summaryrefslogblamecommitdiff
path: root/site/docs/1.3.0/mllib-clustering.html
blob: 536966cd61b005653b4a2a29d54dccde6d6e9335 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711






































































































































































































































































































































































































































































































































































































































































































































                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
<!DOCTYPE html>
<!--[if lt IE 7]>      <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
<!--[if IE 7]>         <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]>         <html class="no-js lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
    <head>
        <meta charset="utf-8">
        <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
        <title>Clustering - MLlib - Spark 1.3.0 Documentation</title>
        

        

        <link rel="stylesheet" href="css/bootstrap.min.css">
        <style>
            body {
                padding-top: 60px;
                padding-bottom: 40px;
            }
        </style>
        <meta name="viewport" content="width=device-width">
        <link rel="stylesheet" href="css/bootstrap-responsive.min.css">
        <link rel="stylesheet" href="css/main.css">

        <script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script>

        <link rel="stylesheet" href="css/pygments-default.css">

        

    </head>
    <body>
        <!--[if lt IE 7]>
            <p class="chromeframe">You are using an outdated browser. <a href="http://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p>
        <![endif]-->

        <!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html -->

        <div class="navbar navbar-fixed-top" id="topbar">
            <div class="navbar-inner">
                <div class="container">
                    <div class="brand"><a href="index.html">
                      <img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">1.3.0</span>
                    </div>
                    <ul class="nav">
                        <!--TODO(andyk): Add class="active" attribute to li some how.-->
                        <li><a href="index.html">Overview</a></li>

                        <li class="dropdown">
                            <a href="#" class="dropdown-toggle" data-toggle="dropdown">Programming Guides<b class="caret"></b></a>
                            <ul class="dropdown-menu">
                                <li><a href="quick-start.html">Quick Start</a></li>
                                <li><a href="programming-guide.html">Spark Programming Guide</a></li>
                                <li class="divider"></li>
                                <li><a href="streaming-programming-guide.html">Spark Streaming</a></li>
                                <li><a href="sql-programming-guide.html">DataFrames and SQL</a></li>
                                <li><a href="mllib-guide.html">MLlib (Machine Learning)</a></li>
                                <li><a href="graphx-programming-guide.html">GraphX (Graph Processing)</a></li>
                                <li><a href="bagel-programming-guide.html">Bagel (Pregel on Spark)</a></li>
                            </ul>
                        </li>

                        <li class="dropdown">
                            <a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a>
                            <ul class="dropdown-menu">
                                <li><a href="api/scala/index.html#org.apache.spark.package">Scala</a></li>
                                <li><a href="api/java/index.html">Java</a></li>
                                <li><a href="api/python/index.html">Python</a></li>
                            </ul>
                        </li>

                        <li class="dropdown">
                            <a href="#" class="dropdown-toggle" data-toggle="dropdown">Deploying<b class="caret"></b></a>
                            <ul class="dropdown-menu">
                                <li><a href="cluster-overview.html">Overview</a></li>
                                <li><a href="submitting-applications.html">Submitting Applications</a></li>
                                <li class="divider"></li>
                                <li><a href="spark-standalone.html">Spark Standalone</a></li>
                                <li><a href="running-on-mesos.html">Mesos</a></li>
                                <li><a href="running-on-yarn.html">YARN</a></li>
                                <li class="divider"></li>
                                <li><a href="ec2-scripts.html">Amazon EC2</a></li>
                            </ul>
                        </li>

                        <li class="dropdown">
                            <a href="api.html" class="dropdown-toggle" data-toggle="dropdown">More<b class="caret"></b></a>
                            <ul class="dropdown-menu">
                                <li><a href="configuration.html">Configuration</a></li>
                                <li><a href="monitoring.html">Monitoring</a></li>
                                <li><a href="tuning.html">Tuning Guide</a></li>
                                <li><a href="job-scheduling.html">Job Scheduling</a></li>
                                <li><a href="security.html">Security</a></li>
                                <li><a href="hardware-provisioning.html">Hardware Provisioning</a></li>
                                <li><a href="hadoop-third-party-distributions.html">3<sup>rd</sup>-Party Hadoop Distros</a></li>
                                <li class="divider"></li>
                                <li><a href="building-spark.html">Building Spark</a></li>
                                <li><a href="https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark">Contributing to Spark</a></li>
                                <li><a href="https://cwiki.apache.org/confluence/display/SPARK/Supplemental+Spark+Projects">Supplemental Projects</a></li>
                            </ul>
                        </li>
                    </ul>
                    <!--<p class="navbar-text pull-right"><span class="version-text">v1.3.0</span></p>-->
                </div>
            </div>
        </div>

