typeRef(pre1, rebind(pre1, sym1), args)
    else                                            typeRef(pre1, sym1, args)
  }

  // Optimization to avoid creating unnecessary new typerefs.
  def copyTypeRef(tp: Type, pre: Type, sym: Symbol, args: List[Type]): Type = tp match {
    case TypeRef(pre0, sym0, _) if pre == pre0 && sym0.name == sym.name =>
      if (sym.isAliasType && sameLength(sym.info.typeParams, args) && !sym.lockOK)
        throw new RecoverableCyclicReference(sym)

      TypeRef(pre, sym, args)
    case _ =>
      typeRef(pre, sym, args)
  }

  /** The canonical creator for implicit method types */
  def JavaMethodType(params: List[Symbol], resultType: Type): JavaMethodType =
    new JavaMethodType(params, resultType) // don't unique this!

  /** Create a new MethodType of the same class as tp, i.e. keep JavaMethodType */
  def copyMethodType(tp: Type, params: List[Symbol], restpe: Type): Type = tp match {
    case _: JavaMethodType => JavaMethodType(params, restpe)
    case _                 => MethodType(params, restpe)
  }

  /** A creator for intersection type where intersections of a single type are
   *  replaced by the type itself, and repeated parent classes are merged.
   *
   *  !!! Repeated parent classes are not merged - is this a bug in the
   *  comment or in the code?
   */
  def intersectionType(tps: List[Type], owner: Symbol): Type = tps match {
    case tp :: Nil => tp
    case _         => refinedType(tps, owner)
  }
  /** A creator for intersection type where intersections of a single type are
   *  replaced by the type itself.
   */
  def intersectionType(tps: List[Type]): Type = tps match {
    case tp :: Nil  => tp
    case _          => refinedType(tps, commonOwner(tps))
  }

/**** This implementation to merge parents was checked in in commented-out
      form and has languished unaltered for five years.  I think we should
      use it or lose it.

      def merge(tps: List[Type]): List[Type] = tps match {
        case tp :: tps1 =>
          val tps1a = tps1 filter (_.typeSymbol.==(tp.typeSymbol))
          val tps1b = tps1 filter (_.typeSymbol.!=(tp.typeSymbol))
          mergePrefixAndArgs(tps1a, -1) match {
            case Some(tp1) => tp1 :: merge(tps1b)
            case None => throw new MalformedType(
              "malformed type: "+refinedType(tps, owner)+" has repeated parent class "+
              tp.typeSymbol+" with incompatible prefixes or type arguments")
          }
        case _ => tps
      }
      refinedType(merge(tps), owner)
*/

  /** A creator for type applications */
  def appliedType(tycon: Type, args: List[Type]): Type = {
    if (args.isEmpty)
      return tycon //@M! `if (args.isEmpty) tycon' is crucial (otherwise we create new types in phases after typer and then they don't get adapted (??))

    /** Disabled - causes cycles in tcpoly tests. */
    if (false && isDefinitionsInitialized) {
      assert(isUseableAsTypeArgs(args), {
        val tapp_s = s"""$tycon[${args mkString ", "}]"""
        val arg_s  = args filterNot isUseableAsTypeArg map (t => t + "/" + t.getClass) mkString ", "
        s"$tapp_s includes illegal type argument $arg_s"
      })
    }

    tycon match {
      case TypeRef(pre, sym @ (NothingClass|AnyClass), _) => copyTypeRef(tycon, pre, sym, Nil)   //@M drop type args to Any/Nothing
      case TypeRef(pre, sym, _)                           => copyTypeRef(tycon, pre, sym, args)
      case PolyType(tparams, restpe)                      => restpe.instantiateTypeParams(tparams, args)
      case ExistentialType(tparams, restpe)               => newExistentialType(tparams, appliedType(restpe, args))
      case st: SingletonType                              => appliedType(st.widen, args) // @M TODO: what to do? see bug1
      case RefinedType(parents, decls)                    => RefinedType(parents map (appliedType(_, args)), decls) // MO to AM: please check
      case TypeBounds(lo, hi)                             => TypeBounds(appliedType(lo, args), appliedType(hi, args))
      case tv@TypeVar(_, _)                               => tv.applyArgs(args)
      case AnnotatedType(annots, underlying, self)        => AnnotatedType(annots, appliedType(underlying, args), self)
      case ErrorType                                      => tycon
      case WildcardType                                   => tycon // needed for neg/t0226
      case _                                              => abort(debugString(tycon))
    }
  }

  /** Very convenient. */
  def appliedType(tyconSym: Symbol, args: Type*): Type =
    appliedType(tyconSym.typeConstructor, args.toList)

  /** A creator for existential types where the type arguments,
   *  rather than being applied directly, are interpreted as the
   *  upper bounds of unknown types.  For instance if the type argument
   *  list given is List(AnyRefClass), the resulting type would be
   *  e.g. Set[_ <: AnyRef] rather than Set[AnyRef] .
   */
  def appliedTypeAsUpperBounds(tycon: Type, args: List[Type]): Type = {
    tycon match {
      case TypeRef(pre, sym, _) if sameLength(sym.typeParams, args) =>
        val eparams  = typeParamsToExistentials(sym)
        val bounds   = args map (TypeBounds upper _)
        foreach2(eparams, bounds)(_ setInfo _)

        newExistentialType(eparams, typeRef(pre, sym, eparams map (_.tpe)))
      case _ =>
        appliedType(tycon, args)
    }
  }

  /** A creator and extractor for type parameterizations that strips empty type parameter lists.
   *  Use this factory method to indicate the type has kind * (it's a polymorphic value)
   *  until we start tracking explicit kinds equivalent to typeFun (except that the latter requires tparams nonEmpty).
   *
   *  PP to AM: I've co-opted this for where I know tparams may well be empty, and
   *  expecting to get back `tpe` in such cases.  Re being "forgiving" below,
   *  can we instead say this is the canonical creator for polyTypes which
   *  may or may not be poly? (It filched the standard "canonical creator" name.)
   */
  object GenPolyType {
    def apply(tparams: List[Symbol], tpe: Type): Type = {
      tpe match {
        case MethodType(_, _) =>
          assert(tparams forall (_.isInvariant), "Trying to create a method with variant type parameters: " + ((tparams, tpe)))
        case _                =>
      }
      if (tparams.nonEmpty) typeFun(tparams, tpe)
      else tpe // it's okay to be forgiving here
    }
    def unapply(tpe: Type): Option[(List[Symbol], Type)] = tpe match {
      case PolyType(tparams, restpe) => Some((tparams, restpe))
      case _                         => Some((Nil, tpe))
    }
  }
  def genPolyType(params: List[Symbol], tpe: Type): Type = GenPolyType(params, tpe)

  @deprecated("use genPolyType(...) instead", "2.10.0")
  def polyType(params: List[Symbol], tpe: Type): Type = GenPolyType(params, tpe)

  /** A creator for anonymous type functions, where the symbol for the type function still needs to be created.
   *
   * TODO:
   * type params of anonymous type functions, which currently can only arise from normalising type aliases, are owned by the type alias of which they are the eta-expansion
   * higher-order subtyping expects eta-expansion of type constructors that arise from a class; here, the type params are owned by that class, but is that the right thing to do?
   */
  def typeFunAnon(tps: List[Symbol], body: Type): Type = typeFun(tps, body)

  /** A creator for a type functions, assuming the type parameters tps already have the right owner. */
  def typeFun(tps: List[Symbol], body: Type): Type = PolyType(tps, body)

  /** A creator for existential types. This generates:
   *
   *  tpe1 where { tparams }
   *
   *  where `tpe1` is the result of extrapolating `tpe` with respect to `tparams`.
   *  Extrapolating means that type variables in `tparams` occurring
   *  in covariant positions are replaced by upper bounds, (minus any
   *  SingletonClass markers), type variables in `tparams` occurring in
   *  contravariant positions are replaced by upper bounds, provided the
   *  resulting type is legal with regard to stability, and does not contain any type
   *  variable in `tparams`.
   *
   *  The abstraction drops all type parameters that are not directly or
   *  indirectly referenced by type `tpe1`. If there are no remaining type
   *  parameters, simply returns result type `tpe`.
   */
  def existentialAbstraction(tparams: List[Symbol], tpe0: Type): Type =
    if (tparams.isEmpty) tpe0
    else {
      val tpe      = normalizeAliases(tpe0)
      val tpe1     = new ExistentialExtrapolation(tparams) extrapolate tpe
      var tparams0 = tparams
      var tparams1 = tparams0 filter tpe1.contains

      while (tparams1 != tparams0) {
        tparams0 = tparams1
        tparams1 = tparams filter { p =>
          tparams1 exists { p1 => p1 == p || (p1.info contains p) }
        }
      }
      newExistentialType(tparams1, tpe1)
    }

  /** Normalize any type aliases within this type (@see Type#normalize).
   *  Note that this depends very much on the call to "normalize", not "dealias",
   *  so it is no longer carries the too-stealthy name "deAlias".
   */
  object normalizeAliases extends TypeMap {
    def apply(tp: Type): Type = tp match {
      case TypeRef(_, sym, _) if sym.isAliasType =>
        def msg = if (tp.isHigherKinded) s"Normalizing type alias function $tp" else s"Dealiasing type alias $tp"
        mapOver(logResult(msg)(tp.normalize))
      case _                                     => mapOver(tp)
    }
  }

  /** Remove any occurrence of type <singleton> from this type and its parents */
  object dropSingletonType extends TypeMap {
    def apply(tp: Type): Type = {
      tp match {
        case TypeRef(_, SingletonClass, _) =>
          AnyClass.tpe
        case tp1 @ RefinedType(parents, decls) =>
          parents filter (_.typeSymbol != SingletonClass) match {
            case Nil                       => AnyClass.tpe
            case p :: Nil if decls.isEmpty => mapOver(p)
            case ps                        => mapOver(copyRefinedType(tp1, ps, decls))
          }
        case tp1 =>
          mapOver(tp1)
      }
    }
  }

  /** Substitutes the empty scope for any non-empty decls in the type. */
  object dropAllRefinements extends TypeMap {
    def apply(tp: Type): Type = tp match {
      case rt @ RefinedType(parents, decls) if !decls.isEmpty =>
        mapOver(copyRefinedType(rt, parents, EmptyScope))
      case ClassInfoType(parents, decls, clazz) if !decls.isEmpty =>
        mapOver(ClassInfoType(parents, EmptyScope, clazz))
      case _ =>
        mapOver(tp)
    }
  }

  /** Type with all top-level occurrences of abstract types replaced by their bounds */
  def abstractTypesToBounds(tp: Type): Type = tp match { // @M don't normalize here (compiler loops on pos/bug1090.scala )
    case TypeRef(_, sym, _) if sym.isAbstractType =>
      abstractTypesToBounds(tp.bounds.hi)
    case TypeRef(_, sym, _) if sym.isAliasType =>
      abstractTypesToBounds(tp.normalize)
    case rtp @ RefinedType(parents, decls) =>
      copyRefinedType(rtp, parents mapConserve abstractTypesToBounds, decls)
    case AnnotatedType(_, underlying, _) =>
      abstractTypesToBounds(underlying)
    case _ =>
      tp
  }

  // Set to true for A* => Seq[A]
  //   (And it will only rewrite A* in method result types.)
  //   This is the pre-existing behavior.
  // Or false for Seq[A] => Seq[A]
  //   (It will rewrite A* everywhere but method parameters.)
  //   This is the specified behavior.
  protected def etaExpandKeepsStar = false

  /** Turn any T* types into Seq[T] except when
   *  in method parameter position.
   */
  object dropRepeatedParamType extends TypeMap {
    def apply(tp: Type): Type = tp match {
      case MethodType(params, restpe) =>
        // Not mapping over params
        val restpe1 = apply(restpe)
        if (restpe eq restpe1) tp
        else MethodType(params, restpe1)
      case TypeRef(_, RepeatedParamClass, arg :: Nil) =>
        seqType(arg)
      case _ =>
        if (etaExpandKeepsStar) tp else mapOver(tp)
    }
  }

  object toDeBruijn extends TypeMap {
    private var paramStack: List[List[Symbol]] = Nil
    def mkDebruijnBinder(params: List[Symbol], restpe: Type) = {
      paramStack = params :: paramStack
      try {
        DeBruijnBinder(params map (_.name), params map (p => this(p.info)), this(restpe))
      } finally paramStack = paramStack.tail
    }
    def apply(tp: Type): Type = tp match {
      case PolyType(tparams, restpe) =>
        mkDebruijnBinder(tparams, restpe)
      case MethodType(params, restpe) =>
        mkDebruijnBinder(params, restpe)
      case TypeRef(NoPrefix, sym, args) =>
        val level = paramStack indexWhere (_ contains sym)
        if (level < 0) mapOver(tp)
        else DeBruijnIndex(level, paramStack(level) indexOf sym, args mapConserve this)
      case _ =>
        mapOver(tp)
    }
  }

  def fromDeBruijn(owner: Symbol) = new TypeMap {
    private var paramStack: List[List[Symbol]] = Nil
    def apply(tp: Type): Type = tp match {
      case DeBruijnBinder(pnames, ptypes, restpe) =>
        val isType = pnames.head.isTypeName
        val newParams = for (name <- pnames) yield
          if (isType) owner.newTypeParameter(name.toTypeName)
          else owner.newValueParameter(name.toTermName)
        paramStack = newParams :: paramStack
        try {
          foreach2(newParams, ptypes)((p, t) => p setInfo this(t))
          val restpe1 = this(restpe)
          if (isType) PolyType(newParams, restpe1)
          else MethodType(newParams, restpe1)
        } finally paramStack = paramStack.tail
      case DeBruijnIndex(level, idx, args) =>
        TypeRef(NoPrefix, paramStack(level)(idx), args map this)
      case _ =>
        mapOver(tp)
    }
  }

// Hash consing --------------------------------------------------------------

  private val initialUniquesCapacity = 4096
  private var uniques: util.WeakHashSet[Type] = _
  private var uniqueRunId = NoRunId

  protected def unique[T <: Type](tp: T): T = {
    if (Statistics.canEnable) Statistics.incCounter(rawTypeCount)
    if (uniqueRunId != currentRunId) {
      uniques = util.WeakHashSet[Type](initialUniquesCapacity)
      perRunCaches.recordCache(uniques)
      uniqueRunId = currentRunId
    }
    (uniques findEntryOrUpdate tp).asInstanceOf[T]
  }

// Helper Classes ---------------------------------------------------------

  /** @PP: Unable to see why these apparently constant types should need vals
   *  in every TypeConstraint, I lifted them out.
   */
  private lazy val numericLoBound = IntClass.tpe
  private lazy val numericHiBound = intersectionType(List(ByteClass.tpe, CharClass.tpe), ScalaPackageClass)

  /** A class expressing upper and lower bounds constraints of type variables,
   * as well as their instantiations.
   */
  class TypeConstraint(lo0: List[Type], hi0: List[Type], numlo0: Type, numhi0: Type, avoidWidening0: Boolean = false) {
    def this(lo0: List[Type], hi0: List[Type]) = this(lo0, hi0, NoType, NoType)
    def this(bounds: TypeBounds) = this(List(bounds.lo), List(bounds.hi))
    def this() = this(List(), List())

    /*  Syncnote: Type constraints are assumed to be used from only one
     *  thread. They are not exposed in api.Types and are used only locally
     *  in operations that are exposed from types. Hence, no syncing of any
     *  variables should be ncessesary.
     */

    /** Guard these lists against AnyClass and NothingClass appearing,
     *  else loBounds.isEmpty will have different results for an empty
     *  constraint and one with Nothing as a lower bound.  [Actually
     *  guarding addLoBound/addHiBound somehow broke raw types so it
     *  only guards against being created with them.]
     */
    private var lobounds = lo0 filterNot typeIsNothing
    private var hibounds = hi0 filterNot typeIsAny
    private var numlo = numlo0
    private var numhi = numhi0
    private var avoidWidening = avoidWidening0

    def loBounds: List[Type] = if (numlo == NoType) lobounds else numlo :: lobounds
    def hiBounds: List[Type] = if (numhi == NoType) hibounds else numhi :: hibounds
    def avoidWiden: Boolean = avoidWidening

    def addLoBound(tp: Type, isNumericBound: Boolean = false) {
      // For some reason which is still a bit fuzzy, we must let Nothing through as
      // a lower bound despite the fact that Nothing is always a lower bound.  My current
      // supposition is that the side-effecting type constraint accumulation mechanism
      // depends on these subtype tests being performed to make forward progress when
      // there are mutally recursive type vars.
      // See pos/t6367 and pos/t6499 for the competing test cases.
      val mustConsider = tp.typeSymbol match {
        case NothingClass => true
        case _            => !(lobounds contains tp)
      }
      if (mustConsider) {
        if (isNumericBound && isNumericValueType(tp)) {
          if (numlo == NoType || isNumericSubType(numlo, tp))
            numlo = tp
          else if (!isNumericSubType(tp, numlo))
            numlo = numericLoBound
        }
        else lobounds ::= tp
      }
    }

    def checkWidening(tp: Type) {
      if(tp.isStable) avoidWidening = true
      else tp match {
        case HasTypeMember(_, _) => avoidWidening = true
        case _ =>
      }
    }

    def addHiBound(tp: Type, isNumericBound: Boolean = false) {
      // My current test case only demonstrates the need to let Nothing through as
      // a lower bound, but I suspect the situation is symmetrical.
      val mustConsider = tp.typeSymbol match {
        case AnyClass => true
        case _        => !(hibounds contains tp)
      }
      if (mustConsider) {
        checkWidening(tp)
        if (isNumericBound && isNumericValueType(tp)) {
          if (numhi == NoType || isNumericSubType(tp, numhi))
            numhi = tp
          else if (!isNumericSubType(numhi, tp))
            numhi = numericHiBound
        }
        else hibounds ::= tp
      }
    }

    def isWithinBounds(tp: Type): Boolean =
      lobounds.forall(_ <:< tp) &&
      hibounds.forall(tp <:< _) &&
      (numlo == NoType || (numlo weak_<:< tp)) &&
      (numhi == NoType || (tp weak_<:< numhi))

    var inst: Type = NoType // @M reduce visibility?

    def instValid = (inst ne null) && (inst ne NoType)

    def cloneInternal = {
      val tc = new TypeConstraint(lobounds, hibounds, numlo, numhi, avoidWidening)
      tc.inst = inst
      tc
    }

    override def toString = {
      val boundsStr = {
        val lo    = loBounds filterNot typeIsNothing
        val hi    = hiBounds filterNot typeIsAny
        val lostr = if (lo.isEmpty) Nil else List(lo.mkString(" >: (", ", ", ")"))
        val histr = if (hi.isEmpty) Nil else List(hi.mkString(" <: (", ", ", ")"))

        lostr ++ histr mkString ("[", " | ", "]")
      }
      if (inst eq NoType) boundsStr
      else boundsStr + " _= " + inst.safeToString
    }
  }

  class TypeUnwrapper(poly: Boolean, existential: Boolean, annotated: Boolean, nullary: Boolean) extends (Type => Type) {
    def apply(tp: Type): Type = tp match {
      case AnnotatedType(_, underlying, _) if annotated   => apply(underlying)
      case ExistentialType(_, underlying) if existential  => apply(underlying)
      case PolyType(_, underlying) if poly                => apply(underlying)
      case NullaryMethodType(underlying) if nullary       => apply(underlying)
      case tp                                             => tp
    }
  }
  class ClassUnwrapper(existential: Boolean) extends TypeUnwrapper(poly = true, existential, annotated = true, nullary = false) {
    override def apply(tp: Type) = super.apply(tp.normalize)
  }

  object        unwrapToClass extends ClassUnwrapper(existential = true) { }
  object  unwrapToStableClass extends ClassUnwrapper(existential = false) { }
  object   unwrapWrapperTypes extends  TypeUnwrapper(true, true, true, true) { }

  trait AnnotationFilter extends TypeMap {
    def keepAnnotation(annot: AnnotationInfo): Boolean

    override def mapOver(annot: AnnotationInfo) =
      if (keepAnnotation(annot)) super.mapOver(annot)
      else UnmappableAnnotation
  }

  trait KeepOnlyTypeConstraints extends AnnotationFilter {
    // filter keeps only type constraint annotations
    def keepAnnotation(annot: AnnotationInfo) = annot matches TypeConstraintClass
  }

  trait VariantTypeMap extends TypeMap {
    private[this] var _variance = 1

    override def variance = _variance
    def variance_=(x: Int) = _variance = x

    override protected def noChangeToSymbols(origSyms: List[Symbol]) =
      //OPT inline from forall to save on #closures
      origSyms match {
        case sym :: rest =>
          val v = variance
          if (sym.isAliasType) variance = 0
          val result = this(sym.info)
          variance = v
          (result eq sym.info) && noChangeToSymbols(rest)
        case _ =>
          true
      }

    override protected def mapOverArgs(args: List[Type], tparams: List[Symbol]): List[Type] =
      map2Conserve(args, tparams) { (arg, tparam) =>
        val v = variance
        if (tparam.isContravariant) variance = -variance
        else if (!tparam.isCovariant) variance = 0
        val arg1 = this(arg)
        variance = v
        arg1
      }

    /** Map this function over given type */
    override def mapOver(tp: Type): Type = tp match {
      case MethodType(params, result) =>
        variance = -variance
        val params1 = mapOver(params)
        variance = -variance
        val result1 = this(result)
        if ((params1 eq params) && (result1 eq result)) tp
        else copyMethodType(tp, params1, result1.substSym(params, params1))
      case PolyType(tparams, result) =>
        variance = -variance
        val tparams1 = mapOver(tparams)
        variance = -variance
        var result1 = this(result)
        if ((tparams1 eq tparams) && (result1 eq result)) tp
        else PolyType(tparams1, result1.substSym(tparams, tparams1))
      case TypeBounds(lo, hi) =>
        variance = -variance
        val lo1 = this(lo)
        variance = -variance
        val hi1 = this(hi)
        if ((lo1 eq lo) && (hi1 eq hi)) tp
        else TypeBounds(lo1, hi1)
      case tr @ TypeRef(pre, sym, args) =>
        val pre1 = this(pre)
        val args1 =
          if (args.isEmpty)
            args
          else if (variance == 0) // fast & safe path: don't need to look at typeparams
            args mapConserve this
          else {
            val tparams = sym.typeParams
            if (tparams.isEmpty) args
            else mapOverArgs(args, tparams)
          }
        if ((pre1 eq pre) && (args1 eq args)) tp
        else copyTypeRef(tp, pre1, tr.coevolveSym(pre1), args1)
      case _ =>
        super.mapOver(tp)
    }
  }

  // todo. move these into scala.reflect.api

  /** A prototype for mapping a function over all possible types
   */
  abstract class TypeMap extends (Type => Type) {
    def apply(tp: Type): Type

    /** Mix in VariantTypeMap if you want variances to be significant.
     */
    def variance = 0

    /** Map this function over given type */
    def mapOver(tp: Type): Type = tp match {
      case tr @ TypeRef(pre, sym, args) =>
        val pre1 = this(pre)
        val args1 = args mapConserve this
        if ((pre1 eq pre) && (args1 eq args)) tp
        else copyTypeRef(tp, pre1, tr.coevolveSym(pre1), args1)
      case ThisType(_) => tp
      case SingleType(pre, sym) =>
        if (sym.isPackageClass) tp // short path
        else {
          val pre1 = this(pre)
          if (pre1 eq pre) tp
          else singleType(pre1, sym)
        }
      case MethodType(params, result) =>
        val params1 = mapOver(params)
        val result1 = this(result)
        if ((params1 eq params) && (result1 eq result)) tp
        else copyMethodType(tp, params1, result1.substSym(params, params1))
      case PolyType(tparams, result) =>
        val tparams1 = mapOver(tparams)
        var result1 = this(result)
        if ((tparams1 eq tparams) && (result1 eq result)) tp
        else PolyType(tparams1, result1.substSym(tparams, tparams1))
      case NullaryMethodType(result) =>
        val result1 = this(result)
        if (result1 eq result) tp
        else NullaryMethodType(result1)
      case ConstantType(_) => tp
      case SuperType(thistp, supertp) =>
        val thistp1 = this(thistp)
        val supertp1 = this(supertp)
        if ((thistp1 eq thistp) && (supertp1 eq supertp)) tp
        else SuperType(thistp1, supertp1)
      case TypeBounds(lo, hi) =>
        val lo1 = this(lo)
        val hi1 = this(hi)
        if ((lo1 eq lo) && (hi1 eq hi)) tp
        else TypeBounds(lo1, hi1)
      case BoundedWildcardType(bounds) =>
        val bounds1 = this(bounds)
        if (bounds1 eq bounds) tp
        else BoundedWildcardType(bounds1.asInstanceOf[TypeBounds])
      case rtp @ RefinedType(parents, decls) =>
        val parents1 = parents mapConserve this
        val decls1 = mapOver(decls)
        //if ((parents1 eq parents) && (decls1 eq decls)) tp
        //else refinementOfClass(tp.typeSymbol, parents1, decls1)
        copyRefinedType(rtp, parents1, decls1)
      case ExistentialType(tparams, result) =>
        val tparams1 = mapOver(tparams)
        var result1 = this(result)
        if ((tparams1 eq tparams) && (result1 eq result)) tp
        else newExistentialType(tparams1, result1.substSym(tparams, tparams1))
      case OverloadedType(pre, alts) =>
        val pre1 = if (pre.isInstanceOf[ClassInfoType]) pre else this(pre)
        if (pre1 eq pre) tp
        else OverloadedType(pre1, alts)
      case AntiPolyType(pre, args) =>
        val pre1 = this(pre)
        val args1 = args mapConserve (this)
        if ((pre1 eq pre) && (args1 eq args)) tp
        else AntiPolyType(pre1, args1)
      case tv@TypeVar(_, constr) =>
        if (constr.instValid) this(constr.inst)
        else tv.applyArgs(mapOverArgs(tv.typeArgs, tv.params))  //@M !args.isEmpty implies !typeParams.isEmpty
      case NotNullType(tp) =>
        val tp1 = this(tp)
        if (tp1 eq tp) tp
        else NotNullType(tp1)
      case AnnotatedType(annots, atp, selfsym) =>
        val annots1 = mapOverAnnotations(annots)
        val atp1 = this(atp)
        if ((annots1 eq annots) && (atp1 eq atp)) tp
        else if (annots1.isEmpty) atp1
        else AnnotatedType(annots1, atp1, selfsym)
      case DeBruijnIndex(shift, idx, args) =>
        val args1 = args mapConserve this
        if (args1 eq args) tp
        else DeBruijnIndex(shift, idx, args1)
/*
      case ErrorType => tp
      case WildcardType => tp
      case NoType => tp
      case NoPrefix => tp
      case ErasedSingleType(sym) => tp
*/
      case _ =>
        tp
        // throw new Error("mapOver inapplicable for " + tp);
    }

    protected def mapOverArgs(args: List[Type], tparams: List[Symbol]): List[Type] =
      args mapConserve this

    /** Called by mapOver to determine whether the original symbols can
     *  be returned, or whether they must be cloned.  Overridden in VariantTypeMap.
     */
    protected def noChangeToSymbols(origSyms: List[Symbol]) =
      origSyms forall (sym => sym.info eq this(sym.info))

    /** Map this function over given scope */
    def mapOver(scope: Scope): Scope = {
      val elems = scope.toList
      val elems1 = mapOver(elems)
      if (elems1 eq elems) scope
      else newScopeWith(elems1: _*)
    }

    /** Map this function over given list of symbols */
    def mapOver(origSyms: List[Symbol]): List[Symbol] = {
      // fast path in case nothing changes due to map
      if (noChangeToSymbols(origSyms)) origSyms
      // map is not the identity --> do cloning properly
      else cloneSymbolsAndModify(origSyms, TypeMap.this)
    }

    def mapOver(annot: AnnotationInfo): AnnotationInfo = {
      val AnnotationInfo(atp, args, assocs) = annot
      val atp1  = mapOver(atp)
      val args1 = mapOverAnnotArgs(args)
      // there is no need to rewrite assocs, as they are constants

      if ((args eq args1) && (atp eq atp1)) annot
      else if (args1.isEmpty && args.nonEmpty) UnmappableAnnotation  // some annotation arg was unmappable
      else AnnotationInfo(atp1, args1, assocs) setPos annot.pos
    }

    def mapOverAnnotations(annots: List[AnnotationInfo]): List[AnnotationInfo] = {
      val annots1 = annots mapConserve mapOver
      if (annots1 eq annots) annots
      else annots1 filterNot (_ eq UnmappableAnnotation)
    }

    /** Map over a set of annotation arguments.  If any
     *  of the arguments cannot be mapped, then return Nil.  */
    def mapOverAnnotArgs(args: List[Tree]): List[Tree] = {
      val args1 = args mapConserve mapOver
      if (args1 contains UnmappableTree) Nil
      else args1
    }

    def mapOver(tree: Tree): Tree =
      mapOver(tree, () => return UnmappableTree)

    /** Map a tree that is part of an annotation argument.
     *  If the tree cannot be mapped, then invoke giveup().
     *  The default is to transform the tree with
     *  TypeMapTransformer.
     */
    def mapOver(tree: Tree, giveup: ()=>Nothing): Tree =
      (new TypeMapTransformer).transform(tree)

    /** This transformer leaves the tree alone except to remap
     *  its types. */
    class TypeMapTransformer extends Transformer {
      override def transform(tree: Tree) = {
        val tree1 = super.transform(tree)
        val tpe1 = TypeMap.this(tree1.tpe)
        if ((tree eq tree1) && (tree.tpe eq tpe1))
          tree
        else
          tree1.shallowDuplicate.setType(tpe1)
      }
    }
  }

  abstract class TypeTraverser extends TypeMap {
    def traverse(tp: Type): Unit
    def apply(tp: Type): Type = { traverse(tp); tp }
  }

  abstract class TypeTraverserWithResult[T] extends TypeTraverser {
    def result: T
    def clear(): Unit
  }

  abstract class TypeCollector[T](initial: T) extends TypeTraverser {
    var result: T = _
    def collect(tp: Type) = {
      result = initial
      traverse(tp)
      result
    }
  }

  /** A collector that tests for existential types appearing at given variance in a type
   *  @PP: Commenting out due to not being used anywhere.
   */
  // class ContainsVariantExistentialCollector(v: Int) extends TypeCollector(false) with VariantTypeMap {
  //   variance = v
  //
  //   def traverse(tp: Type) = tp match {
  //     case ExistentialType(_, _) if (variance == v) => result = true
  //     case _ => mapOver(tp)
  //   }
  // }
  //
  // val containsCovariantExistentialCollector = new ContainsVariantExistentialCollector(1)
  // val containsContravariantExistentialCollector = new ContainsVariantExistentialCollector(-1)

  def typeParamsToExistentials(clazz: Symbol, tparams: List[Symbol]): List[Symbol] = {
    val eparams = mapWithIndex(tparams)((tparam, i) =>
      clazz.newExistential(newTypeName("?"+i), clazz.pos) setInfo tparam.info.bounds)

    eparams map (_ substInfo (tparams, eparams))
  }
  def typeParamsToExistentials(clazz: Symbol): List[Symbol] =
    typeParamsToExistentials(clazz, clazz.typeParams)

  //  note: it's important to write the two tests in this order,
  //  as only typeParams forces the classfile to be read. See #400
  private def isRawIfWithoutArgs(sym: Symbol) =
    sym.isClass && sym.typeParams.nonEmpty && sym.isJavaDefined

  def isRaw(sym: Symbol, args: List[Type]) =
    !phase.erasedTypes && isRawIfWithoutArgs(sym) && args.isEmpty

  /** Is type tp a ''raw type''? */
  def isRawType(tp: Type) = tp match {
    case TypeRef(_, sym, args) => isRaw(sym, args)
    case _ => false
  }

  /** The raw to existential map converts a ''raw type'' to an existential type.
   *  It is necessary because we might have read a raw type of a
   *  parameterized Java class from a class file. At the time we read the type
   *  the corresponding class file might still not be read, so we do not
   *  know what the type parameters of the type are. Therefore
   *  the conversion of raw types to existential types might not have taken place
   *  in ClassFileparser.sigToType (where it is usually done).
   */
  def rawToExistential = new TypeMap {
    private var expanded = immutable.Set[Symbol]()
    def apply(tp: Type): Type = tp match {
      case TypeRef(pre, sym, List()) if isRawIfWithoutArgs(sym) =>
        if (expanded contains sym) AnyRefClass.tpe
        else try {
          expanded += sym
          val eparams = mapOver(typeParamsToExistentials(sym))
          existentialAbstraction(eparams, typeRef(apply(pre), sym, eparams map (_.tpe)))
        } finally {
          expanded -= sym
        }
      case _ =>
        mapOver(tp)
    }
  }

  /** Used by existentialAbstraction.
   */
  class ExistentialExtrapolation(tparams: List[Symbol]) extends VariantTypeMap {
    private val occurCount = mutable.HashMap[Symbol, Int]()
    private def countOccs(tp: Type) = {
      tp foreach {
        case TypeRef(_, sym, _) =>
          if (tparams contains sym)
            occurCount(sym) += 1
        case _ => ()
      }
    }
    def extrapolate(tpe: Type): Type = {
      tparams foreach (t => occurCount(t) = 0)
      countOccs(tpe)
      for (tparam <- tparams)
        countOccs(tparam.info)

      apply(tpe)
    }

    def apply(tp: Type): Type = {
      val tp1 = mapOver(tp)
      if (variance == 0) tp1
      else tp1 match {
        case TypeRef(pre, sym, args) if tparams contains sym =>
          val repl = if (variance == 1) dropSingletonType(tp1.bounds.hi) else tp1.bounds.lo
          //println("eliminate "+sym+"/"+repl+"/"+occurCount(sym)+"/"+(tparams exists (repl.contains)))//DEBUG
          if (!repl.typeSymbol.isBottomClass && occurCount(sym) == 1 && !(tparams exists (repl.contains)))
            repl
          else tp1
        case _ =>
          tp1
      }
    }
    override def mapOver(tp: Type): Type = tp match {
      case SingleType(pre, sym) =>
        if (sym.isPackageClass) tp // short path
        else {
          val pre1 = this(pre)
          if ((pre1 eq pre) || !pre1.isStable) tp
          else singleType(pre1, sym)
        }
      case _ => super.mapOver(tp)
    }

    // Do not discard the types of existential ident's. The
    // symbol of the Ident itself cannot be listed in the
    // existential's parameters, so the resulting existential
    // type would be ill-formed.
    override def mapOver(tree: Tree) = tree match {
      case Ident(_) if tree.tpe.isStable => tree
      case _                             => super.mapOver(tree)
    }
  }

  def singletonBounds(hi: Type) = TypeBounds.upper(intersectionType(List(hi, SingletonClass.tpe)))

  /** Might the given symbol be important when calculating the prefix
   *  of a type? When tp.asSeenFrom(pre, clazz) is called on `tp`,
   *  the result will be `tp` unchanged if `pre` is trivial and `clazz`
   *  is a symbol such that isPossiblePrefix(clazz) == false.
   */
  def isPossiblePrefix(clazz: Symbol) = clazz.isClass && !clazz.isPackageClass

  private def skipPrefixOf(pre: Type, clazz: Symbol) = (
    (pre eq NoType) || (pre eq NoPrefix) || !isPossiblePrefix(clazz)
  )

  /** A map to compute the asSeenFrom method  */
  class AsSeenFromMap(pre: Type, clazz: Symbol) extends TypeMap with KeepOnlyTypeConstraints {
    var capturedSkolems: List[Symbol] = List()
    var capturedParams: List[Symbol] = List()

    override def mapOver(tree: Tree, giveup: ()=>Nothing): Tree = {
      object annotationArgRewriter extends TypeMapTransformer {
        private def canRewriteThis(sym: Symbol) = (
             (sym isNonBottomSubClass clazz)
          && (pre.widen.typeSymbol isNonBottomSubClass sym)
          && (pre.isStable || giveup())
        )
        // what symbol should really be used?
        private def newTermSym() = {
          val p = pre.typeSymbol
          p.owner.newValue(p.name.toTermName, p.pos) setInfo pre
        }
        /** Rewrite `This` trees in annotation argument trees */
        override def transform(tree: Tree): Tree = super.transform(tree) match {
          case This(_) if canRewriteThis(tree.symbol) => gen.mkAttributedQualifier(pre, newTermSym())
          case tree                                   => tree
        }
      }
      annotationArgRewriter.transform(tree)
    }

    def stabilize(pre: Type, clazz: Symbol): Type = {
      capturedParams find (_.owner == clazz) match {
        case Some(qvar) => qvar.tpe
        case _          =>
          val qvar = clazz freshExistential nme.SINGLETON_SUFFIX setInfo singletonBounds(pre)
          capturedParams ::= qvar
          qvar.tpe
      }
    }

    def apply(tp: Type): Type =
      tp match {
        case ThisType(sym) =>
          def toPrefix(pre: Type, clazz: Symbol): Type =
            if (skipPrefixOf(pre, clazz)) tp
            else if ((sym isNonBottomSubClass clazz) &&
                     (pre.widen.typeSymbol isNonBottomSubClass sym)) {
              val pre1 = pre match {
                case SuperType(thistp, _) => thistp
                case _ => pre
              }
              if (!(pre1.isStable ||
                    pre1.typeSymbol.isPackageClass ||
                    pre1.typeSymbol.isModuleClass && pre1.typeSymbol.isStatic)) {
                stabilize(pre1, sym)
              } else {
                pre1
              }
            } else {
              toPrefix(pre.baseType(clazz).prefix, clazz.owner)
            }
          toPrefix(pre, clazz)
        case SingleType(pre, sym) =>
          if (sym.isPackageClass) tp // short path
          else {
            val pre1 = this(pre)
            if (pre1 eq pre) tp
            else if (pre1.isStable) singleType(pre1, sym)
            else pre1.memberType(sym).resultType //todo: this should be rolled into existential abstraction
          }
        // AM: Martin, is this description accurate?
        // walk the owner chain of `clazz` (the original argument to asSeenFrom) until we find the type param's owner (while rewriting pre as we crawl up the owner chain)
        // once we're at the owner, extract the information that pre encodes about the type param,
        // by minimally subsuming pre to the type instance of the class that owns the type param,
        // the type we're looking for is the type instance's type argument at the position corresponding to the type parameter
        // optimisation: skip this type parameter if it's not owned by a class, as those params are not influenced by the prefix through which they are seen
        // (concretely: type params of anonymous type functions, which currently can only arise from normalising type aliases, are owned by the type alias of which they are the eta-expansion)
        // (skolems also aren't affected: they are ruled out by the isTypeParameter check)
        case TypeRef(prefix, sym, args) if (sym.isTypeParameter && sym.owner.isClass) =>
          def toInstance(pre: Type, clazz: Symbol): Type =
            if (skipPrefixOf(pre, clazz)) mapOver(tp)
            //@M! see test pos/tcpoly_return_overriding.scala why mapOver is necessary
            else {
              def throwError = abort("" + tp + sym.locationString + " cannot be instantiated from " + pre.widen)

              val symclazz = sym.owner
              if (symclazz == clazz && !pre.widen.isInstanceOf[TypeVar] && (pre.widen.typeSymbol isNonBottomSubClass symclazz)) {
                // have to deconst because it may be a Class[T].
                pre.baseType(symclazz).deconst match {
                  case TypeRef(_, basesym, baseargs) =>

                   def instParam(ps: List[Symbol], as: List[Type]): Type =
                      if (ps.isEmpty) {
                        if (forInteractive) {
                          val saved = settings.uniqid.value
                          try {
                            settings.uniqid.value = true
                            println("*** stale type parameter: " + tp + sym.locationString + " cannot be instantiated from " + pre.widen)
                            println("*** confused with params: " + sym + " in " + sym.owner + " not in " + ps + " of " + basesym)
                            println("*** stacktrace = ")
                            new Error().printStackTrace()
                          } finally settings.uniqid.value = saved
                          instParamRelaxed(basesym.typeParams, baseargs)
                        } else throwError
                      } else if (sym eq ps.head)
                        // @M! don't just replace the whole thing, might be followed by type application
                        appliedType(as.head, args mapConserve (this)) // @M: was as.head
                      else instParam(ps.tail, as.tail)