        <div class="container" id="content">
          
            <h1 class="title"><a href="mllib-guide.html">MLlib</a> - Clustering</h1>
          

          <p>Clustering is an unsupervised learning problem whereby we aim to group subsets
of entities with one another based on some notion of similarity.  Clustering is
often used for exploratory analysis and/or as a component of a hierarchical
supervised learning pipeline (in which distinct classifiers or regression
models are trained for each cluster).</p>

<p>MLlib supports the following models:</p>

<ul id="markdown-toc">
  <li><a href="#k-means">K-means</a></li>
  <li><a href="#gaussian-mixture">Gaussian mixture</a></li>
  <li><a href="#power-iteration-clustering-pic">Power iteration clustering (PIC)</a></li>
  <li><a href="#latent-dirichlet-allocation-lda">Latent Dirichlet allocation (LDA)</a></li>
  <li><a href="#streaming-k-means">Streaming k-means</a></li>
</ul>

<h2 id="k-means">K-means</h2>

<p><a href="http://en.wikipedia.org/wiki/K-means_clustering">k-means</a> is one of the
most commonly used clustering algorithms that clusters the data points into a
predefined number of clusters. The MLlib implementation includes a parallelized
variant of the <a href="http://en.wikipedia.org/wiki/K-means%2B%2B">k-means++</a> method
called <a href="http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf">kmeans||</a>.
The implementation in MLlib has the following parameters:</p>

<ul>
  <li><em>k</em> is the number of desired clusters.</li>
  <li><em>maxIterations</em> is the maximum number of iterations to run.</li>
  <li><em>initializationMode</em> specifies either random initialization or
initialization via k-means||.</li>
  <li><em>runs</em> is the number of times to run the k-means algorithm (k-means is not
guaranteed to find a globally optimal solution, and when run multiple times on
a given dataset, the algorithm returns the best clustering result).</li>
  <li><em>initializationSteps</em> determines the number of steps in the k-means|| algorithm.</li>
  <li><em>epsilon</em> determines the distance threshold within which we consider k-means to have converged.</li>
</ul>

<p><strong>Examples</strong></p>

<div class="codetabs">
<div data-lang="scala">
    <p>The following code snippets can be executed in <code>spark-shell</code>.</p>

    <p>In the following example after loading and parsing data, we use the
<a href="api/scala/index.html#org.apache.spark.mllib.clustering.KMeans"><code>KMeans</code></a> object to cluster the data
into two clusters. The number of desired clusters is passed to the algorithm. We then compute Within
Set Sum of Squared Error (WSSSE). You can reduce this error measure by increasing <em>k</em>. In fact the
optimal <em>k</em> is usually one where there is an &#8220;elbow&#8221; in the WSSSE graph.</p>

    <div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.mllib.clustering.KMeans</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span>

<span class="c1">// Load and parse the data</span>
<span class="k">val</span> <span class="n">data</span> <span class="k">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">textFile</span><span class="o">(</span><span class="s">&quot;data/mllib/kmeans_data.txt&quot;</span><span class="o">)</span>
<span class="k">val</span> <span class="n">parsedData</span> <span class="k">=</span> <span class="n">data</span><span class="o">.</span><span class="n">map</span><span class="o">(</span><span class="n">s</span> <span class="k">=&gt;</span> <span class="nc">Vectors</span><span class="o">.</span><span class="n">dense</span><span class="o">(</span><span class="n">s</span><span class="o">.</span><span class="n">split</span><span class="o">(</span><span class="sc">&#39; &#39;</span><span class="o">).</span><span class="n">map</span><span class="o">(</span><span class="k">_</span><span class="o">.</span><span class="n">toDouble</span><span class="o">))).</span><span class="n">cache</span><span class="o">()</span>

<span class="c1">// Cluster the data into two classes using KMeans</span>
<span class="k">val</span> <span class="n">numClusters</span> <span class="k">=</span> <span class="mi">2</span>
<span class="k">val</span> <span class="n">numIterations</span> <span class="k">=</span> <span class="mi">20</span>
<span class="k">val</span> <span class="n">clusters</span> <span class="k">=</span> <span class="nc">KMeans</span><span class="o">.</span><span class="n">train</span><span class="o">(</span><span class="n">parsedData</span><span class="o">,</span> <span class="n">numClusters</span><span class="o">,</span> <span class="n">numIterations</span><span class="o">)</span>

<span class="c1">// Evaluate clustering by computing Within Set Sum of Squared Errors</span>
<span class="k">val</span> <span class="nc">WSSSE</span> <span class="k">=</span> <span class="n">clusters</span><span class="o">.</span><span class="n">computeCost</span><span class="o">(</span><span class="n">parsedData</span><span class="o">)</span>
<span class="n">println</span><span class="o">(</span><span class="s">&quot;Within Set Sum of Squared Errors = &quot;</span> <span class="o">+</span> <span class="nc">WSSSE</span><span class="o">)</span></code></pre></div>

  </div>

<div data-lang="java">
    <p>All of MLlib&#8217;s methods use Java-friendly types, so you can import and call them there the same
way you do in Scala. The only caveat is that the methods take Scala RDD objects, while the
Spark Java API uses a separate <code>JavaRDD</code> class. You can convert a Java RDD to a Scala one by
calling <code>.rdd()</code> on your <code>JavaRDD</code> object. A self-contained application example
that is equivalent to the provided example in Scala is given below:</p>

    <div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.api.java.*</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.function.Function</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.clustering.KMeans</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.clustering.KMeansModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.SparkConf</span><span class="o">;</span>

<span class="kd">public</span> <span class="kd">class</span> <span class="nc">KMeansExample</span> <span class="o">{</span>
  <span class="kd">public</span> <span class="kd">static</span> <span class="kt">void</span> <span class="nf">main</span><span class="o">(</span><span class="n">String</span><span class="o">[]</span> <span class="n">args</span><span class="o">)</span> <span class="o">{</span>
    <span class="n">SparkConf</span> <span class="n">conf</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">SparkConf</span><span class="o">().</span><span class="na">setAppName</span><span class="o">(</span><span class="s">&quot;K-means Example&quot;</span><span class="o">);</span>
    <span class="n">JavaSparkContext</span> <span class="n">sc</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">JavaSparkContext</span><span class="o">(</span><span class="n">conf</span><span class="o">);</span>

    <span class="c1">// Load and parse data</span>
    <span class="n">String</span> <span class="n">path</span> <span class="o">=</span> <span class="s">&quot;data/mllib/kmeans_data.txt&quot;</span><span class="o">;</span>
    <span class="n">JavaRDD</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;</span> <span class="n">data</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="na">textFile</span><span class="o">(</span><span class="n">path</span><span class="o">);</span>
    <span class="n">JavaRDD</span><span class="o">&lt;</span><span class="n">Vector</span><span class="o">&gt;</span> <span class="n">parsedData</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">map</span><span class="o">(</span>
      <span class="k">new</span> <span class="n">Function</span><span class="o">&lt;</span><span class="n">String</span><span class="o">,</span> <span class="n">Vector</span><span class="o">&gt;()</span> <span class="o">{</span>
        <span class="kd">public</span> <span class="n">Vector</span> <span class="nf">call</span><span class="o">(</span><span class="n">String</span> <span class="n">s</span><span class="o">)</span> <span class="o">{</span>
          <span class="n">String</span><span class="o">[]</span> <span class="n">sarray</span> <span class="o">=</span> <span class="n">s</span><span class="o">.</span><span class="na">split</span><span class="o">(</span><span class="s">&quot; &quot;</span><span class="o">);</span>
          <span class="kt">double</span><span class="o">[]</span> <span class="n">values</span> <span class="o">=</span> <span class="k">new</span> <span class="kt">double</span><span class="o">[</span><span class="n">sarray</span><span class="o">.</span><span class="na">length</span><span class="o">];</span>
          <span class="k">for</span> <span class="o">(</span><span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span> <span class="n">i</span> <span class="o">&lt;</span> <span class="n">sarray</span><span class="o">.</span><span class="na">length</span><span class="o">;</span> <span class="n">i</span><span class="o">++)</span>
            <span class="n">values</span><span class="o">[</span><span class="n">i</span><span class="o">]</span> <span class="o">=</span> <span class="n">Double</span><span class="o">.</span><span class="na">parseDouble</span><span class="o">(</span><span class="n">sarray</span><span class="o">[</span><span class="n">i</span><span class="o">]);</span>
          <span class="k">return</span> <span class="n">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="n">values</span><span class="o">);</span>
        <span class="o">}</span>
      <span class="o">}</span>
    <span class="o">);</span>
    <span class="n">parsedData</span><span class="o">.</span><span class="na">cache</span><span class="o">();</span>