                    /** Relaxed version of instParams which matches on names not symbols.
                     *  This is a last fallback in interactive mode because races in calls
                     *  from the IDE to the compiler may in rare cases lead to symbols referring
                     *  to type parameters that are no longer current.
                     */
                    def instParamRelaxed(ps: List[Symbol], as: List[Type]): Type =
                      if (ps.isEmpty) throwError
                      else if (sym.name == ps.head.name)
                        // @M! don't just replace the whole thing, might be followed by type application
                        appliedType(as.head, args mapConserve (this)) // @M: was as.head
                      else instParamRelaxed(ps.tail, as.tail)

                    //Console.println("instantiating " + sym + " from " + basesym + " with " + basesym.typeParams + " and " + baseargs+", pre = "+pre+", symclazz = "+symclazz);//DEBUG
                    if (sameLength(basesym.typeParams, baseargs))
                      instParam(basesym.typeParams, baseargs)
                    else
                      if (symclazz.tpe.parents exists typeIsErroneous)
                        ErrorType // don't be to overzealous with throwing exceptions, see #2641
                      else
                        throw new Error(
                          "something is wrong (wrong class file?): "+basesym+
                          " with type parameters "+
                          basesym.typeParams.map(_.name).mkString("[",",","]")+
                          " gets applied to arguments "+baseargs.mkString("[",",","]")+", phase = "+phase)
                  case ExistentialType(tparams, qtpe) =>
                    capturedSkolems = capturedSkolems union tparams
                    toInstance(qtpe, clazz)
                  case t =>
                    throwError
                }
              } else toInstance(pre.baseType(clazz).prefix, clazz.owner)
            }
          toInstance(pre, clazz)
        case _ =>
          mapOver(tp)
      }
  }

  /** A base class to compute all substitutions */
  abstract class SubstMap[T](from: List[Symbol], to: List[T]) extends TypeMap {
    assert(sameLength(from, to), "Unsound substitution from "+ from +" to "+ to)

    /** Are `sym` and `sym1` the same? Can be tuned by subclasses. */
    protected def matches(sym: Symbol, sym1: Symbol): Boolean = sym eq sym1

    /** Map target to type, can be tuned by subclasses */
    protected def toType(fromtp: Type, tp: T): Type

    protected def renameBoundSyms(tp: Type): Type = tp match {
      case MethodType(ps, restp) =>
        createFromClonedSymbols(ps, restp)((ps1, tp1) => copyMethodType(tp, ps1, renameBoundSyms(tp1)))
      case PolyType(bs, restp) =>
        createFromClonedSymbols(bs, restp)((ps1, tp1) => PolyType(ps1, renameBoundSyms(tp1)))
      case ExistentialType(bs, restp) =>
        createFromClonedSymbols(bs, restp)(newExistentialType)
      case _ =>
        tp
    }

    def apply(tp0: Type): Type = if (from.isEmpty) tp0 else {
      @tailrec def subst(tp: Type, sym: Symbol, from: List[Symbol], to: List[T]): Type =
        if (from.isEmpty) tp
        // else if (to.isEmpty) error("Unexpected substitution on '%s': from = %s but to == Nil".format(tp, from))
        else if (matches(from.head, sym)) toType(tp, to.head)
        else subst(tp, sym, from.tail, to.tail)

      val boundSyms = tp0.boundSyms
      val tp1 = if (boundSyms.nonEmpty && (boundSyms exists from.contains)) renameBoundSyms(tp0) else tp0
      val tp = mapOver(tp1)

      tp match {
        // @M
        // 1) arguments must also be substituted (even when the "head" of the
        // applied type has already been substituted)
        // example: (subst RBound[RT] from [type RT,type RBound] to
        // [type RT&,type RBound&]) = RBound&[RT&]
        // 2) avoid loops (which occur because alpha-conversion is
        // not performed properly imo)
        // e.g. if in class Iterable[a] there is a new Iterable[(a,b)],
        // we must replace the a in Iterable[a] by (a,b)
        // (must not recurse --> loops)
        // 3) replacing m by List in m[Int] should yield List[Int], not just List
        case TypeRef(NoPrefix, sym, args) =>
          appliedType(subst(tp, sym, from, to), args) // if args.isEmpty, appliedType is the identity
        case SingleType(NoPrefix, sym) =>
          subst(tp, sym, from, to)
        case _ =>
          tp
      }
    }
  }

  /** A map to implement the `substSym` method. */
  class SubstSymMap(from: List[Symbol], to: List[Symbol]) extends SubstMap(from, to) {
    def this(pairs: (Symbol, Symbol)*) = this(pairs.toList.map(_._1), pairs.toList.map(_._2))

    protected def toType(fromtp: Type, sym: Symbol) = fromtp match {
      case TypeRef(pre, _, args) => copyTypeRef(fromtp, pre, sym, args)
      case SingleType(pre, _) => singleType(pre, sym)
    }
    override def apply(tp: Type): Type = if (from.isEmpty) tp else {
      @tailrec def subst(sym: Symbol, from: List[Symbol], to: List[Symbol]): Symbol =
        if (from.isEmpty) sym
        // else if (to.isEmpty) error("Unexpected substitution on '%s': from = %s but to == Nil".format(sym, from))
        else if (matches(from.head, sym)) to.head
        else subst(sym, from.tail, to.tail)
      tp match {
        case TypeRef(pre, sym, args) if pre ne NoPrefix =>
          val newSym = subst(sym, from, to)
          // mapOver takes care of subst'ing in args
          mapOver ( if (sym eq newSym) tp else copyTypeRef(tp, pre, newSym, args) )
          // assert(newSym.typeParams.length == sym.typeParams.length, "typars mismatch in SubstSymMap: "+(sym, sym.typeParams, newSym, newSym.typeParams))
        case SingleType(pre, sym) if pre ne NoPrefix =>
          val newSym = subst(sym, from, to)
          mapOver( if (sym eq newSym) tp else singleType(pre, newSym) )
        case _ =>
          super.apply(tp)
      }
    }

    object mapTreeSymbols extends TypeMapTransformer {
      val strictCopy = newStrictTreeCopier

      def termMapsTo(sym: Symbol) = from indexOf sym match {
        case -1   => None
        case idx  => Some(to(idx))
      }

      // if tree.symbol is mapped to another symbol, passes the new symbol into the
      // constructor `trans` and sets the symbol and the type on the resulting tree.
      def transformIfMapped(tree: Tree)(trans: Symbol => Tree) = termMapsTo(tree.symbol) match {
        case Some(toSym) => trans(toSym) setSymbol toSym setType tree.tpe
        case None => tree
      }

      // changes trees which refer to one of the mapped symbols. trees are copied before attributes are modified.
      override def transform(tree: Tree) = {
        // super.transform maps symbol references in the types of `tree`. it also copies trees where necessary.
        super.transform(tree) match {
          case id @ Ident(_) =>
            transformIfMapped(id)(toSym =>
              strictCopy.Ident(id, toSym.name))

          case sel @ Select(qual, name) =>
            transformIfMapped(sel)(toSym =>
              strictCopy.Select(sel, qual, toSym.name))

          case tree => tree
        }
      }
    }
    override def mapOver(tree: Tree, giveup: ()=>Nothing): Tree = {
      mapTreeSymbols.transform(tree)
    }
  }

  /** A map to implement the `subst` method. */
  class SubstTypeMap(from: List[Symbol], to: List[Type])
  extends SubstMap(from, to) {
    protected def toType(fromtp: Type, tp: Type) = tp

    override def mapOver(tree: Tree, giveup: () => Nothing): Tree = {
      object trans extends TypeMapTransformer {
        override def transform(tree: Tree) = tree match {
          case Ident(name) =>
            from indexOf tree.symbol match {
              case -1   => super.transform(tree)
              case idx  =>
                val totpe = to(idx)
                if (totpe.isStable) tree.duplicate setType totpe
                else giveup()
            }
          case _ =>
            super.transform(tree)
        }
      }
      trans.transform(tree)
    }
  }

  /** A map to implement the `substThis` method. */
  class SubstThisMap(from: Symbol, to: Type) extends TypeMap {
    def apply(tp: Type): Type = tp match {
      case ThisType(sym) if (sym == from) => to
      case _ => mapOver(tp)
    }
  }

  class SubstWildcardMap(from: List[Symbol]) extends TypeMap {
    def apply(tp: Type): Type = try {
      tp match {
        case TypeRef(_, sym, _) if from contains sym =>
          BoundedWildcardType(sym.info.bounds)
        case _ =>
          mapOver(tp)
      }
    } catch {
      case ex: MalformedType =>
        WildcardType
    }
  }

// dependent method types
  object IsDependentCollector extends TypeCollector(false) {
    def traverse(tp: Type) {
      if (tp.isImmediatelyDependent) result = true
      else if (!result) mapOver(tp.dealias)
    }
  }

  object ApproximateDependentMap extends TypeMap {
    def apply(tp: Type): Type =
      if (tp.isImmediatelyDependent) WildcardType
      else mapOver(tp)
  }

  /** Note: This map is needed even for non-dependent method types, despite what the name might imply.
   */
  class InstantiateDependentMap(params: List[Symbol], actuals0: List[Type]) extends TypeMap with KeepOnlyTypeConstraints {
    private val actuals      = actuals0.toIndexedSeq
    private val existentials = new Array[Symbol](actuals.size)
    def existentialsNeeded: List[Symbol] = existentials.filter(_ ne null).toList

    private object StableArg {
      def unapply(param: Symbol) = Arg unapply param map actuals filter (tp =>
        tp.isStable && (tp.typeSymbol != NothingClass)
      )
    }
    private object Arg {
      def unapply(param: Symbol) = Some(params indexOf param) filter (_ >= 0)
    }

    def apply(tp: Type): Type = mapOver(tp) match {
      // unsound to replace args by unstable actual #3873
      case SingleType(NoPrefix, StableArg(arg)) => arg
      // (soundly) expand type alias selections on implicit arguments,
      // see depmet_implicit_oopsla* test cases -- typically, `param.isImplicit`
      case tp1 @ TypeRef(SingleType(NoPrefix, Arg(pid)), sym, targs) =>
        val arg = actuals(pid)
        val res = typeRef(arg, sym, targs)
        if (res.typeSymbolDirect.isAliasType) res.dealias else tp1
      // don't return the original `tp`, which may be different from `tp1`,
      // due to dropping annotations
      case tp1 => tp1
    }

    /* Return the type symbol for referencing a parameter inside the existential quantifier.
     * (Only needed if the actual is unstable.)
     */
    private def existentialFor(pid: Int) = {
      if (existentials(pid) eq null) {
        val param = params(pid)
        existentials(pid) = (
          param.owner.newExistential(param.name.toTypeName append nme.SINGLETON_SUFFIX, param.pos, param.flags)
            setInfo singletonBounds(actuals(pid))
        )
      }
      existentials(pid)
    }

    //AM propagate more info to annotations -- this seems a bit ad-hoc... (based on code by spoon)
    override def mapOver(arg: Tree, giveup: ()=>Nothing): Tree = {
      // TODO: this should be simplified; in the stable case, one can
      // probably just use an Ident to the tree.symbol.
      //
      // @PP: That leads to failure here, where stuff no longer has type
      // 'String @Annot("stuff")' but 'String @Annot(x)'.
      //
      //   def m(x: String): String @Annot(x) = x
      //   val stuff = m("stuff")
      //
      // (TODO cont.) Why an existential in the non-stable case?
      //
      // @PP: In the following:
      //
      //   def m = { val x = "three" ; val y: String @Annot(x) = x; y }
      //
      // m is typed as 'String @Annot(x) forSome { val x: String }'.
      //
      // Both examples are from run/constrained-types.scala.
      object treeTrans extends Transformer {
        override def transform(tree: Tree): Tree = tree.symbol match {
          case StableArg(actual) =>
            gen.mkAttributedQualifier(actual, tree.symbol)
          case Arg(pid) =>
            val sym = existentialFor(pid)
            Ident(sym) copyAttrs tree setType typeRef(NoPrefix, sym, Nil)
          case _ =>
            super.transform(tree)
        }
      }
      treeTrans transform arg
    }
  }

  object StripAnnotationsMap extends TypeMap {
    def apply(tp: Type): Type = tp match {
      case AnnotatedType(_, atp, _) =>
        mapOver(atp)
      case tp =>
        mapOver(tp)
    }
  }

  /** A map to convert every occurrence of a wildcard type to a fresh
   *  type variable */
  object wildcardToTypeVarMap extends TypeMap {
    def apply(tp: Type): Type = tp match {
      case WildcardType =>
        TypeVar(tp, new TypeConstraint)
      case BoundedWildcardType(bounds) =>
        TypeVar(tp, new TypeConstraint(bounds))
      case _ =>
        mapOver(tp)
    }
  }

  /** A map to convert every occurrence of a type variable to a wildcard type. */
  object typeVarToOriginMap extends TypeMap {
    def apply(tp: Type): Type = tp match {
      case TypeVar(origin, _) => origin
      case _ => mapOver(tp)
    }
  }

  /** A map to implement the `contains` method. */
  class ContainsCollector(sym: Symbol) extends TypeCollector(false) {
    def traverse(tp: Type) {
      if (!result) {
        tp.normalize match {
          case TypeRef(_, sym1, _) if (sym == sym1) => result = true
          case SingleType(_, sym1) if (sym == sym1) => result = true
          case _ => mapOver(tp)
        }
      }
    }

    override def mapOver(arg: Tree) = {
      for (t <- arg) {
        traverse(t.tpe)
        if (t.symbol == sym)
          result = true
      }
      arg
    }
  }

  /** A map to implement the `contains` method. */
  class ContainsTypeCollector(t: Type) extends TypeCollector(false) {
    def traverse(tp: Type) {
      if (!result) {
        if (tp eq t) result = true
        else mapOver(tp)
      }
    }
    override def mapOver(arg: Tree) = {
      for (t <- arg)
        traverse(t.tpe)

      arg
    }
  }

  /** A map to implement the `filter` method. */
  class FilterTypeCollector(p: Type => Boolean) extends TypeCollector[List[Type]](Nil) {
    def withFilter(q: Type => Boolean) = new FilterTypeCollector(tp => p(tp) && q(tp))

    override def collect(tp: Type) = super.collect(tp).reverse

    def traverse(tp: Type) {
      if (p(tp)) result ::= tp
      mapOver(tp)
    }
  }

  /** A map to implement the `collect` method. */
  class CollectTypeCollector[T](pf: PartialFunction[Type, T]) extends TypeCollector[List[T]](Nil) {
    override def collect(tp: Type) = super.collect(tp).reverse

    def traverse(tp: Type) {
      if (pf.isDefinedAt(tp)) result ::= pf(tp)
      mapOver(tp)
    }
  }

  class ForEachTypeTraverser(f: Type => Unit) extends TypeTraverser {
    def traverse(tp: Type) {
      f(tp)
      mapOver(tp)
    }
  }

  /** A map to implement the `filter` method. */
  class FindTypeCollector(p: Type => Boolean) extends TypeCollector[Option[Type]](None) {
    def traverse(tp: Type) {
      if (result.isEmpty) {
        if (p(tp)) result = Some(tp)
        mapOver(tp)
      }
    }
  }

  /** A map to implement the `contains` method. */
  object ErroneousCollector extends TypeCollector(false) {
    def traverse(tp: Type) {
      if (!result) {
        result = tp.isError
        mapOver(tp)
      }
    }
  }

  /**
   * A more persistent version of `Type#memberType` which does not require
   * that the symbol is a direct member of the prefix.
   *
   * For instance:
   *
   * {{{
   * class C[T] {
   *   sealed trait F[A]
   *   object X {
   *     object S1 extends F[T]
   *   }
   *   class S2 extends F[T]
   * }
   * object O extends C[Int] {
   *   def foo(f: F[Int]) = f match {...} // need to enumerate sealed subtypes of the scrutinee here.
   * }
   * class S3 extends O.F[String]
   *
   * nestedMemberType(<S1>, <O.type>, <C>) = O.X.S1.type
   * nestedMemberType(<S2>, <O.type>, <C>) = O.S2.type
   * nestedMemberType(<S3>, <O.type>, <C>) = S3.type
   * }}}
   *
   * @param sym    The symbol of the subtype
   * @param pre    The prefix from which the symbol is seen
   * @param owner
   */
  def nestedMemberType(sym: Symbol, pre: Type, owner: Symbol): Type = {
    def loop(tp: Type): Type =
      if (tp.isTrivial) tp
      else if (tp.prefix.typeSymbol isNonBottomSubClass owner) {
        val widened = tp match {
          case _: ConstantType => tp // Java enum constants: don't widen to the enum type!
          case _               => tp.widen // C.X.type widens to C.this.X.type, otherwise `tp asSeenFrom (pre, C)` has no effect.
        }
        val memType = widened asSeenFrom (pre, tp.typeSymbol.owner)
        if (tp eq widened) memType else memType.narrow
      }
      else loop(tp.prefix) memberType tp.typeSymbol

    val result = loop(sym.tpeHK)
    assert(sym.isTerm || result.typeSymbol == sym, s"($result).typeSymbol = ${result.typeSymbol}; expected ${sym}")
    result
  }

  /** The most deeply nested owner that contains all the symbols
   *  of thistype or prefixless typerefs/singletype occurrences in given type.
   */
  private def commonOwner(t: Type): Symbol = commonOwner(t :: Nil)

  /** The most deeply nested owner that contains all the symbols
   *  of thistype or prefixless typerefs/singletype occurrences in given list
   *  of types.
   */
  private def commonOwner(tps: List[Type]): Symbol = {
    if (tps.isEmpty) NoSymbol
    else {
      commonOwnerMap.clear()
      tps foreach (commonOwnerMap traverse _)
      if (commonOwnerMap.result ne null) commonOwnerMap.result else NoSymbol
    }
  }

  protected def commonOwnerMap: CommonOwnerMap = commonOwnerMapObj

  protected class CommonOwnerMap extends TypeTraverserWithResult[Symbol] {
    var result: Symbol = _

    def clear() { result = null }

    private def register(sym: Symbol) {
      // First considered type is the trivial result.
      if ((result eq null) || (sym eq NoSymbol))
        result = sym
      else
        while ((result ne NoSymbol) && (result ne sym) && !(sym isNestedIn result))
          result = result.owner
    }
    def traverse(tp: Type) = tp.normalize match {
      case ThisType(sym)                => register(sym)
      case TypeRef(NoPrefix, sym, args) => register(sym.owner) ; args foreach traverse
      case SingleType(NoPrefix, sym)    => register(sym.owner)
      case _                            => mapOver(tp)
    }
  }

  private lazy val commonOwnerMapObj = new CommonOwnerMap

  class MissingAliasControl extends ControlThrowable
  val missingAliasException = new MissingAliasControl
  class MissingTypeControl extends ControlThrowable

  object adaptToNewRunMap extends TypeMap {

    private def adaptToNewRun(pre: Type, sym: Symbol): Symbol = {
      if (phase.flatClasses || sym.isRootSymbol || (pre eq NoPrefix) || (pre eq NoType) || sym.isPackageClass)
        sym
      else if (sym.isModuleClass) {
        val sourceModule1 = adaptToNewRun(pre, sym.sourceModule)

        sourceModule1.moduleClass orElse sourceModule1.initialize.moduleClass orElse {
          val msg = "Cannot adapt module class; sym = %s, sourceModule = %s, sourceModule.moduleClass = %s => sourceModule1 = %s, sourceModule1.moduleClass = %s"
          debuglog(msg.format(sym, sym.sourceModule, sym.sourceModule.moduleClass, sourceModule1, sourceModule1.moduleClass))
          sym
        }
      }
      else {
        var rebind0 = pre.findMember(sym.name, BRIDGE, 0, true) orElse {
          if (sym.isAliasType) throw missingAliasException
          debugwarn(pre+"."+sym+" does no longer exist, phase = "+phase)
          throw new MissingTypeControl // For build manager and presentation compiler purposes
        }
        /** The two symbols have the same fully qualified name */
        def corresponds(sym1: Symbol, sym2: Symbol): Boolean =
          sym1.name == sym2.name && (sym1.isPackageClass || corresponds(sym1.owner, sym2.owner))
        if (!corresponds(sym.owner, rebind0.owner)) {
          debuglog("ADAPT1 pre = "+pre+", sym = "+sym.fullLocationString+", rebind = "+rebind0.fullLocationString)
          val bcs = pre.baseClasses.dropWhile(bc => !corresponds(bc, sym.owner));
          if (bcs.isEmpty)
            assert(pre.typeSymbol.isRefinementClass, pre) // if pre is a refinementclass it might be a structural type => OK to leave it in.
          else
            rebind0 = pre.baseType(bcs.head).member(sym.name)
          debuglog(
            "ADAPT2 pre = " + pre +
            ", bcs.head = " + bcs.head +
            ", sym = " + sym.fullLocationString +
            ", rebind = " + rebind0.fullLocationString
          )
        }
        rebind0.suchThat(sym => sym.isType || sym.isStable) orElse {
          debuglog("" + phase + " " +phase.flatClasses+sym.owner+sym.name+" "+sym.isType)
          throw new MalformedType(pre, sym.nameString)
        }
      }
    }
    def apply(tp: Type): Type = tp match {
      case ThisType(sym) =>
        try {
          val sym1 = adaptToNewRun(sym.owner.thisType, sym)
          if (sym1 == sym) tp else ThisType(sym1)
        } catch {
          case ex: MissingTypeControl =>
            tp
        }
      case SingleType(pre, sym) =>
        if (sym.isPackage) tp
        else {
          val pre1 = this(pre)
          try {
            val sym1 = adaptToNewRun(pre1, sym)
            if ((pre1 eq pre) && (sym1 eq sym)) tp
            else singleType(pre1, sym1)
          } catch {
            case _: MissingTypeControl =>
              tp
          }
        }
      case TypeRef(pre, sym, args) =>
        if (sym.isPackageClass) tp
        else {
          val pre1 = this(pre)
          val args1 = args mapConserve (this)
          try {
            val sym1 = adaptToNewRun(pre1, sym)
            if ((pre1 eq pre) && (sym1 eq sym) && (args1 eq args)/* && sym.isExternal*/) {
              tp
            } else if (sym1 == NoSymbol) {
              debugwarn("adapt fail: "+pre+" "+pre1+" "+sym)
              tp
            } else {
              copyTypeRef(tp, pre1, sym1, args1)
            }
          } catch {
            case ex: MissingAliasControl =>
              apply(tp.dealias)
            case _: MissingTypeControl =>
              tp
          }
        }
      case MethodType(params, restp) =>
        val restp1 = this(restp)
        if (restp1 eq restp) tp
        else copyMethodType(tp, params, restp1)
      case NullaryMethodType(restp) =>
        val restp1 = this(restp)
        if (restp1 eq restp) tp
        else NullaryMethodType(restp1)
      case PolyType(tparams, restp) =>
        val restp1 = this(restp)
        if (restp1 eq restp) tp
        else PolyType(tparams, restp1)

      // Lukas: we need to check (together) whether we should also include parameter types
      // of PolyType and MethodType in adaptToNewRun

      case ClassInfoType(parents, decls, clazz) =>
        if (clazz.isPackageClass) tp
        else {
          val parents1 = parents mapConserve (this)
          if (parents1 eq parents) tp
          else ClassInfoType(parents1, decls, clazz)
        }
      case RefinedType(parents, decls) =>
        val parents1 = parents mapConserve (this)
        if (parents1 eq parents) tp
        else refinedType(parents1, tp.typeSymbol.owner, decls, tp.typeSymbol.owner.pos)
      case SuperType(_, _) => mapOver(tp)
      case TypeBounds(_, _) => mapOver(tp)
      case TypeVar(_, _) => mapOver(tp)
      case AnnotatedType(_,_,_) => mapOver(tp)
      case NotNullType(_) => mapOver(tp)
      case ExistentialType(_, _) => mapOver(tp)
      case _ => tp
    }
  }

  final case class SubTypePair(tp1: Type, tp2: Type) {
    // SI-8146 we used to implement equality here in terms of pairwise =:=.
    //         But, this was inconsistent with hashCode, which was based on the
    //         Type#hashCode, based on the structure of types, not the meaning.
    //         Now, we use `Type#{equals,hashCode}` as the (consistent) basis for
    //         detecting cycles (aka keeping subtyping decidable.)
    //
    //         I added tests to show that we detect the cycle: neg/t8146-no-finitary*

    override def toString = tp1+" <:<? "+tp2
  }

// Helper Methods  -------------------------------------------------------------

  /** The maximum allowable depth of lubs or glbs over types `ts`.
    */
  def lubDepth(ts: List[Type]): Int = {
    val td = typeDepth(ts)
    val bd = baseTypeSeqDepth(ts)
    lubDepthAdjust(td, td max bd)
  }

  /** The maximum allowable depth of lubs or glbs over given types,
   *  as a function over the maximum depth `td` of these types, and
   *  the maximum depth `bd` of all types in the base type sequences of these types.
   */
  private def lubDepthAdjust(td: Int, bd: Int): Int =
    if (settings.XfullLubs.value) bd
    else if (bd <= 3) bd
    else if (bd <= 5) td max (bd - 1)
    else if (bd <= 7) td max (bd - 2)
    else (td - 1) max (bd - 3)

  /** The maximum depth of type `tp` */
  def typeDepth(tp: Type): Int = tp match {
    case TypeRef(pre, sym, args) =>
      typeDepth(pre) max typeDepth(args) + 1
    case RefinedType(parents, decls) =>
      typeDepth(parents) max typeDepth(decls.toList.map(_.info)) + 1
    case TypeBounds(lo, hi) =>
      typeDepth(lo) max typeDepth(hi)
    case MethodType(paramtypes, result) =>
      typeDepth(result)
    case NullaryMethodType(result) =>
      typeDepth(result)
    case PolyType(tparams, result) =>
      typeDepth(result) max typeDepth(tparams map (_.info)) + 1
    case ExistentialType(tparams, result) =>
      typeDepth(result) max typeDepth(tparams map (_.info)) + 1
    case _ =>
      1
  }

  private def maxDepth(tps: List[Type], by: Type => Int): Int = {
    //OPT replaced with tailrecursive function to save on #closures
    // was:
    //    var d = 0
    //    for (tp <- tps) d = d max by(tp) //!!!OPT!!!
    //    d
    def loop(tps: List[Type], acc: Int): Int = tps match {
      case tp :: rest => loop(rest, acc max by(tp))
      case _ => acc
    }
    loop(tps, 0)
  }

  private def typeDepth(tps: List[Type]): Int = maxDepth(tps, typeDepth)
  private def baseTypeSeqDepth(tps: List[Type]): Int = maxDepth(tps, _.baseTypeSeqDepth)

  /** Is intersection of given types populated? That is,
   *  for all types tp1, tp2 in intersection
   *    for all common base classes bc of tp1 and tp2
   *      let bt1, bt2 be the base types of tp1, tp2 relative to class bc
   *      Then:
   *        bt1 and bt2 have the same prefix, and
   *        any corresponding non-variant type arguments of bt1 and bt2 are the same
   */
  def isPopulated(tp1: Type, tp2: Type): Boolean = {
    def isConsistent(tp1: Type, tp2: Type): Boolean = (tp1, tp2) match {
      case (TypeRef(pre1, sym1, args1), TypeRef(pre2, sym2, args2)) =>
        assert(sym1 == sym2)
        pre1 =:= pre2 &&
        forall3(args1, args2, sym1.typeParams) { (arg1, arg2, tparam) =>
            //if (tparam.variance == 0 && !(arg1 =:= arg2)) Console.println("inconsistent: "+arg1+"!="+arg2)//DEBUG
          if (tparam.variance == 0) arg1 =:= arg2
          else if (arg1.isInstanceOf[TypeVar])
            // if left-hand argument is a typevar, make it compatible with variance
            // this is for more precise pattern matching
            // todo: work this in the spec of this method
            // also: think what happens if there are embedded typevars?
            if (tparam.variance < 0) arg1 <:< arg2 else arg2 <:< arg1
          else true
        }
      case (et: ExistentialType, _) =>
        et.withTypeVars(isConsistent(_, tp2))
      case (_, et: ExistentialType) =>
        et.withTypeVars(isConsistent(tp1, _))
    }

    def check(tp1: Type, tp2: Type) =
      if (tp1.typeSymbol.isClass && tp1.typeSymbol.hasFlag(FINAL))
        tp1 <:< tp2 || isNumericValueClass(tp1.typeSymbol) && isNumericValueClass(tp2.typeSymbol)
      else tp1.baseClasses forall (bc =>
        tp2.baseTypeIndex(bc) < 0 || isConsistent(tp1.baseType(bc), tp2.baseType(bc)))

    check(tp1, tp2)/* && check(tp2, tp1)*/ // need to investgate why this can't be made symmetric -- neg/gadts1 fails, and run/existials also.
  }

  /** Does a pattern of type `patType` need an outer test when executed against
   *  selector type `selType` in context defined by `currentOwner`?
   */
  def needsOuterTest(patType: Type, selType: Type, currentOwner: Symbol) = {
    def createDummyClone(pre: Type): Type = {
      val dummy = currentOwner.enclClass.newValue(nme.ANYname).setInfo(pre.widen)
      singleType(ThisType(currentOwner.enclClass), dummy)
    }
    def maybeCreateDummyClone(pre: Type, sym: Symbol): Type = pre match {
      case SingleType(pre1, sym1) =>
        if (sym1.isModule && sym1.isStatic) {
          NoType
        } else if (sym1.isModule && sym.owner == sym1.moduleClass) {
          val pre2 = maybeCreateDummyClone(pre1, sym1)
          if (pre2 eq NoType) pre2
          else singleType(pre2, sym1)
        } else {
          createDummyClone(pre)
        }
      case ThisType(clazz) =>
        if (clazz.isModuleClass)
          maybeCreateDummyClone(clazz.typeOfThis, sym)
        else if (sym.owner == clazz && (sym.hasFlag(PRIVATE) || sym.privateWithin == clazz))
          NoType
        else
          createDummyClone(pre)
      case _ =>
        NoType
    }
    // See the test for SI-7214 for motivation for dealias. Later `treeCondStrategy#outerTest`
    // generates an outer test based on `patType.prefix` with automatically dealises.
    patType.dealias match {
      case TypeRef(pre, sym, args) =>
        val pre1 = maybeCreateDummyClone(pre, sym)
        (pre1 ne NoType) && isPopulated(copyTypeRef(patType, pre1, sym, args), selType)
      case _ =>
        false
    }
  }

  private var subsametypeRecursions: Int = 0

  private def isUnifiable(pre1: Type, pre2: Type) =
    (beginsWithTypeVarOrIsRefined(pre1) || beginsWithTypeVarOrIsRefined(pre2)) && (pre1 =:= pre2)

  /** Returns true iff we are past phase specialize,
   *  sym1 and sym2 are two existential skolems with equal names and bounds,
   *  and pre1 and pre2 are equal prefixes
   */
  private def isSameSpecializedSkolem(sym1: Symbol, sym2: Symbol, pre1: Type, pre2: Type) = {
    sym1.isExistentialSkolem && sym2.isExistentialSkolem &&
    sym1.name == sym2.name &&
    phase.specialized &&
    sym1.info =:= sym2.info &&
    pre1 =:= pre2
  }

  private def isSubPre(pre1: Type, pre2: Type, sym: Symbol) =
    if ((pre1 ne pre2) && (pre1 ne NoPrefix) && (pre2 ne NoPrefix) && pre1 <:< pre2) {
      if (settings.debug.value) println(s"new isSubPre $sym: $pre1 <:< $pre2")
      true
    } else
      false

  private def equalSymsAndPrefixes(sym1: Symbol, pre1: Type, sym2: Symbol, pre2: Type): Boolean =
    if (sym1 == sym2) sym1.hasPackageFlag || sym1.owner.hasPackageFlag || phase.erasedTypes || pre1 =:= pre2
    else (sym1.name == sym2.name) && isUnifiable(pre1, pre2)

  /** Do `tp1` and `tp2` denote equivalent types? */
  def isSameType(tp1: Type, tp2: Type): Boolean = try {
    if (Statistics.canEnable) Statistics.incCounter(sametypeCount)
    subsametypeRecursions += 1
    //OPT cutdown on Function0 allocation
    //was:
//    undoLog undoUnless {
//      isSameType1(tp1, tp2)
//    }

    undoLog.lock()
    try {
      val before = undoLog.log
      var result = false

      try result = {
        isSameType1(tp1, tp2)
      } finally if (!result) undoLog.undoTo(before)
      result
    } finally undoLog.unlock()
  } finally {
    subsametypeRecursions -= 1
    // XXX AM TODO: figure out when it is safe and needed to clear the log -- the commented approach below is too eager (it breaks #3281, #3866)
    // it doesn't help to keep separate recursion counts for the three methods that now share it
    // if (subsametypeRecursions == 0) undoLog.clear()
  }

  def isDifferentType(tp1: Type, tp2: Type): Boolean = try {
    subsametypeRecursions += 1
    undoLog undo { // undo type constraints that arise from operations in this block
      !isSameType1(tp1, tp2)
    }
  } finally {
    subsametypeRecursions -= 1
    // XXX AM TODO: figure out when it is safe and needed to clear the log -- the commented approach below is too eager (it breaks #3281, #3866)
    // it doesn't help to keep separate recursion counts for the three methods that now share it
    // if (subsametypeRecursions == 0) undoLog.clear()
  }

  def isDifferentTypeConstructor(tp1: Type, tp2: Type): Boolean = tp1 match {
    case TypeRef(pre1, sym1, _) =>
      tp2 match {
        case TypeRef(pre2, sym2, _) => sym1 != sym2 || isDifferentType(pre1, pre2)
        case _ => true
      }
    case _ => true
  }

  def normalizePlus(tp: Type) =
    if (isRawType(tp)) rawToExistential(tp)
    else tp.normalize

  /*
  todo: change to:
  def normalizePlus(tp: Type) = tp match {
    case TypeRef(pre, sym, List()) =>
      if (!sym.isInitialized) sym.rawInfo.load(sym)
      if (sym.isJavaDefined && !sym.typeParams.isEmpty) rawToExistential(tp)
      else tp.normalize
    case _ => tp.normalize
  }
  */
/*
  private def isSameType0(tp1: Type, tp2: Type): Boolean = {
    if (tp1 eq tp2) return true
    ((tp1, tp2) match {
      case (ErrorType, _) => true
      case (WildcardType, _) => true
      case (_, ErrorType) => true
      case (_, WildcardType) => true

      case (NoType, _) => false
      case (NoPrefix, _) => tp2.typeSymbol.isPackageClass
      case (_, NoType) => false
      case (_, NoPrefix) => tp1.typeSymbol.isPackageClass

      case (ThisType(sym1), ThisType(sym2))
      if (sym1 == sym2) =>
        true
      case (SingleType(pre1, sym1), SingleType(pre2, sym2))
      if (equalSymsAndPrefixes(sym1, pre1, sym2, pre2)) =>
        true
/*
      case (SingleType(pre1, sym1), ThisType(sym2))
      if (sym1.isModule &&
          sym1.moduleClass == sym2 &&
          pre1 =:= sym2.owner.thisType) =>
        true
      case (ThisType(sym1), SingleType(pre2, sym2))
      if (sym2.isModule &&
          sym2.moduleClass == sym1 &&
          pre2 =:= sym1.owner.thisType) =>
        true
*/
      case (ConstantType(value1), ConstantType(value2)) =>
        value1 == value2
      case (TypeRef(pre1, sym1, args1), TypeRef(pre2, sym2, args2)) =>
        equalSymsAndPrefixes(sym1, pre1, sym2, pre2) &&
        ((tp1.isHigherKinded && tp2.isHigherKinded && tp1.normalize =:= tp2.normalize) ||
         isSameTypes(args1, args2))
         // @M! normalize reduces higher-kinded case to PolyType's
      case (RefinedType(parents1, ref1), RefinedType(parents2, ref2)) =>
        def isSubScope(s1: Scope, s2: Scope): Boolean = s2.toList.forall {
          sym2 =>
            var e1 = s1.lookupEntry(sym2.name)
            (e1 ne null) && {
              val substSym = sym2.info.substThis(sym2.owner, e1.sym.owner.thisType)
              var isEqual = false
              while (!isEqual && (e1 ne null)) {
                isEqual = e1.sym.info =:= substSym
                e1 = s1.lookupNextEntry(e1)
              }
              isEqual
            }
        }
        //Console.println("is same? " + tp1 + " " + tp2 + " " + tp1.typeSymbol.owner + " " + tp2.typeSymbol.owner)//DEBUG
        isSameTypes(parents1, parents2) && isSubScope(ref1, ref2) && isSubScope(ref2, ref1)
      case (MethodType(params1, res1), MethodType(params2, res2)) =>
        // new dependent types: probably fix this, use substSym as done for PolyType
        (isSameTypes(tp1.paramTypes, tp2.paramTypes) &&
         res1 =:= res2 &&
         tp1.isImplicit == tp2.isImplicit)
      case (PolyType(tparams1, res1), PolyType(tparams2, res2)) =>
        // assert((tparams1 map (_.typeParams.length)) == (tparams2 map (_.typeParams.length)))
        (tparams1.length == tparams2.length) && (tparams1 corresponds tparams2)(_.info =:= _.info.substSym(tparams2, tparams1)) && // @M looks like it might suffer from same problem as #2210
          res1 =:= res2.substSym(tparams2, tparams1)
      case (ExistentialType(tparams1, res1), ExistentialType(tparams2, res2)) =>
        (tparams1.length == tparams2.length) && (tparams1 corresponds tparams2)(_.info =:= _.info.substSym(tparams2, tparams1)) && // @M looks like it might suffer from same problem as #2210
          res1 =:= res2.substSym(tparams2, tparams1)
      case (TypeBounds(lo1, hi1), TypeBounds(lo2, hi2)) =>
        lo1 =:= lo2 && hi1 =:= hi2
      case (BoundedWildcardType(bounds), _) =>
        bounds containsType tp2
      case (_, BoundedWildcardType(bounds)) =>
        bounds containsType tp1
      case (tv @ TypeVar(_,_), tp) =>
        tv.registerTypeEquality(tp, true)
      case (tp, tv @ TypeVar(_,_)) =>
        tv.registerTypeEquality(tp, false)
      case (AnnotatedType(_,_,_), _) =>
        annotationsConform(tp1, tp2) && annotationsConform(tp2, tp1) && tp1.withoutAnnotations =:= tp2.withoutAnnotations
      case (_, AnnotatedType(_,_,_)) =>
        annotationsConform(tp1, tp2) && annotationsConform(tp2, tp1) && tp1.withoutAnnotations =:= tp2.withoutAnnotations
      case (_: SingletonType, _: SingletonType) =>
        var origin1 = tp1
        while (origin1.underlying.isInstanceOf[SingletonType]) {
          assert(origin1 ne origin1.underlying, origin1)
          origin1 = origin1.underlying
        }
        var origin2 = tp2
        while (origin2.underlying.isInstanceOf[SingletonType]) {
          assert(origin2 ne origin2.underlying, origin2)
          origin2 = origin2.underlying
        }
        ((origin1 ne tp1) || (origin2 ne tp2)) && (origin1 =:= origin2)
      case _ =>
        false
    }) || {
      val tp1n = normalizePlus(tp1)
      val tp2n = normalizePlus(tp2)
      ((tp1n ne tp1) || (tp2n ne tp2)) && isSameType(tp1n, tp2n)
    }
  }
*/
  private def isSameType1(tp1: Type, tp2: Type): Boolean = {
    if ((tp1 eq tp2) ||
        (tp1 eq ErrorType) || (tp1 eq WildcardType) ||
        (tp2 eq ErrorType) || (tp2 eq WildcardType))
      true
    else if ((tp1 eq NoType) || (tp2 eq NoType))
      false
    else if (tp1 eq NoPrefix) // !! I do not see how this would be warranted by the spec
      tp2.typeSymbol.isPackageClass
    else if (tp2 eq NoPrefix) // !! I do not see how this would be warranted by the spec
      tp1.typeSymbol.isPackageClass
    else {
      isSameType2(tp1, tp2) || {
        val tp1n = normalizePlus(tp1)
        val tp2n = normalizePlus(tp2)
        ((tp1n ne tp1) || (tp2n ne tp2)) && isSameType(tp1n, tp2n)
      }
    }
  }