    <span class="c1">// Cluster the data into two classes using KMeans</span>
    <span class="kt">int</span> <span class="n">numClusters</span> <span class="o">=</span> <span class="mi">2</span><span class="o">;</span>
    <span class="kt">int</span> <span class="n">numIterations</span> <span class="o">=</span> <span class="mi">20</span><span class="o">;</span>
    <span class="n">KMeansModel</span> <span class="n">clusters</span> <span class="o">=</span> <span class="n">KMeans</span><span class="o">.</span><span class="na">train</span><span class="o">(</span><span class="n">parsedData</span><span class="o">.</span><span class="na">rdd</span><span class="o">(),</span> <span class="n">numClusters</span><span class="o">,</span> <span class="n">numIterations</span><span class="o">);</span>

    <span class="c1">// Evaluate clustering by computing Within Set Sum of Squared Errors</span>
    <span class="kt">double</span> <span class="n">WSSSE</span> <span class="o">=</span> <span class="n">clusters</span><span class="o">.</span><span class="na">computeCost</span><span class="o">(</span><span class="n">parsedData</span><span class="o">.</span><span class="na">rdd</span><span class="o">());</span>
    <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">&quot;Within Set Sum of Squared Errors = &quot;</span> <span class="o">+</span> <span class="n">WSSSE</span><span class="o">);</span>
  <span class="o">}</span>
<span class="o">}</span></code></pre></div>

  </div>

<div data-lang="python">
    <p>The following examples can be tested in the PySpark shell.</p>

    <p>In the following example after loading and parsing data, we use the KMeans object to cluster the
data into two clusters. The number of desired clusters is passed to the algorithm. We then compute
Within Set Sum of Squared Error (WSSSE). You can reduce this error measure by increasing <em>k</em>. In
fact the optimal <em>k</em> is usually one where there is an &#8220;elbow&#8221; in the WSSSE graph.</p>

    <div class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">from</span> <span class="nn">pyspark.mllib.clustering</span> <span class="kn">import</span> <span class="n">KMeans</span>
<span class="kn">from</span> <span class="nn">numpy</span> <span class="kn">import</span> <span class="n">array</span>
<span class="kn">from</span> <span class="nn">math</span> <span class="kn">import</span> <span class="n">sqrt</span>

<span class="c"># Load and parse the data</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">textFile</span><span class="p">(</span><span class="s">&quot;data/mllib/kmeans_data.txt&quot;</span><span class="p">)</span>
<span class="n">parsedData</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">line</span><span class="p">:</span> <span class="n">array</span><span class="p">([</span><span class="nb">float</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">line</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s">&#39; &#39;</span><span class="p">)]))</span>

<span class="c"># Build the model (cluster the data)</span>
<span class="n">clusters</span> <span class="o">=</span> <span class="n">KMeans</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">parsedData</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">maxIterations</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
        <span class="n">runs</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">initializationMode</span><span class="o">=</span><span class="s">&quot;random&quot;</span><span class="p">)</span>