  def isSameType2(tp1: Type, tp2: Type): Boolean = {
    tp1 match {
      case tr1: TypeRef =>
        tp2 match {
          case tr2: TypeRef =>
            return (equalSymsAndPrefixes(tr1.sym, tr1.pre, tr2.sym, tr2.pre) &&
              ((tp1.isHigherKinded && tp2.isHigherKinded && tp1.normalize =:= tp2.normalize) ||
               isSameTypes(tr1.args, tr2.args))) ||
               ((tr1.pre, tr2.pre) match {
                 case (tv @ TypeVar(_,_), _) => tv.registerTypeSelection(tr1.sym, tr2)
                 case (_, tv @ TypeVar(_,_)) => tv.registerTypeSelection(tr2.sym, tr1)
                 case _ => false
               })
          case _: SingleType =>
            return isSameType2(tp2, tp1)  // put singleton type on the left, caught below
          case _ =>
        }
      case tt1: ThisType =>
        tp2 match {
          case tt2: ThisType =>
            if (tt1.sym == tt2.sym) return true
          case _ =>
        }
      case st1: SingleType =>
        tp2 match {
          case st2: SingleType =>
            if (equalSymsAndPrefixes(st1.sym, st1.pre, st2.sym, st2.pre)) return true
          case TypeRef(pre2, sym2, Nil) =>
            if (sym2.isModuleClass && equalSymsAndPrefixes(st1.sym, st1.pre, sym2.sourceModule, pre2)) return true
          case _ =>
        }
      case ct1: ConstantType =>
        tp2 match {
          case ct2: ConstantType =>
            return (ct1.value == ct2.value)
          case _ =>
        }
      case rt1: RefinedType =>
        tp2 match {
          case rt2: RefinedType => //
            def isSubScope(s1: Scope, s2: Scope): Boolean = s2.toList.forall {
              sym2 =>
                var e1 = s1.lookupEntry(sym2.name)
                (e1 ne null) && {
                  val substSym = sym2.info.substThis(sym2.owner, e1.sym.owner)
                  var isEqual = false
                  while (!isEqual && (e1 ne null)) {
                    isEqual = e1.sym.info =:= substSym
                    e1 = s1.lookupNextEntry(e1)
                  }
                  isEqual
                }
            }
            //Console.println("is same? " + tp1 + " " + tp2 + " " + tp1.typeSymbol.owner + " " + tp2.typeSymbol.owner)//DEBUG
            return isSameTypes(rt1.parents, rt2.parents) && {
              val decls1 = rt1.decls
              val decls2 = rt2.decls
              isSubScope(decls1, decls2) && isSubScope(decls2, decls1)
            }
          case _ =>
        }
      case mt1: MethodType =>
        tp2 match {
          case mt2: MethodType =>
            return isSameTypes(mt1.paramTypes, mt2.paramTypes) &&
              mt1.resultType =:= mt2.resultType.substSym(mt2.params, mt1.params) &&
              mt1.isImplicit == mt2.isImplicit
          // note: no case NullaryMethodType(restpe) => return mt1.params.isEmpty && mt1.resultType =:= restpe
          case _ =>
        }
      case NullaryMethodType(restpe1) =>
        tp2 match {
          // note: no case mt2: MethodType => return mt2.params.isEmpty && restpe  =:= mt2.resultType
          case NullaryMethodType(restpe2) =>
            return restpe1 =:= restpe2
          case _ =>
        }
      case PolyType(tparams1, res1) =>
        tp2 match {
          case PolyType(tparams2, res2) =>
//            assert((tparams1 map (_.typeParams.length)) == (tparams2 map (_.typeParams.length)))
              // @M looks like it might suffer from same problem as #2210
              return (
                (sameLength(tparams1, tparams2)) && // corresponds does not check length of two sequences before checking the predicate
                (tparams1 corresponds tparams2)(_.info =:= _.info.substSym(tparams2, tparams1)) &&
                res1 =:= res2.substSym(tparams2, tparams1)
              )
          case _ =>
        }
      case ExistentialType(tparams1, res1) =>
        tp2 match {
          case ExistentialType(tparams2, res2) =>
            // @M looks like it might suffer from same problem as #2210
            return (
              // corresponds does not check length of two sequences before checking the predicate -- faster & needed to avoid crasher in #2956
              sameLength(tparams1, tparams2) &&
              (tparams1 corresponds tparams2)(_.info =:= _.info.substSym(tparams2, tparams1)) &&
              res1 =:= res2.substSym(tparams2, tparams1)
            )
          case _ =>
        }
      case TypeBounds(lo1, hi1) =>
        tp2 match {
          case TypeBounds(lo2, hi2) =>
            return lo1 =:= lo2 && hi1 =:= hi2
          case _ =>
        }
      case BoundedWildcardType(bounds) =>
        return bounds containsType tp2
      case _ =>
    }
    tp2 match {
      case BoundedWildcardType(bounds) =>
        return bounds containsType tp1
      case _ =>
    }
    tp1 match {
      case tv @ TypeVar(_,_) =>
        return tv.registerTypeEquality(tp2, true)
      case _ =>
    }
    tp2 match {
      case tv @ TypeVar(_,_) =>
        return tv.registerTypeEquality(tp1, false)
      case _ =>
    }
    tp1 match {
      case _: AnnotatedType =>
        return annotationsConform(tp1, tp2) && annotationsConform(tp2, tp1) && tp1.withoutAnnotations =:= tp2.withoutAnnotations
      case _ =>
    }
    tp2 match {
      case _: AnnotatedType =>
        return annotationsConform(tp1, tp2) && annotationsConform(tp2, tp1) && tp1.withoutAnnotations =:= tp2.withoutAnnotations
      case _ =>
    }
    tp1 match {
      case _: SingletonType =>
        tp2 match {
          case _: SingletonType =>
            def chaseDealiasedUnderlying(tp: Type): Type = {
              var origin = tp
              var next = origin.underlying.dealias
              while (next.isInstanceOf[SingletonType]) {
                assert(origin ne next, origin)
                origin = next
                next = origin.underlying.dealias
              }
              origin
            }
            val origin1 = chaseDealiasedUnderlying(tp1)
            val origin2 = chaseDealiasedUnderlying(tp2)
            ((origin1 ne tp1) || (origin2 ne tp2)) && (origin1 =:= origin2)
          case _ =>
            false
        }
      case _ =>
        false
    }
  }

  /** Are `tps1` and `tps2` lists of pairwise equivalent types? */
  def isSameTypes(tps1: List[Type], tps2: List[Type]): Boolean = (tps1 corresponds tps2)(_ =:= _)

  /** True if two lists have the same length.  Since calling length on linear sequences
   *  is O(n), it is an inadvisable way to test length equality.
   */
  final def sameLength(xs1: List[_], xs2: List[_]) = compareLengths(xs1, xs2) == 0
  @tailrec final def compareLengths(xs1: List[_], xs2: List[_]): Int =
    if (xs1.isEmpty) { if (xs2.isEmpty) 0 else -1 }
    else if (xs2.isEmpty) 1
    else compareLengths(xs1.tail, xs2.tail)

  /** Again avoiding calling length, but the lengthCompare interface is clunky.
   */
  final def hasLength(xs: List[_], len: Int) = xs.lengthCompare(len) == 0

  private val pendingSubTypes = new mutable.HashSet[SubTypePair]
  private var basetypeRecursions: Int = 0
  private val pendingBaseTypes = new mutable.HashSet[Type]

  def isSubType(tp1: Type, tp2: Type): Boolean = isSubType(tp1, tp2, AnyDepth)

  def isSubType(tp1: Type, tp2: Type, depth: Int): Boolean = try {
    subsametypeRecursions += 1

    //OPT cutdown on Function0 allocation
    //was:
//    undoLog undoUnless { // if subtype test fails, it should not affect constraints on typevars
//      if (subsametypeRecursions >= LogPendingSubTypesThreshold) {
//        val p = new SubTypePair(tp1, tp2)
//        if (pendingSubTypes(p))
//          false
//        else
//          try {
//            pendingSubTypes += p
//            isSubType2(tp1, tp2, depth)
//          } finally {
//            pendingSubTypes -= p
//          }
//      } else {
//        isSubType2(tp1, tp2, depth)
//      }
//    }

    undoLog.lock()
    try {
      val before = undoLog.log
      var result = false

      try result = { // if subtype test fails, it should not affect constraints on typevars
        if (subsametypeRecursions >= LogPendingSubTypesThreshold) {
          val p = new SubTypePair(tp1, tp2)
          if (pendingSubTypes(p))
            false // see neg/t8146-no-finitary*
          else
            try {
              pendingSubTypes += p
              isSubType2(tp1, tp2, depth)
            } finally {
              pendingSubTypes -= p
            }
        } else {
          isSubType2(tp1, tp2, depth)
        }
      } finally if (!result) undoLog.undoTo(before)

      result
    } finally undoLog.unlock()
  } finally {
    subsametypeRecursions -= 1
    // XXX AM TODO: figure out when it is safe and needed to clear the log -- the commented approach below is too eager (it breaks #3281, #3866)
    // it doesn't help to keep separate recursion counts for the three methods that now share it
    // if (subsametypeRecursions == 0) undoLog.clear()
  }

  /** Does this type have a prefix that begins with a type variable,
   *  or is it a refinement type? For type prefixes that fulfil this condition,
   *  type selections with the same name of equal (as determined by `=:=`) prefixes are
   *  considered equal in regard to `=:=`.
   */
  def beginsWithTypeVarOrIsRefined(tp: Type): Boolean = tp match {
    case SingleType(pre, sym) =>
      !(sym hasFlag PACKAGE) && beginsWithTypeVarOrIsRefined(pre)
    case tv@TypeVar(_, constr) =>
      !tv.instValid || beginsWithTypeVarOrIsRefined(constr.inst)
    case RefinedType(_, _) =>
      true
    case _ =>
      false
  }

  @deprecated("The compiler doesn't use this so you shouldn't either - it will be removed", "2.10.0")
  def instTypeVar(tp: Type): Type = tp match {
    case TypeRef(pre, sym, args) =>
      copyTypeRef(tp, instTypeVar(pre), sym, args)
    case SingleType(pre, sym) =>
      singleType(instTypeVar(pre), sym)
    case TypeVar(_, constr) =>
      instTypeVar(constr.inst)
    case _ =>
      tp
  }

  def isErrorOrWildcard(tp: Type) = (tp eq ErrorType) || (tp eq WildcardType)

  def isSingleType(tp: Type) = tp match {
    case ThisType(_) | SuperType(_, _) | SingleType(_, _) => true
    case _ => false
  }

  def isConstantType(tp: Type) = tp match {
    case ConstantType(_) => true
    case _ => false
  }

  /** This is defined and named as it is because the goal is to exclude source
   *  level types which are not value types (e.g. MethodType) without excluding
   *  necessary internal types such as WildcardType.  There are also non-value
   *  types which can be used as type arguments (e.g. type constructors.)
   */
  def isUseableAsTypeArg(tp: Type) = (
       isInternalTypeUsedAsTypeArg(tp)  // the subset of internal types which can be type args
    || isHKTypeRef(tp)                  // not a value type, but ok as a type arg
    || isValueElseNonValue(tp)          // otherwise only value types
  )

  private def isHKTypeRef(tp: Type) = tp match {
    case TypeRef(_, sym, Nil) => tp.isHigherKinded
    case _                    => false
  }
  @tailrec final def isUseableAsTypeArgs(tps: List[Type]): Boolean = tps match {
    case Nil     => true
    case x :: xs => isUseableAsTypeArg(x) && isUseableAsTypeArgs(xs)
  }

  /** The "third way", types which are neither value types nor
   *  non-value types as defined in the SLS, further divided into
   *  types which are used internally in type applications and
   *  types which are not.
   */
  private def isInternalTypeNotUsedAsTypeArg(tp: Type): Boolean = tp match {
    case AntiPolyType(pre, targs)            => true
    case ClassInfoType(parents, defs, clazz) => true
    case DeBruijnIndex(level, index, args)   => true
    case ErasedValueType(tref)               => true
    case NoPrefix                            => true
    case NoType                              => true
    case SuperType(thistpe, supertpe)        => true
    case TypeBounds(lo, hi)                  => true
    case _                                   => false
  }
  private def isInternalTypeUsedAsTypeArg(tp: Type): Boolean = tp match {
    case WildcardType           => true
    case BoundedWildcardType(_) => true
    case ErrorType              => true
    case _: TypeVar             => true
    case _                      => false
  }
  private def isAlwaysValueType(tp: Type) = tp match {
    case RefinedType(_, _)       => true
    case ExistentialType(_, _)   => true
    case ConstantType(_)         => true
    case _                       => false
  }
  private def isAlwaysNonValueType(tp: Type) = tp match {
    case OverloadedType(_, _)          => true
    case NullaryMethodType(_)          => true
    case MethodType(_, _)              => true
    case PolyType(_, MethodType(_, _)) => true
    case _                             => false
  }
  /** Should be called only with types for which a clear true/false answer
   *  can be given: true == value type, false == non-value type.  Otherwise,
   *  an exception is thrown.
   */
  private def isValueElseNonValue(tp: Type): Boolean = tp match {
    case tp if isAlwaysValueType(tp)           => true
    case tp if isAlwaysNonValueType(tp)        => false
    case AnnotatedType(_, underlying, _)       => isValueElseNonValue(underlying)
    case SingleType(_, sym)                    => sym.isValue           // excludes packages and statics
    case TypeRef(_, _, _) if tp.isHigherKinded => false                 // excludes type constructors
    case ThisType(sym)                         => !sym.isPackageClass   // excludes packages
    case TypeRef(_, sym, _)                    => !sym.isPackageClass   // excludes packages
    case PolyType(_, _)                        => true                  // poly-methods excluded earlier
    case tp                                    => sys.error("isValueElseNonValue called with third-way type " + tp)
  }

  /** SLS 3.2, Value Types
   *  Is the given type definitely a value type? A true result means
   *  it verifiably is, but a false result does not mean it is not,
   *  only that it cannot be assured.  To avoid false positives, this
   *  defaults to false, but since Type is not sealed, one should take
   *  a false answer with a grain of salt.  This method may be primarily
   *  useful as documentation; it is likely that !isNonValueType(tp)
   *  will serve better than isValueType(tp).
   */
  def isValueType(tp: Type) = isValueElseNonValue(tp)

  /** SLS 3.3, Non-Value Types
   *  Is the given type definitely a non-value type, as defined in SLS 3.3?
   *  The specification-enumerated non-value types are method types, polymorphic
   *  method types, and type constructors.  Supplements to the specified set of
   *  non-value types include: types which wrap non-value symbols (packages
   *  abd statics), overloaded types. Varargs and by-name types T* and (=>T) are
   *  not designated non-value types because there is code which depends on using
   *  them as type arguments, but their precise status is unclear.
   */
  def isNonValueType(tp: Type) = !isValueElseNonValue(tp)

  def isNonRefinementClassType(tpe: Type) = tpe match {
    case SingleType(_, sym) => sym.isModuleClass
    case TypeRef(_, sym, _) => sym.isClass && !sym.isRefinementClass
    case ErrorType          => true
    case _                  => false
  }

  // @assume tp1.isHigherKinded || tp2.isHigherKinded
  def isHKSubType0(tp1: Type, tp2: Type, depth: Int): Boolean = (
    tp1.typeSymbol == NothingClass
    ||
    tp2.typeSymbol == AnyClass // @M Any and Nothing are super-type resp. subtype of every well-kinded type
    || // @M! normalize reduces higher-kinded case to PolyType's
    ((tp1.normalize.withoutAnnotations , tp2.normalize.withoutAnnotations) match {
      case (PolyType(tparams1, res1), PolyType(tparams2, res2)) => // @assume tp1.isHigherKinded && tp2.isHigherKinded (as they were both normalized to PolyType)
        sameLength(tparams1, tparams2) && {
          if (tparams1.head.owner.isMethod) {  // fast-path: polymorphic method type -- type params cannot be captured
            (tparams1 corresponds tparams2)((p1, p2) => p2.info.substSym(tparams2, tparams1) <:< p1.info) &&
            res1 <:< res2.substSym(tparams2, tparams1)
          } else { // normalized higher-kinded type
            //@M for an example of why we need to generate fresh symbols, see neg/tcpoly_ticket2101.scala
            val tpsFresh = cloneSymbols(tparams1)

            (tparams1 corresponds tparams2)((p1, p2) =>
              p2.info.substSym(tparams2, tpsFresh) <:< p1.info.substSym(tparams1, tpsFresh)) &&
            res1.substSym(tparams1, tpsFresh) <:< res2.substSym(tparams2, tpsFresh)

            //@M the forall in the previous test could be optimised to the following,
            // but not worth the extra complexity since it only shaves 1s from quick.comp
            //   (List.forall2(tpsFresh/*optimisation*/, tparams2)((p1, p2) =>
            //   p2.info.substSym(tparams2, tpsFresh) <:< p1.info /*optimisation, == (p1 from tparams1).info.substSym(tparams1, tpsFresh)*/) &&
            // this optimisation holds because inlining cloneSymbols in `val tpsFresh = cloneSymbols(tparams1)` gives:
            // val tpsFresh = tparams1 map (_.cloneSymbol)
            // for (tpFresh <- tpsFresh) tpFresh.setInfo(tpFresh.info.substSym(tparams1, tpsFresh))
        }
      } && annotationsConform(tp1.normalize, tp2.normalize)
      case (_, _) => false // @assume !tp1.isHigherKinded || !tp2.isHigherKinded
      // --> thus, cannot be subtypes (Any/Nothing has already been checked)
    }))

  def isSubArgs(tps1: List[Type], tps2: List[Type], tparams: List[Symbol], depth: Int): Boolean = {
    def isSubArg(t1: Type, t2: Type, variance: Int) =
      (variance > 0 || isSubType(t2, t1, depth)) &&
      (variance < 0 || isSubType(t1, t2, depth))
    corresponds3(tps1, tps2, tparams map (_.variance))(isSubArg)
  }

  def differentOrNone(tp1: Type, tp2: Type) = if (tp1 eq tp2) NoType else tp1

  /** Does type `tp1` conform to `tp2`? */
  private def isSubType2(tp1: Type, tp2: Type, depth: Int): Boolean = {
    if ((tp1 eq tp2) || isErrorOrWildcard(tp1) || isErrorOrWildcard(tp2)) return true
    if ((tp1 eq NoType) || (tp2 eq NoType)) return false
    if (tp1 eq NoPrefix) return (tp2 eq NoPrefix) || tp2.typeSymbol.isPackageClass // !! I do not see how the "isPackageClass" would be warranted by the spec
    if (tp2 eq NoPrefix) return tp1.typeSymbol.isPackageClass
    if (isSingleType(tp1) && isSingleType(tp2) || isConstantType(tp1) && isConstantType(tp2)) return tp1 =:= tp2
    if (tp1.isHigherKinded || tp2.isHigherKinded) return isHKSubType0(tp1, tp2, depth)

    /** First try, on the right:
     *   - unwrap Annotated types, BoundedWildcardTypes,
     *   - bind TypeVars  on the right, if lhs is not Annotated nor BoundedWildcard
     *   - handle common cases for first-kind TypeRefs on both sides as a fast path.
     */
    def firstTry = tp2 match {
      // fast path: two typerefs, none of them HK
      case tr2: TypeRef =>
        tp1 match {
          case tr1: TypeRef =>
            val sym1 = tr1.sym
            val sym2 = tr2.sym
            val pre1 = tr1.pre
            val pre2 = tr2.pre
            (((if (sym1 == sym2) phase.erasedTypes || sym1.owner.hasPackageFlag || isSubType(pre1, pre2, depth)
               else (sym1.name == sym2.name && !sym1.isModuleClass && !sym2.isModuleClass &&
                     (isUnifiable(pre1, pre2) ||
                      isSameSpecializedSkolem(sym1, sym2, pre1, pre2) ||
                      sym2.isAbstractType && isSubPre(pre1, pre2, sym2)))) &&
                    isSubArgs(tr1.args, tr2.args, sym1.typeParams, depth))
             ||
             sym2.isClass && {
               val base = tr1 baseType sym2
               (base ne tr1) && isSubType(base, tr2, depth)
             }
             ||
             thirdTryRef(tr1, tr2))
          case _ =>
            secondTry
        }
      case AnnotatedType(_, _, _) =>
        isSubType(tp1.withoutAnnotations, tp2.withoutAnnotations, depth) &&
        annotationsConform(tp1, tp2)
      case BoundedWildcardType(bounds) =>
        isSubType(tp1, bounds.hi, depth)
      case tv2 @ TypeVar(_, constr2) =>
        tp1 match {
          case AnnotatedType(_, _, _) | BoundedWildcardType(_) =>
            secondTry
          case _ =>
            tv2.registerBound(tp1, true)
        }
      case _ =>
        secondTry
    }

    /** Second try, on the left:
     *   - unwrap AnnotatedTypes, BoundedWildcardTypes,
     *   - bind typevars,
     *   - handle existential types by skolemization.
     */
    def secondTry = tp1 match {
      case AnnotatedType(_, _, _) =>
        isSubType(tp1.withoutAnnotations, tp2.withoutAnnotations, depth) &&
        annotationsConform(tp1, tp2)
      case BoundedWildcardType(bounds) =>
        isSubType(tp1.bounds.lo, tp2, depth)
      case tv @ TypeVar(_,_) =>
        tv.registerBound(tp2, false)
      case ExistentialType(_, _) =>
        try {
          skolemizationLevel += 1
          isSubType(tp1.skolemizeExistential, tp2, depth)
        } finally {
          skolemizationLevel -= 1
        }
      case _ =>
        thirdTry
    }

    def thirdTryRef(tp1: Type, tp2: TypeRef): Boolean = {
      val sym2 = tp2.sym
      sym2 match {
        case NotNullClass => tp1.isNotNull
        case SingletonClass => tp1.isStable || fourthTry
        case _: ClassSymbol =>
          if (isRaw(sym2, tp2.args))
            isSubType(tp1, rawToExistential(tp2), depth)
          else if (sym2.name == tpnme.REFINE_CLASS_NAME)
            isSubType(tp1, sym2.info, depth)
          else
            fourthTry
        case _: TypeSymbol =>
          if (sym2 hasFlag DEFERRED) {
            val tp2a = tp2.bounds.lo
            isDifferentTypeConstructor(tp2, tp2a) &&
            isSubType(tp1, tp2a, depth) ||
            fourthTry
          } else {
            isSubType(tp1.normalize, tp2.normalize, depth)
          }
        case _ =>
          fourthTry
      }
    }

    /** Third try, on the right:
     *   - decompose refined types.
     *   - handle typerefs, existentials, and notnull types.
     *   - handle left+right method types, polytypes, typebounds
     */
    def thirdTry = tp2 match {
      case tr2: TypeRef =>
        thirdTryRef(tp1, tr2)
      case rt2: RefinedType =>
        (rt2.parents forall (isSubType(tp1, _, depth))) &&
        (rt2.decls forall (specializesSym(tp1, _, depth)))
      case et2: ExistentialType =>
        et2.withTypeVars(isSubType(tp1, _, depth), depth) || fourthTry
      case nn2: NotNullType =>
        tp1.isNotNull && isSubType(tp1, nn2.underlying, depth)
      case mt2: MethodType =>
        tp1 match {
          case mt1 @ MethodType(params1, res1) =>
            val params2 = mt2.params
            val res2 = mt2.resultType
            (sameLength(params1, params2) &&
             mt1.isImplicit == mt2.isImplicit &&
             matchingParams(params1, params2, mt1.isJava, mt2.isJava) &&
             isSubType(res1.substSym(params1, params2), res2, depth))
          // TODO: if mt1.params.isEmpty, consider NullaryMethodType?
          case _ =>
            false
        }
      case pt2 @ NullaryMethodType(_) =>
        tp1 match {
          // TODO: consider MethodType mt for which mt.params.isEmpty??
          case pt1 @ NullaryMethodType(_) =>
            isSubType(pt1.resultType, pt2.resultType, depth)
          case _ =>
            false
        }
      case TypeBounds(lo2, hi2) =>
        tp1 match {
          case TypeBounds(lo1, hi1) =>
            isSubType(lo2, lo1, depth) && isSubType(hi1, hi2, depth)
          case _ =>
            false
        }
      case _ =>
        fourthTry
    }

    /** Fourth try, on the left:
     *   - handle typerefs, refined types, notnull and singleton types.
     */
    def fourthTry = tp1 match {
      case tr1 @ TypeRef(pre1, sym1, _) =>
        sym1 match {
          case NothingClass => true
          case NullClass =>
            tp2 match {
              case TypeRef(_, sym2, _) =>
                containsNull(sym2)
              case _ =>
                isSingleType(tp2) && isSubType(tp1, tp2.widen, depth)
            }
          case _: ClassSymbol =>
            if (isRaw(sym1, tr1.args))
              isSubType(rawToExistential(tp1), tp2, depth)
            else if (sym1.isModuleClass) tp2 match {
              case SingleType(pre2, sym2) => equalSymsAndPrefixes(sym1.sourceModule, pre1, sym2, pre2)
              case _                      => false
            }
            else if (sym1.isRefinementClass)
              isSubType(sym1.info, tp2, depth)
            else false

          case _: TypeSymbol =>
            if (sym1 hasFlag DEFERRED) {
              val tp1a = tp1.bounds.hi
              isDifferentTypeConstructor(tp1, tp1a) && isSubType(tp1a, tp2, depth)
            } else {
              isSubType(tp1.normalize, tp2.normalize, depth)
            }
          case _ =>
            false
        }
      case RefinedType(parents1, _) =>
        parents1 exists (isSubType(_, tp2, depth))
      case _: SingletonType | _: NotNullType =>
        isSubType(tp1.underlying, tp2, depth)
      case _ =>
        false
    }

    firstTry
  }

  private def containsNull(sym: Symbol): Boolean =
    sym.isClass && sym != NothingClass &&
    !(sym isNonBottomSubClass AnyValClass) &&
    !(sym isNonBottomSubClass NotNullClass)

  /** Are `tps1` and `tps2` lists of equal length such that all elements
   *  of `tps1` conform to corresponding elements of `tps2`?
   */
  def isSubTypes(tps1: List[Type], tps2: List[Type]): Boolean = (tps1 corresponds tps2)(_ <:< _)

  /** Does type `tp` implement symbol `sym` with same or
   *  stronger type? Exact only if `sym` is a member of some
   *  refinement type, otherwise we might return false negatives.
   */
  def specializesSym(tp: Type, sym: Symbol): Boolean =
    specializesSym(tp, sym, AnyDepth)

  def specializesSym(tp: Type, sym: Symbol, depth: Int): Boolean =
    tp.typeSymbol == NothingClass ||
    tp.typeSymbol == NullClass && containsNull(sym.owner) || {
      def specializedBy(membr: Symbol): Boolean =
        membr == sym || specializesSym(tp.narrow, membr, sym.owner.thisType, sym, depth)
      val member = tp.nonPrivateMember(sym.name)
      if (member eq NoSymbol) false
      else if (member.isOverloaded) member.alternatives exists specializedBy
      else specializedBy(member)
      // was
      // (tp.nonPrivateMember(sym.name).alternatives exists
      //   (alt => sym == alt || specializesSym(tp.narrow, alt, sym.owner.thisType, sym, depth)))
    }

  /** Does member `sym1` of `tp1` have a stronger type
   *  than member `sym2` of `tp2`?
   */
  private def specializesSym(tp1: Type, sym1: Symbol, tp2: Type, sym2: Symbol, depth: Int): Boolean = {
    val info1 = tp1.memberInfo(sym1)
    val info2 = tp2.memberInfo(sym2).substThis(tp2.typeSymbol, tp1)
    //System.out.println("specializes "+tp1+"."+sym1+":"+info1+sym1.locationString+" AND "+tp2+"."+sym2+":"+info2)//DEBUG
    (    sym2.isTerm && isSubType(info1, info2, depth) && (!sym2.isStable || sym1.isStable)
      || sym2.isAbstractType && {
            val memberTp1 = tp1.memberType(sym1)
            // println("kinds conform? "+(memberTp1, tp1, sym2, kindsConform(List(sym2), List(memberTp1), tp2, sym2.owner)))
            info2.bounds.containsType(memberTp1) &&
            kindsConform(List(sym2), List(memberTp1), tp1, sym1.owner)
        }
      || sym2.isAliasType && tp2.memberType(sym2).substThis(tp2.typeSymbol, tp1) =:= tp1.memberType(sym1) //@MAT ok
    )
  }

  /** A function implementing `tp1` matches `tp2`. */
  final def matchesType(tp1: Type, tp2: Type, alwaysMatchSimple: Boolean): Boolean = {
    def matchesQuantified(tparams1: List[Symbol], tparams2: List[Symbol], res1: Type, res2: Type): Boolean = (
      sameLength(tparams1, tparams2) &&
      matchesType(res1, res2.substSym(tparams2, tparams1), alwaysMatchSimple)
    )
    def lastTry =
      tp2 match {
        case ExistentialType(_, res2) if alwaysMatchSimple =>
          matchesType(tp1, res2, true)
        case MethodType(_, _) =>
          false
        case PolyType(_, _) =>
          false
        case _ =>
          alwaysMatchSimple || tp1 =:= tp2
      }
    tp1 match {
      case mt1 @ MethodType(params1, res1) =>
        tp2 match {
          case mt2 @ MethodType(params2, res2) =>
            // sameLength(params1, params2) was used directly as pre-screening optimization (now done by matchesQuantified -- is that ok, performancewise?)
            mt1.isImplicit == mt2.isImplicit &&
            matchingParams(params1, params2, mt1.isJava, mt2.isJava) &&
            matchesQuantified(params1, params2, res1, res2)
          case NullaryMethodType(res2) =>
            if (params1.isEmpty) matchesType(res1, res2, alwaysMatchSimple)
            else matchesType(tp1, res2, alwaysMatchSimple)
          case ExistentialType(_, res2) =>
            alwaysMatchSimple && matchesType(tp1, res2, true)
          case TypeRef(_, sym, Nil) =>
            params1.isEmpty && sym.isModuleClass && matchesType(res1, tp2, alwaysMatchSimple)
          case _ =>
            false
        }
      case mt1 @ NullaryMethodType(res1) =>
        tp2 match {
          case mt2 @ MethodType(Nil, res2)  => // could never match if params nonEmpty, and !mt2.isImplicit is implied by empty param list
            matchesType(res1, res2, alwaysMatchSimple)
          case NullaryMethodType(res2) =>
            matchesType(res1, res2, alwaysMatchSimple)
          case ExistentialType(_, res2) =>
            alwaysMatchSimple && matchesType(tp1, res2, true)
          case TypeRef(_, sym, Nil) if sym.isModuleClass =>
            matchesType(res1, tp2, alwaysMatchSimple)
          case _ =>
            matchesType(res1, tp2, alwaysMatchSimple)
        }
      case PolyType(tparams1, res1) =>
        tp2 match {
          case PolyType(tparams2, res2) =>
            if ((tparams1 corresponds tparams2)(_ eq _))
              matchesType(res1, res2, alwaysMatchSimple)
            else
              matchesQuantified(tparams1, tparams2, res1, res2)
          case ExistentialType(_, res2) =>
            alwaysMatchSimple && matchesType(tp1, res2, true)
          case _ =>
            false // remember that tparams1.nonEmpty is now an invariant of PolyType
        }
      case ExistentialType(tparams1, res1) =>
        tp2 match {
          case ExistentialType(tparams2, res2) =>
            matchesQuantified(tparams1, tparams2, res1, res2)
          case _ =>
            if (alwaysMatchSimple) matchesType(res1, tp2, true)
            else lastTry
        }
      case TypeRef(_, sym, Nil) if sym.isModuleClass =>
        tp2 match {
          case MethodType(Nil, res2)   => matchesType(tp1, res2, alwaysMatchSimple)
          case NullaryMethodType(res2) => matchesType(tp1, res2, alwaysMatchSimple)
          case _                       => lastTry
        }
      case _ =>
        lastTry
    }
  }

/** matchesType above is an optimized version of the following implementation:

  def matchesType2(tp1: Type, tp2: Type, alwaysMatchSimple: Boolean): Boolean = {
    def matchesQuantified(tparams1: List[Symbol], tparams2: List[Symbol], res1: Type, res2: Type): Boolean =
      tparams1.length == tparams2.length &&
      matchesType(res1, res2.substSym(tparams2, tparams1), alwaysMatchSimple)
    (tp1, tp2) match {
      case (MethodType(params1, res1), MethodType(params2, res2)) =>
        params1.length == params2.length && // useful pre-secreening optimization
        matchingParams(params1, params2, tp1.isInstanceOf[JavaMethodType], tp2.isInstanceOf[JavaMethodType]) &&
        matchesType(res1, res2, alwaysMatchSimple) &&
        tp1.isImplicit == tp2.isImplicit
      case (PolyType(tparams1, res1), PolyType(tparams2, res2)) =>
        matchesQuantified(tparams1, tparams2, res1, res2)
      case (NullaryMethodType(rtp1), MethodType(List(), rtp2)) =>
        matchesType(rtp1, rtp2, alwaysMatchSimple)
      case (MethodType(List(), rtp1), NullaryMethodType(rtp2)) =>
        matchesType(rtp1, rtp2, alwaysMatchSimple)
      case (ExistentialType(tparams1, res1), ExistentialType(tparams2, res2)) =>
        matchesQuantified(tparams1, tparams2, res1, res2)
      case (ExistentialType(_, res1), _) if alwaysMatchSimple =>
        matchesType(res1, tp2, alwaysMatchSimple)
      case (_, ExistentialType(_, res2)) if alwaysMatchSimple =>
        matchesType(tp1, res2, alwaysMatchSimple)
      case (NullaryMethodType(rtp1), _) =>
        matchesType(rtp1, tp2, alwaysMatchSimple)
      case (_, NullaryMethodType(rtp2)) =>
        matchesType(tp1, rtp2, alwaysMatchSimple)
      case (MethodType(_, _), _) => false
      case (PolyType(_, _), _)   => false
      case (_, MethodType(_, _)) => false
      case (_, PolyType(_, _))   => false
      case _ =>
        alwaysMatchSimple || tp1 =:= tp2
    }
  }
*/

  /** Are `syms1` and `syms2` parameter lists with pairwise equivalent types? */
  private def matchingParams(syms1: List[Symbol], syms2: List[Symbol], syms1isJava: Boolean, syms2isJava: Boolean): Boolean = syms1 match {
    case Nil =>
      syms2.isEmpty
    case sym1 :: rest1 =>
      syms2 match {
        case Nil =>
          false
        case sym2 :: rest2 =>
          val tp1 = sym1.tpe
          val tp2 = sym2.tpe
          (tp1 =:= tp2 ||
           syms1isJava && tp2.typeSymbol == ObjectClass && tp1.typeSymbol == AnyClass ||
           syms2isJava && tp1.typeSymbol == ObjectClass && tp2.typeSymbol == AnyClass) &&
          matchingParams(rest1, rest2, syms1isJava, syms2isJava)
      }
  }

  /** like map2, but returns list `xs` itself - instead of a copy - if function
   *  `f` maps all elements to themselves.
   */
  def map2Conserve[A <: AnyRef, B](xs: List[A], ys: List[B])(f: (A, B) => A): List[A] =
    if (xs.isEmpty) xs
    else {
      val x1 = f(xs.head, ys.head)
      val xs1 = map2Conserve(xs.tail, ys.tail)(f)
      if ((x1 eq xs.head) && (xs1 eq xs.tail)) xs
      else x1 :: xs1
    }

  /** Solve constraint collected in types `tvars`.
   *
   *  @param tvars      All type variables to be instantiated.
   *  @param tparams    The type parameters corresponding to `tvars`
   *  @param variances  The variances of type parameters; need to reverse
   *                    solution direction for all contravariant variables.
   *  @param upper      When `true` search for max solution else min.
   */
  def solve(tvars: List[TypeVar], tparams: List[Symbol],
            variances: List[Int], upper: Boolean): Boolean =
     solve(tvars, tparams, variances, upper, AnyDepth)

  def solve(tvars: List[TypeVar], tparams: List[Symbol],
            variances: List[Int], upper: Boolean, depth: Int): Boolean = {

    def solveOne(tvar: TypeVar, tparam: Symbol, variance: Int) {
      if (tvar.constr.inst == NoType) {
        val up = if (variance != CONTRAVARIANT) upper else !upper
        tvar.constr.inst = null
        val bound: Type = if (up) tparam.info.bounds.hi else tparam.info.bounds.lo
        //Console.println("solveOne0(tv, tp, v, b)="+(tvar, tparam, variance, bound))
        var cyclic = bound contains tparam
        foreach3(tvars, tparams, variances)((tvar2, tparam2, variance2) => {
          val ok = (tparam2 != tparam) && (
               (bound contains tparam2)
            ||  up && (tparam2.info.bounds.lo =:= tparam.tpeHK)
            || !up && (tparam2.info.bounds.hi =:= tparam.tpeHK)
          )
          if (ok) {
            if (tvar2.constr.inst eq null) cyclic = true
            solveOne(tvar2, tparam2, variance2)
          }
        })
        if (!cyclic) {
          if (up) {
            if (bound.typeSymbol != AnyClass) {
              log(s"$tvar addHiBound $bound.instantiateTypeParams($tparams, $tvars)")
              tvar addHiBound bound.instantiateTypeParams(tparams, tvars)
            }
            for (tparam2 <- tparams)
              tparam2.info.bounds.lo.dealias match {
                case TypeRef(_, `tparam`, _) =>
                  log(s"$tvar addHiBound $tparam2.tpeHK.instantiateTypeParams($tparams, $tvars)")
                  tvar addHiBound tparam2.tpeHK.instantiateTypeParams(tparams, tvars)
                case _ =>
              }
          } else {
            if (bound.typeSymbol != NothingClass && bound.typeSymbol != tparam) {
              log(s"$tvar addLoBound $bound.instantiateTypeParams($tparams, $tvars)")
              tvar addLoBound bound.instantiateTypeParams(tparams, tvars)
            }
            for (tparam2 <- tparams)
              tparam2.info.bounds.hi.dealias match {
                case TypeRef(_, `tparam`, _) =>
                  log(s"$tvar addLoBound $tparam2.tpeHK.instantiateTypeParams($tparams, $tvars)")
                  tvar addLoBound tparam2.tpeHK.instantiateTypeParams(tparams, tvars)
                case _ =>
              }
          }
        }
        tvar.constr.inst = NoType // necessary because hibounds/lobounds may contain tvar

        //println("solving "+tvar+" "+up+" "+(if (up) (tvar.constr.hiBounds) else tvar.constr.loBounds)+((if (up) (tvar.constr.hiBounds) else tvar.constr.loBounds) map (_.widen)))
        val newInst = (
          if (up) {
            if (depth != AnyDepth) glb(tvar.constr.hiBounds, depth) else glb(tvar.constr.hiBounds)
          } else {
            if (depth != AnyDepth) lub(tvar.constr.loBounds, depth) else lub(tvar.constr.loBounds)
          }
        )
        log(s"$tvar setInst $newInst")
        tvar setInst newInst
        //Console.println("solving "+tvar+" "+up+" "+(if (up) (tvar.constr.hiBounds) else tvar.constr.loBounds)+((if (up) (tvar.constr.hiBounds) else tvar.constr.loBounds) map (_.widen))+" = "+tvar.constr.inst)//@MDEBUG
      }
    }

    // println("solving "+tvars+"/"+tparams+"/"+(tparams map (_.info)))
    foreach3(tvars, tparams, variances)(solveOne)
    tvars forall (tvar => tvar.constr.isWithinBounds(tvar.constr.inst))
  }

  /** Do type arguments `targs` conform to formal parameters `tparams`?
   */
  def isWithinBounds(pre: Type, owner: Symbol, tparams: List[Symbol], targs: List[Type]): Boolean = {
    var bounds = instantiatedBounds(pre, owner, tparams, targs)
    if (targs exists typeHasAnnotations)
      bounds = adaptBoundsToAnnotations(bounds, tparams, targs)
    (bounds corresponds targs)(boundsContainType)
  }

  def instantiatedBounds(pre: Type, owner: Symbol, tparams: List[Symbol], targs: List[Type]): List[TypeBounds] =
    tparams map (_.info.asSeenFrom(pre, owner).instantiateTypeParams(tparams, targs).bounds)

// Lubs and Glbs ---------------------------------------------------------

  private def printLubMatrix(btsMap: Map[Type, List[Type]], depth: Int) {
    import util.TableDef
    import TableDef.Column
    def str(tp: Type) = {
      if (tp == NoType) ""
      else {
        val s = ("" + tp).replaceAll("""[\w.]+\.(\w+)""", "$1")
        if (s.length < 60) s
        else (s take 57) + "..."
      }
    }

    val sorted       = btsMap.toList.sortWith((x, y) => x._1.typeSymbol isLess y._1.typeSymbol)
    val maxSeqLength = sorted.map(_._2.size).max
    val padded       = sorted map (_._2.padTo(maxSeqLength, NoType))
    val transposed   = padded.transpose

    val columns: List[Column[List[Type]]] = mapWithIndex(sorted) {
      case ((k, v), idx) =>
        Column(str(k), (xs: List[Type]) => str(xs(idx)), true)
    }

    val tableDef = TableDef(columns: _*)
    val formatted = tableDef.table(transposed)
    println("** Depth is " + depth + "\n" + formatted)
  }

  /** From a list of types, find any which take type parameters
   *  where the type parameter bounds contain references to other
   *  any types in the list (including itself.)
   *
   *  @return List of symbol pairs holding the recursive type
   *    parameter and the parameter which references it.
   */
  def findRecursiveBounds(ts: List[Type]): List[(Symbol, Symbol)] = {
    if (ts.isEmpty) Nil
    else {
      val sym = ts.head.typeSymbol
      require(ts.tail forall (_.typeSymbol == sym), ts)
      for (p <- sym.typeParams ; in <- sym.typeParams ; if in.info.bounds contains p) yield
        p -> in
    }
  }

  /** Given a matrix `tsBts` whose columns are basetype sequences (and the symbols `tsParams` that should be interpreted as type parameters in this matrix),
   * compute its least sorted upwards closed upper bound relative to the following ordering <= between lists of types:
   *
   *    xs <= ys   iff   forall y in ys exists x in xs such that x <: y
   *
   *  @arg tsParams for each type in the original list of types `ts0`, its list of type parameters (if that type is a type constructor)
   *                (these type parameters may be referred to by type arguments in the BTS column of those types,
   *                and must be interpreted as bound variables; i.e., under a type lambda that wraps the types that refer to these type params)
   *  @arg tsBts    a matrix whose columns are basetype sequences
   *                the first row is the original list of types for which we're computing the lub
   *                  (except that type constructors have been applied to their dummyArgs)
   *  @See baseTypeSeq  for a definition of sorted and upwards closed.
   */
  private def lubList(ts: List[Type], depth: Int): List[Type] = {
    // Matching the type params of one of the initial types means dummies.
    val initialTypeParams = ts map (_.typeParams)
    def isHotForTs(xs: List[Type]) = initialTypeParams contains (xs map (_.typeSymbol))

    def elimHigherOrderTypeParam(tp: Type) = tp match {
      case TypeRef(pre, sym, args) if args.nonEmpty && isHotForTs(args) => tp.typeConstructor
      case _                                                            => tp
    }
    var lubListDepth = 0
    def loop(tsBts: List[List[Type]]): List[Type] = {
      lubListDepth += 1

      if (tsBts.isEmpty || (tsBts exists typeListIsEmpty)) Nil
      else if (tsBts.tail.isEmpty) tsBts.head
      else {
        // ts0 is the 1-dimensional frontier of symbols cutting through 2-dimensional tsBts.
        // Invariant: all symbols "under" (closer to the first row) the frontier
        // are smaller (according to _.isLess) than the ones "on and beyond" the frontier
        val ts0  = tsBts map (_.head)

        // Is the frontier made up of types with the same symbol?
        val isUniformFrontier = (ts0: @unchecked) match {
          case t :: ts  => ts forall (_.typeSymbol == t.typeSymbol)
        }

        // Produce a single type for this frontier by merging the prefixes and arguments of those
        // typerefs that share the same symbol: that symbol is the current maximal symbol for which
        // the invariant holds, i.e., the one that conveys most information regarding subtyping. Before
        // merging, strip targs that refer to bound tparams (when we're computing the lub of type
        // constructors.) Also filter out all types that are a subtype of some other type.
        if (isUniformFrontier) {
          if (settings.debug.value || printLubs) {
            val fbounds = findRecursiveBounds(ts0)
            if (fbounds.nonEmpty) {
              println("Encountered " + fbounds.size + " recursive bounds while lubbing " + ts0.size + " types.")
              for ((p0, p1) <- fbounds) {
                val desc = if (p0 == p1) "its own bounds" else "the bounds of " + p1

                println("  " + p0.fullLocationString + " appears in " + desc)
                println("    " + p1 + " " + p1.info.bounds)
              }
              println("")
            }
          }
          val tails = tsBts map (_.tail)
          mergePrefixAndArgs(elimSub(ts0 map elimHigherOrderTypeParam, depth), 1, depth) match {
            case Some(tp) => tp :: loop(tails)
            case _        => loop(tails)
          }
        }
        else {
          // frontier is not uniform yet, move it beyond the current minimal symbol;
          // lather, rinSe, repeat
          val sym    = minSym(ts0)
          val newtps = tsBts map (ts => if (ts.head.typeSymbol == sym) ts.tail else ts)
          if (printLubs) {
            val str = (newtps.zipWithIndex map { case (tps, idx) =>
              tps.map("        " + _ + "\n").mkString("   (" + idx + ")\n", "", "\n")
            }).mkString("")

            println("Frontier(\n" + str + ")")
            printLubMatrix((ts zip tsBts).toMap, lubListDepth)
          }

          loop(newtps)
        }
      }
    }

    val initialBTSes = ts map (_.baseTypeSeq.toList)
    if (printLubs)
      printLubMatrix((ts zip initialBTSes).toMap, depth)

    loop(initialBTSes)
  }

  /** The minimal symbol of a list of types (as determined by `Symbol.isLess`). */
  private def minSym(tps: List[Type]): Symbol =
    (tps.head.typeSymbol /: tps.tail) {
      (sym1, tp2) => if (tp2.typeSymbol isLess sym1) tp2.typeSymbol else sym1
    }

  /** A minimal type list which has a given list of types as its base type sequence */
  def spanningTypes(ts: List[Type]): List[Type] = ts match {
    case List() => List()
    case first :: rest =>
      first :: spanningTypes(
        rest filter (t => !first.typeSymbol.isSubClass(t.typeSymbol)))
  }

  /** Eliminate from list of types all elements which are a supertype
   *  of some other element of the list. */
  private def elimSuper(ts: List[Type]): List[Type] = ts match {
    case List() => List()
    case List(t) => List(t)
    case t :: ts1 =>
      val rest = elimSuper(ts1 filter (t1 => !(t <:< t1)))
      if (rest exists (t1 => t1 <:< t)) rest else t :: rest
  }

  def elimAnonymousClass(t: Type) = t match {
    case TypeRef(pre, clazz, Nil) if clazz.isAnonymousClass =>
      clazz.classBound.asSeenFrom(pre, clazz.owner)
    case _ =>
      t
  }
  def elimRefinement(t: Type) = t match {
    case RefinedType(parents, decls) if !decls.isEmpty => intersectionType(parents)
    case _                                             => t
  }

  /** Eliminate from list of types all elements which are a subtype
   *  of some other element of the list. */
  private def elimSub(ts: List[Type], depth: Int): List[Type] = {
    def elimSub0(ts: List[Type]): List[Type] = ts match {
      case List() => List()
      case List(t) => List(t)
      case t :: ts1 =>
        val rest = elimSub0(ts1 filter (t1 => !isSubType(t1, t, decr(depth))))
        if (rest exists (t1 => isSubType(t, t1, decr(depth)))) rest else t :: rest
    }
    val ts0 = elimSub0(ts)
    if (ts0.isEmpty || ts0.tail.isEmpty) ts0
    else {
      val ts1 = ts0 mapConserve (t => elimAnonymousClass(t.dealiasWiden))
      if (ts1 eq ts0) ts0
      else elimSub(ts1, depth)
    }
  }

  private def stripExistentialsAndTypeVars(ts: List[Type]): (List[Type], List[Symbol]) = {
    val quantified = ts flatMap {
      case ExistentialType(qs, _) => qs
      case t => List()
    }
    def stripType(tp: Type): Type = tp match {
      case ExistentialType(_, res) =>
        res
      case tv@TypeVar(_, constr) =>
        if (tv.instValid) stripType(constr.inst)
        else if (tv.untouchable) tv
        else abort("trying to do lub/glb of typevar "+tp)
      case t => t
    }
    val strippedTypes = ts mapConserve stripType
    (strippedTypes, quantified)
  }

  def weakLub(ts: List[Type]) =
    if (ts.nonEmpty && (ts forall isNumericValueType)) (numericLub(ts), true)
    else if (ts exists typeHasAnnotations)
      (annotationsLub(lub(ts map (_.withoutAnnotations)), ts), true)
    else (lub(ts), false)

  def weakGlb(ts: List[Type]) = {
    if (ts.nonEmpty && (ts forall isNumericValueType)) {
      val nglb = numericGlb(ts)
      if (nglb != NoType) (nglb, true)
      else (glb(ts), false)
    } else if (ts exists typeHasAnnotations) {
      (annotationsGlb(glb(ts map (_.withoutAnnotations)), ts), true)
    } else (glb(ts), false)
  }

  def numericLub(ts: List[Type]) =
    ts reduceLeft ((t1, t2) =>
      if (isNumericSubType(t1, t2)) t2
      else if (isNumericSubType(t2, t1)) t1
      else IntClass.tpe)

  def numericGlb(ts: List[Type]) =
    ts reduceLeft ((t1, t2) =>
      if (isNumericSubType(t1, t2)) t1
      else if (isNumericSubType(t2, t1)) t2
      else NoType)

  def isWeakSubType(tp1: Type, tp2: Type) =
    tp1.deconst.normalize match {
      case TypeRef(_, sym1, _) if isNumericValueClass(sym1) =>
        tp2.deconst.normalize match {
          case TypeRef(_, sym2, _) if isNumericValueClass(sym2) =>
            isNumericSubClass(sym1, sym2)
          case tv2 @ TypeVar(_, _) =>
            tv2.registerBound(tp1, isLowerBound = true, isNumericBound = true)
          case _ =>
            isSubType(tp1, tp2)
        }
      case tv1 @ TypeVar(_, _) =>
        tp2.deconst.normalize match {
          case TypeRef(_, sym2, _) if isNumericValueClass(sym2) =>
            tv1.registerBound(tp2, isLowerBound = false, isNumericBound = true)
          case _ =>
            isSubType(tp1, tp2)
        }
      case _ =>
        isSubType(tp1, tp2)
    }

  /** The isNumericValueType tests appear redundant, but without them
   *  test/continuations-neg/function3.scala goes into an infinite loop.
   *  (Even if the calls are to typeSymbolDirect.)
   */
  def isNumericSubType(tp1: Type, tp2: Type): Boolean = (
       isNumericValueType(tp1)
    && isNumericValueType(tp2)
    && isNumericSubClass(tp1.typeSymbol, tp2.typeSymbol)
  )

  private val lubResults = new mutable.HashMap[(Int, List[Type]), Type]
  private val glbResults = new mutable.HashMap[(Int, List[Type]), Type]

  def lub(ts: List[Type]): Type = ts match {
    case List() => NothingClass.tpe
    case List(t) => t
    case _ =>
      if (Statistics.canEnable) Statistics.incCounter(lubCount)
      val start = if (Statistics.canEnable) Statistics.pushTimer(typeOpsStack, lubNanos) else null
      try {
         lub(ts, lubDepth(ts))
      } finally {
        lubResults.clear()
        glbResults.clear()
        if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
      }
  }

  /** The least upper bound wrt <:< of a list of types */
  private def lub(ts: List[Type], depth: Int): Type = {
    def lub0(ts0: List[Type]): Type = elimSub(ts0, depth) match {
      case List() => NothingClass.tpe
      case List(t) => t
      case ts @ PolyType(tparams, _) :: _ =>
        val tparams1 = map2(tparams, matchingBounds(ts, tparams).transpose)((tparam, bounds) =>
          tparam.cloneSymbol.setInfo(glb(bounds, depth)))
        PolyType(tparams1, lub0(matchingInstTypes(ts, tparams1)))
      case ts @ (mt @ MethodType(params, _)) :: rest =>
        MethodType(params, lub0(matchingRestypes(ts, mt.paramTypes)))
      case ts @ NullaryMethodType(_) :: rest =>
        NullaryMethodType(lub0(matchingRestypes(ts, Nil)))
      case ts @ TypeBounds(_, _) :: rest =>
        TypeBounds(glb(ts map (_.bounds.lo), depth), lub(ts map (_.bounds.hi), depth))
      case ts @ AnnotatedType(annots, tpe, _) :: rest =>
        annotationsLub(lub0(ts map (_.withoutAnnotations)), ts)
      case ts =>
        lubResults get (depth, ts) match {
          case Some(lubType) =>
            lubType
          case None =>
            lubResults((depth, ts)) = AnyClass.tpe
            val res = if (depth < 0) AnyClass.tpe else lub1(ts)
            lubResults((depth, ts)) = res
            res
        }
    }
    def lub1(ts0: List[Type]): Type = {
      val (ts, tparams) = stripExistentialsAndTypeVars(ts0)
      val lubBaseTypes: List[Type] = lubList(ts, depth)
      val lubParents = spanningTypes(lubBaseTypes)
      val lubOwner = commonOwner(ts)
      val lubBase = intersectionType(lubParents, lubOwner)
      val lubType =
        if (phase.erasedTypes || depth == 0) lubBase
        else {
          val lubRefined  = refinedType(lubParents, lubOwner)
          val lubThisType = lubRefined.typeSymbol.thisType
          val narrowts    = ts map (_.narrow)
          def excludeFromLub(sym: Symbol) = (
               sym.isClass
            || sym.isConstructor
            || !sym.isPublic
            || isGetClass(sym)
            || narrowts.exists(t => !refines(t, sym))
          )
          def lubsym(proto: Symbol): Symbol = {
            val prototp = lubThisType.memberInfo(proto)
            val syms = narrowts map (t =>
              t.nonPrivateMember(proto.name).suchThat(sym =>
                sym.tpe matches prototp.substThis(lubThisType.typeSymbol, t)))
            if (syms contains NoSymbol) NoSymbol
            else {
              val symtypes =
                map2(narrowts, syms)((t, sym) => t.memberInfo(sym).substThis(t.typeSymbol, lubThisType))
              if (proto.isTerm) // possible problem: owner of info is still the old one, instead of new refinement class
                proto.cloneSymbol(lubRefined.typeSymbol).setInfoOwnerAdjusted(lub(symtypes, decr(depth)))
              else if (symtypes.tail forall (symtypes.head =:= _))
                proto.cloneSymbol(lubRefined.typeSymbol).setInfoOwnerAdjusted(symtypes.head)
              else {
                def lubBounds(bnds: List[TypeBounds]): TypeBounds =
                  TypeBounds(glb(bnds map (_.lo), decr(depth)), lub(bnds map (_.hi), decr(depth)))
                lubRefined.typeSymbol.newAbstractType(proto.name.toTypeName, proto.pos)
                  .setInfoOwnerAdjusted(lubBounds(symtypes map (_.bounds)))
              }
            }
          }
          def refines(tp: Type, sym: Symbol): Boolean = {
            val syms = tp.nonPrivateMember(sym.name).alternatives;
            !syms.isEmpty && (syms forall (alt =>
              // todo alt != sym is strictly speaking not correct, but without it we lose
              // efficiency.
              alt != sym && !specializesSym(lubThisType, sym, tp, alt, depth)))
          }
          // add a refinement symbol for all non-class members of lubBase
          // which are refined by every type in ts.
          for (sym <- lubBase.nonPrivateMembers ; if !excludeFromLub(sym)) {
            try {
              val lsym = lubsym(sym)
              if (lsym != NoSymbol) addMember(lubThisType, lubRefined, lsym, depth)
            } catch {
              case ex: NoCommonType =>
            }
          }
          if (lubRefined.decls.isEmpty) lubBase
          else if (!verifyLubs) lubRefined
          else {
            // Verify that every given type conforms to the calculated lub.
            // In theory this should not be necessary, but higher-order type
            // parameters are not handled correctly.
            val ok = ts forall { t =>
              isSubType(t, lubRefined, depth) || {
                if (settings.debug.value || printLubs) {
                  Console.println(
                    "Malformed lub: " + lubRefined + "\n" +
                    "Argument " + t + " does not conform.  Falling back to " + lubBase
                  )
                }
                false
              }
            }
            // If not, fall back on the more conservative calculation.
            if (ok) lubRefined
            else lubBase
          }
        }
      // dropRepeatedParamType is a localized fix for SI-6897. We should probably
      // integrate that transformation at a lower level in master, but lubs are
      // the likely and maybe only spot they escape, so fixing here for 2.10.1.
      existentialAbstraction(tparams, dropRepeatedParamType(lubType))
    }
    if (printLubs) {
      println(indent + "lub of " + ts + " at depth "+depth)//debug
      indent = indent + "  "
      assert(indent.length <= 100)
    }
    if (Statistics.canEnable) Statistics.incCounter(nestedLubCount)
    val res = lub0(ts)
    if (printLubs) {
      indent = indent stripSuffix "  "
      println(indent + "lub of " + ts + " is " + res)//debug
    }
    if (ts forall typeIsNotNull) res.notNull else res
  }

  val GlbFailure = new Throwable

  /** A global counter for glb calls in the `specializes` query connected to the `addMembers`
   *  call in `glb`. There's a possible infinite recursion when `specializes` calls
   *  memberType, which calls baseTypeSeq, which calls mergePrefixAndArgs, which calls glb.
   *  The counter breaks this recursion after two calls.
   *  If the recursion is broken, no member is added to the glb.
   */
  private var globalGlbDepth = 0
  private final val globalGlbLimit = 2

  /** The greatest lower bound of a list of types (as determined by `<:<`). */
  def glb(ts: List[Type]): Type = elimSuper(ts) match {
    case List() => AnyClass.tpe
    case List(t) => t
    case ts0 =>
      if (Statistics.canEnable) Statistics.incCounter(lubCount)
      val start = if (Statistics.canEnable) Statistics.pushTimer(typeOpsStack, lubNanos) else null
      try {
        glbNorm(ts0, lubDepth(ts0))
      } finally {
        lubResults.clear()
        glbResults.clear()
        if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
     }
  }

  private def glb(ts: List[Type], depth: Int): Type = elimSuper(ts) match {
    case List() => AnyClass.tpe
    case List(t) => t
    case ts0 => glbNorm(ts0, depth)
  }

  /** The greatest lower bound of a list of types (as determined by `<:<`), which have been normalized
   *  with regard to `elimSuper`. */
  protected def glbNorm(ts: List[Type], depth: Int): Type = {
    def glb0(ts0: List[Type]): Type = ts0 match {
      case List() => AnyClass.tpe
      case List(t) => t
      case ts @ PolyType(tparams, _) :: _ =>
        val tparams1 = map2(tparams, matchingBounds(ts, tparams).transpose)((tparam, bounds) =>
          tparam.cloneSymbol.setInfo(lub(bounds, depth)))
        PolyType(tparams1, glbNorm(matchingInstTypes(ts, tparams1), depth))
      case ts @ (mt @ MethodType(params, _)) :: rest =>
        MethodType(params, glbNorm(matchingRestypes(ts, mt.paramTypes), depth))
      case ts @ NullaryMethodType(_) :: rest =>
        NullaryMethodType(glbNorm(matchingRestypes(ts, Nil), depth))
      case ts @ TypeBounds(_, _) :: rest =>
        TypeBounds(lub(ts map (_.bounds.lo), depth), glb(ts map (_.bounds.hi), depth))
      case ts =>
        glbResults get (depth, ts) match {
          case Some(glbType) =>
            glbType
          case _ =>
            glbResults((depth, ts)) = NothingClass.tpe
            val res = if (depth < 0) NothingClass.tpe else glb1(ts)
            glbResults((depth, ts)) = res
            res
        }
    }
    def glb1(ts0: List[Type]): Type = {
      try {
        val (ts, tparams) = stripExistentialsAndTypeVars(ts0)
        val glbOwner = commonOwner(ts)
        def refinedToParents(t: Type): List[Type] = t match {
          case RefinedType(ps, _) => ps flatMap refinedToParents
          case _ => List(t)
        }
        def refinedToDecls(t: Type): List[Scope] = t match {
          case RefinedType(ps, decls) =>
            val dss = ps flatMap refinedToDecls
            if (decls.isEmpty) dss else decls :: dss
          case _ => List()
        }
        val ts1 = ts flatMap refinedToParents
        val glbBase = intersectionType(ts1, glbOwner)
        val glbType =
          if (phase.erasedTypes || depth == 0) glbBase
          else {
            val glbRefined = refinedType(ts1, glbOwner)
            val glbThisType = glbRefined.typeSymbol.thisType
            def glbsym(proto: Symbol): Symbol = {
              val prototp = glbThisType.memberInfo(proto)
              val syms = for (t <- ts;
                    alt <- (t.nonPrivateMember(proto.name).alternatives);
                if glbThisType.memberInfo(alt) matches prototp
              ) yield alt
              val symtypes = syms map glbThisType.memberInfo
              assert(!symtypes.isEmpty)
              proto.cloneSymbol(glbRefined.typeSymbol).setInfoOwnerAdjusted(
                if (proto.isTerm) glb(symtypes, decr(depth))
                else {
                  def isTypeBound(tp: Type) = tp match {
                    case TypeBounds(_, _) => true
                    case _ => false
                  }
                  def glbBounds(bnds: List[Type]): TypeBounds = {
                    val lo = lub(bnds map (_.bounds.lo), decr(depth))
                    val hi = glb(bnds map (_.bounds.hi), decr(depth))
                    if (lo <:< hi) TypeBounds(lo, hi)
                    else throw GlbFailure
                  }
                  val symbounds = symtypes filter isTypeBound
                  var result: Type =
                    if (symbounds.isEmpty)
                      TypeBounds.empty
                    else glbBounds(symbounds)
                  for (t <- symtypes if !isTypeBound(t))
                    if (result.bounds containsType t) result = t
                    else throw GlbFailure
                  result
                })
            }
            if (globalGlbDepth < globalGlbLimit)
              try {
                globalGlbDepth += 1
                val dss = ts flatMap refinedToDecls
                for (ds <- dss; sym <- ds.iterator)
                  if (globalGlbDepth < globalGlbLimit && !specializesSym(glbThisType, sym, depth))
                    try {
                      addMember(glbThisType, glbRefined, glbsym(sym), depth)
                    } catch {
                      case ex: NoCommonType =>
                    }
              } finally {
                globalGlbDepth -= 1
              }
            if (glbRefined.decls.isEmpty) glbBase else glbRefined
          }
        existentialAbstraction(tparams, glbType)
      } catch {
        case GlbFailure =>
          if (ts forall (t => NullClass.tpe <:< t)) NullClass.tpe
          else NothingClass.tpe
      }
    }
    // if (settings.debug.value) { println(indent + "glb of " + ts + " at depth "+depth); indent = indent + "  " } //DEBUG

    if (Statistics.canEnable) Statistics.incCounter(nestedLubCount)
    val res = glb0(ts)

    // if (settings.debug.value) { indent = indent.substring(0, indent.length() - 2); log(indent + "glb of " + ts + " is " + res) }//DEBUG

    if (ts exists typeIsNotNull) res.notNull else res
  }

  /** A list of the typevars in a type. */
  def typeVarsInType(tp: Type): List[TypeVar] = {
    var tvs: List[TypeVar] = Nil
    tp foreach {
      case t: TypeVar => tvs ::= t
      case _          =>
    }
    tvs.reverse
  }
  /** Make each type var in this type use its original type for comparisons instead
   * of collecting constraints.
   */
  def suspendTypeVarsInType(tp: Type): List[TypeVar] = {
    val tvs = typeVarsInType(tp)
    // !!! Is it somehow guaranteed that this will not break under nesting?
    // In general one has to save and restore the contents of the field...
    tvs foreach (_.suspended = true)
    tvs
  }

  /** Compute lub (if `variance == 1`) or glb (if `variance == -1`) of given list
   *  of types `tps`. All types in `tps` are typerefs or singletypes
   *  with the same symbol.
   *  Return `Some(x)` if the computation succeeds with result `x`.
   *  Return `None` if the computation fails.
   */
  def mergePrefixAndArgs(tps: List[Type], variance: Int, depth: Int): Option[Type] = tps match {
    case List(tp) =>
      Some(tp)
    case TypeRef(_, sym, _) :: rest =>
      val pres = tps map (_.prefix) // prefix normalizes automatically
      val pre = if (variance == 1) lub(pres, depth) else glb(pres, depth)
      val argss = tps map (_.normalize.typeArgs) // symbol equality (of the tp in tps) was checked using typeSymbol, which normalizes, so should normalize before retrieving arguments
      val capturedParams = new ListBuffer[Symbol]
      try {
        if (sym == ArrayClass && phase.erasedTypes) {
          // special treatment for lubs of array types after erasure:
          // if argss contain one value type and some other type, the lub is Object
          // if argss contain several reference types, the lub is an array over lub of argtypes
          if (argss exists typeListIsEmpty) {
            None  // something is wrong: an array without a type arg.
          } else {
            val args = argss map (_.head)
            if (args.tail forall (_ =:= args.head)) Some(typeRef(pre, sym, List(args.head)))
            else if (args exists (arg => isPrimitiveValueClass(arg.typeSymbol))) Some(ObjectClass.tpe)
            else Some(typeRef(pre, sym, List(lub(args))))
          }
        }
        else transposeSafe(argss) match {
          case None =>
            // transpose freaked out because of irregular argss
            // catching just in case (shouldn't happen, but also doesn't cost us)
            // [JZ] It happens: see SI-5683.
            debuglog("transposed irregular matrix!?" +(tps, argss))
            None
          case Some(argsst) =>
            val args = map2(sym.typeParams, argsst) { (tparam, as) =>
              if (depth == 0) {
                if (tparam.variance == variance) {
                  // Take the intersection of the upper bounds of the type parameters
                  // rather than falling all the way back to "Any", otherwise we end up not
                  // conforming to bounds.
                  val bounds0 = sym.typeParams map (_.info.bounds.hi) filterNot (_.typeSymbol == AnyClass)
                  if (bounds0.isEmpty) AnyClass.tpe
                  else intersectionType(bounds0 map (b => b.asSeenFrom(tps.head, sym)))
                }
                else if (tparam.variance == -variance) NothingClass.tpe
                else NoType
              }
              else {
                if (tparam.variance == variance) lub(as, decr(depth))
                else if (tparam.variance == -variance) glb(as, decr(depth))
                else {
                  val l = lub(as, decr(depth))
                  val g = glb(as, decr(depth))
                  if (l <:< g) l
                else { // Martin: I removed this, because incomplete. Not sure there is a good way to fix it. For the moment we
                       // just err on the conservative side, i.e. with a bound that is too high.
                       // if(!(tparam.info.bounds contains tparam))   //@M can't deal with f-bounds, see #2251

                    val qvar = commonOwner(as) freshExistential "" setInfo TypeBounds(g, l)
                    capturedParams += qvar
                    qvar.tpe
                  }
                }
              }
            }
            if (args contains NoType) None
            else Some(existentialAbstraction(capturedParams.toList, typeRef(pre, sym, args)))
        }
      } catch {
        case ex: MalformedType => None
      }
    case SingleType(_, sym) :: rest =>
      val pres = tps map (_.prefix)
      val pre = if (variance == 1) lub(pres, depth) else glb(pres, depth)
      try {
        Some(singleType(pre, sym))
      } catch {
        case ex: MalformedType => None
      }
    case ExistentialType(tparams, quantified) :: rest =>
      mergePrefixAndArgs(quantified :: rest, variance, depth) map (existentialAbstraction(tparams, _))
    case _ =>
      abort(s"mergePrefixAndArgs($tps, $variance, $depth): unsupported tps")
  }

  def addMember(thistp: Type, tp: Type, sym: Symbol): Unit = addMember(thistp, tp, sym, AnyDepth)

  /** Make symbol `sym` a member of scope `tp.decls`
   *  where `thistp` is the narrowed owner type of the scope.
   */
  def addMember(thistp: Type, tp: Type, sym: Symbol, depth: Int) {
    assert(sym != NoSymbol)
    // debuglog("add member " + sym+":"+sym.info+" to "+thistp) //DEBUG
    if (!specializesSym(thistp, sym, depth)) {
      if (sym.isTerm)
        for (alt <- tp.nonPrivateDecl(sym.name).alternatives)
          if (specializesSym(thistp, sym, thistp, alt, depth))
            tp.decls unlink alt;
      tp.decls enter sym
    }
  }

  def isJavaVarargsAncestor(clazz: Symbol) = (
       clazz.isClass
    && clazz.isJavaDefined
    && (clazz.info.nonPrivateDecls exists isJavaVarArgsMethod)
  )
  def inheritsJavaVarArgsMethod(clazz: Symbol) =
    clazz.thisType.baseClasses exists isJavaVarargsAncestor

  /** All types in list must be polytypes with type parameter lists of
   *  same length as tparams.
   *  Returns list of list of bounds infos, where corresponding type
   *  parameters are renamed to tparams.
   */
  private def matchingBounds(tps: List[Type], tparams: List[Symbol]): List[List[Type]] = {
    def getBounds(tp: Type): List[Type] = tp match {
      case PolyType(tparams1, _) if sameLength(tparams1, tparams) =>
        tparams1 map (tparam => tparam.info.substSym(tparams1, tparams))
      case tp =>
        if (tp ne tp.normalize) getBounds(tp.normalize)
        else throw new NoCommonType(tps)
    }
    tps map getBounds
  }

  /** All types in list must be polytypes with type parameter lists of
   *  same length as tparams.
   *  Returns list of instance types, where corresponding type
   *  parameters are renamed to tparams.
   */
  private def matchingInstTypes(tps: List[Type], tparams: List[Symbol]): List[Type] = {
    def transformResultType(tp: Type): Type = tp match {
      case PolyType(tparams1, restpe) if sameLength(tparams1, tparams) =>
        restpe.substSym(tparams1, tparams)
      case tp =>
        if (tp ne tp.normalize) transformResultType(tp.normalize)
        else throw new NoCommonType(tps)
    }
    tps map transformResultType
  }

  /** All types in list must be method types with equal parameter types.
   *  Returns list of their result types.
   */
  private def matchingRestypes(tps: List[Type], pts: List[Type]): List[Type] =
    tps map {
      case mt @ MethodType(params1, res) if isSameTypes(mt.paramTypes, pts) =>
        res
      case NullaryMethodType(res) if pts.isEmpty =>
        res
      case _ =>
        throw new NoCommonType(tps)
    }

// Errors and Diagnostics -----------------------------------------------------

  /** A throwable signalling a type error */
  class TypeError(var pos: Position, val msg: String) extends Throwable(msg) {
    def this(msg: String) = this(NoPosition, msg)
  }

  // TODO: RecoverableCyclicReference should be separated from TypeError,
  // but that would be a big change. Left for further refactoring.
  /** An exception for cyclic references from which we can recover */
  case class RecoverableCyclicReference(sym: Symbol)
    extends TypeError("illegal cyclic reference involving " + sym) {
    if (settings.debug.value) printStackTrace()
  }

  class NoCommonType(tps: List[Type]) extends Throwable(
    "lub/glb of incompatible types: " + tps.mkString("", " and ", "")) with ControlThrowable

  /** A throwable signalling a malformed type */
  class MalformedType(msg: String) extends TypeError(msg) {
    def this(pre: Type, tp: String) = this("malformed type: " + pre + "#" + tp)
  }

  /** The current indentation string for traces */
  private var indent: String = ""

  /** Perform operation `p` on arguments `tp1`, `arg2` and print trace of computation. */
  protected def explain[T](op: String, p: (Type, T) => Boolean, tp1: Type, arg2: T): Boolean = {
    Console.println(indent + tp1 + " " + op + " " + arg2 + "?" /* + "("+tp1.getClass+","+arg2.getClass+")"*/)
    indent = indent + "  "
    val result = p(tp1, arg2)
    indent = indent stripSuffix "  "
    Console.println(indent + result)
    result
  }

  /** If option `explaintypes` is set, print a subtype trace for `found <:< required`. */
  def explainTypes(found: Type, required: Type) {
    if (settings.explaintypes.value) withTypesExplained(found <:< required)
  }

  /** If option `explaintypes` is set, print a subtype trace for `op(found, required)`. */
  def explainTypes(op: (Type, Type) => Any, found: Type, required: Type) {
    if (settings.explaintypes.value) withTypesExplained(op(found, required))
  }

  /** Execute `op` while printing a trace of the operations on types executed. */
  def withTypesExplained[A](op: => A): A = {
    val s = explainSwitch
    try { explainSwitch = true; op } finally { explainSwitch = s }
  }

  def isUnboundedGeneric(tp: Type) = tp match {
    case t @ TypeRef(_, sym, _) => sym.isAbstractType && !(t <:< AnyRefClass.tpe)
    case _                      => false
  }
  def isBoundedGeneric(tp: Type) = tp match {
    case TypeRef(_, sym, _) if sym.isAbstractType => (tp <:< AnyRefClass.tpe)
    case TypeRef(_, sym, _)                       => !isPrimitiveValueClass(sym)
    case _                                        => false
  }
  // Add serializable to a list of parents, unless one of them already is
  def addSerializable(ps: Type*): List[Type] = (
    if (ps exists typeIsSubTypeOfSerializable) ps.toList
    else (ps :+ SerializableClass.tpe).toList
  )

  /** Adds the @uncheckedBound annotation if the given `tp` has type arguments */
  final def uncheckedBounds(tp: Type): Type = {
    if (tp.typeArgs.isEmpty || UncheckedBoundsClass == NoSymbol) tp // second condition for backwards compatibilty with older scala-reflect.jar
    else tp.withAnnotation(AnnotationInfo marker UncheckedBoundsClass.tpe)
  }

  /** Members of the given class, other than those inherited
   *  from Any or AnyRef.
   */
  def nonTrivialMembers(clazz: Symbol): Iterable[Symbol] =
    clazz.info.members filterNot (sym => sym.owner == ObjectClass || sym.owner == AnyClass)

  def objToAny(tp: Type): Type =
    if (!phase.erasedTypes && tp.typeSymbol == ObjectClass) AnyClass.tpe
    else tp

  val shorthands = Set(
    "scala.collection.immutable.List",
    "scala.collection.immutable.Nil",
    "scala.collection.Seq",
    "scala.collection.Traversable",
    "scala.collection.Iterable",
    "scala.collection.mutable.StringBuilder",
    "scala.collection.IndexedSeq",
    "scala.collection.Iterator")


  /** The maximum number of recursions allowed in toString
   */
  final val maxTostringRecursions = 50

  private var tostringRecursions = 0

  protected def typeToString(tpe: Type): String =
    if (tostringRecursions >= maxTostringRecursions) {
      debugwarn("Exceeded recursion depth attempting to print type.")
      if (settings.debug.value)
        (new Throwable).printStackTrace

      "..."
    }
    else
      try {
        tostringRecursions += 1
        tpe.safeToString
      } finally {
        tostringRecursions -= 1
      }

// ----- Hoisted closures and convenience methods, for compile time reductions -------

  private[scala] val typeIsNotNull = (tp: Type) => tp.isNotNull
  private[scala] val isTypeVar = (tp: Type) => tp.isInstanceOf[TypeVar]
  private[scala] val typeContainsTypeVar = (tp: Type) => tp exists isTypeVar
  private[scala] val typeIsNonClassType = (tp: Type) => tp.typeSymbolDirect.isNonClassType
  private[scala] val typeIsExistentiallyBound = (tp: Type) => tp.typeSymbol.isExistentiallyBound
  private[scala] val typeIsErroneous = (tp: Type) => tp.isErroneous
  private[scala] val typeIsError = (tp: Type) => tp.isError
  private[scala] val typeHasAnnotations = (tp: Type) => tp.annotations.nonEmpty
  private[scala] val boundsContainType = (bounds: TypeBounds, tp: Type) => bounds containsType tp
  private[scala] val typeListIsEmpty = (ts: List[Type]) => ts.isEmpty
  private[scala] val typeIsSubTypeOfSerializable = (tp: Type) => tp <:< SerializableClass.tpe
  private[scala] val typeIsNothing = (tp: Type) => tp.typeSymbolDirect eq NothingClass
  private[scala] val typeIsAny = (tp: Type) => tp.typeSymbolDirect eq AnyClass
  private[scala] val typeIsHigherKinded = (tp: Type) => tp.isHigherKinded

  @tailrec private def typesContain(tps: List[Type], sym: Symbol): Boolean = tps match {
    case tp :: rest => (tp contains sym) || typesContain(rest, sym)
    case _ => false
  }

  @tailrec private def areTrivialTypes(tps: List[Type]): Boolean = tps match {
    case tp :: rest => tp.isTrivial && areTrivialTypes(rest)
    case _ => true
  }

// -------------- Classtags --------------------------------------------------------

  implicit val AnnotatedTypeTag = ClassTag[AnnotatedType](classOf[AnnotatedType])
  implicit val BoundedWildcardTypeTag = ClassTag[BoundedWildcardType](classOf[BoundedWildcardType])
  implicit val ClassInfoTypeTag = ClassTag[ClassInfoType](classOf[ClassInfoType])
  implicit val CompoundTypeTag = ClassTag[CompoundType](classOf[CompoundType])
  implicit val ConstantTypeTag = ClassTag[ConstantType](classOf[ConstantType])
  implicit val ExistentialTypeTag = ClassTag[ExistentialType](classOf[ExistentialType])
  implicit val MethodTypeTag = ClassTag[MethodType](classOf[MethodType])
  implicit val NullaryMethodTypeTag = ClassTag[NullaryMethodType](classOf[NullaryMethodType])
  implicit val PolyTypeTag = ClassTag[PolyType](classOf[PolyType])
  implicit val RefinedTypeTag = ClassTag[RefinedType](classOf[RefinedType])
  implicit val SingletonTypeTag = ClassTag[SingletonType](classOf[SingletonType])
  implicit val SingleTypeTag = ClassTag[SingleType](classOf[SingleType])
  implicit val SuperTypeTag = ClassTag[SuperType](classOf[SuperType])
  implicit val ThisTypeTag = ClassTag[ThisType](classOf[ThisType])
  implicit val TypeBoundsTag = ClassTag[TypeBounds](classOf[TypeBounds])
  implicit val TypeRefTag = ClassTag[TypeRef](classOf[TypeRef])
  implicit val TypeTagg = ClassTag[Type](classOf[Type])

// -------------- Statistics --------------------------------------------------------

  Statistics.newView("#unique types") { if (uniques == null) 0 else uniques.size }

}

object TypesStats {
  import BaseTypeSeqsStats._
  val rawTypeCount        = Statistics.newCounter   ("#raw type creations")
  val asSeenFromCount     = Statistics.newCounter   ("#asSeenFrom ops")
  val subtypeCount        = Statistics.newCounter   ("#subtype ops")
  val sametypeCount       = Statistics.newCounter   ("#sametype ops")
  val lubCount            = Statistics.newCounter   ("#toplevel lubs/glbs")
  val nestedLubCount      = Statistics.newCounter   ("#all lubs/glbs")
  val findMemberCount     = Statistics.newCounter   ("#findMember ops")
  val findMembersCount    = Statistics.newCounter   ("#findMembers ops")
  val noMemberCount       = Statistics.newSubCounter("  of which not found", findMemberCount)
  val multMemberCount     = Statistics.newSubCounter("  of which multiple overloaded", findMemberCount)
  val typerNanos          = Statistics.newTimer     ("time spent typechecking", "typer")
  val lubNanos            = Statistics.newStackableTimer("time spent in lubs", typerNanos)
  val subtypeNanos        = Statistics.newStackableTimer("time spent in <:<", typerNanos)
  val findMemberNanos     = Statistics.newStackableTimer("time spent in findmember", typerNanos)
  val findMembersNanos    = Statistics.newStackableTimer("time spent in findmembers", typerNanos)
  val asSeenFromNanos     = Statistics.newStackableTimer("time spent in asSeenFrom", typerNanos)
  val baseTypeSeqNanos    = Statistics.newStackableTimer("time spent in baseTypeSeq", typerNanos)
  val baseClassesNanos    = Statistics.newStackableTimer("time spent in baseClasses", typerNanos)
  val compoundBaseTypeSeqCount = Statistics.newSubCounter("  of which for compound types", baseTypeSeqCount)
  val typerefBaseTypeSeqCount = Statistics.newSubCounter("  of which for typerefs", baseTypeSeqCount)
  val singletonBaseTypeSeqCount = Statistics.newSubCounter("  of which for singletons", baseTypeSeqCount)
  val typeOpsStack = Statistics.newTimerStack()

  /** Commented out, because right now this does not inline, so creates a closure which will distort statistics
  @inline final def timedTypeOp[T](c: Statistics.StackableTimer)(op: => T): T = {
    val start = Statistics.pushTimer(typeOpsStack, c)
    try op
    finally
  }
  */
}