<span class="c"># Evaluate clustering by computing Within Set Sum of Squared Errors</span>
<span class="k">def</span> <span class="nf">error</span><span class="p">(</span><span class="n">point</span><span class="p">):</span>
    <span class="n">center</span> <span class="o">=</span> <span class="n">clusters</span><span class="o">.</span><span class="n">centers</span><span class="p">[</span><span class="n">clusters</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">point</span><span class="p">)]</span>
    <span class="k">return</span> <span class="n">sqrt</span><span class="p">(</span><span class="nb">sum</span><span class="p">([</span><span class="n">x</span><span class="o">**</span><span class="mi">2</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="p">(</span><span class="n">point</span> <span class="o">-</span> <span class="n">center</span><span class="p">)]))</span>

<span class="n">WSSSE</span> <span class="o">=</span> <span class="n">parsedData</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">point</span><span class="p">:</span> <span class="n">error</span><span class="p">(</span><span class="n">point</span><span class="p">))</span><span class="o">.</span><span class="n">reduce</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">:</span> <span class="n">x</span> <span class="o">+</span> <span class="n">y</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s">&quot;Within Set Sum of Squared Error = &quot;</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">WSSSE</span><span class="p">))</span></code></pre></div>

  </div>

</div>

<h2 id="gaussian-mixture">Gaussian mixture</h2>

<p>A <a href="http://en.wikipedia.org/wiki/Mixture_model#Multivariate_Gaussian_mixture_model">Gaussian Mixture Model</a>
represents a composite distribution whereby points are drawn from one of <em>k</em> Gaussian sub-distributions,
each with its own probability.  The MLlib implementation uses the
<a href="http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm">expectation-maximization</a>
 algorithm to induce the maximum-likelihood model given a set of samples.  The implementation
has the following parameters:</p>

<ul>
  <li><em>k</em> is the number of desired clusters.</li>
  <li><em>convergenceTol</em> is the maximum change in log-likelihood at which we consider convergence achieved.</li>
  <li><em>maxIterations</em> is the maximum number of iterations to perform without reaching convergence.</li>
  <li><em>initialModel</em> is an optional starting point from which to start the EM algorithm. If this parameter is omitted, a random starting point will be constructed from the data.</li>
</ul>

<p><strong>Examples</strong></p>

<div class="codetabs">
<div data-lang="scala">
    <p>In the following example after loading and parsing data, we use a
<a href="api/scala/index.html#org.apache.spark.mllib.clustering.GaussianMixture">GaussianMixture</a>
object to cluster the data into two clusters. The number of desired clusters is passed
to the algorithm. We then output the parameters of the mixture model.</p>

    <div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.mllib.clustering.GaussianMixture</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span>

<span class="c1">// Load and parse the data</span>
<span class="k">val</span> <span class="n">data</span> <span class="k">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">textFile</span><span class="o">(</span><span class="s">&quot;data/mllib/gmm_data.txt&quot;</span><span class="o">)</span>
<span class="k">val</span> <span class="n">parsedData</span> <span class="k">=</span> <span class="n">data</span><span class="o">.</span><span class="n">map</span><span class="o">(</span><span class="n">s</span> <span class="k">=&gt;</span> <span class="nc">Vectors</span><span class="o">.</span><span class="n">dense</span><span class="o">(</span><span class="n">s</span><span class="o">.</span><span class="n">trim</span><span class="o">.</span><span class="n">split</span><span class="o">(</span><span class="sc">&#39; &#39;</span><span class="o">).</span><span class="n">map</span><span class="o">(</span><span class="k">_</span><span class="o">.</span><span class="n">toDouble</span><span class="o">))).</span><span class="n">cache</span><span class="o">()</span>

<span class="c1">// Cluster the data into two classes using GaussianMixture</span>
<span class="k">val</span> <span class="n">gmm</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">GaussianMixture</span><span class="o">().</span><span class="n">setK</span><span class="o">(</span><span class="mi">2</span><span class="o">).</span><span class="n">run</span><span class="o">(</span><span class="n">parsedData</span><span class="o">)</span>

<span class="c1">// output parameters of max-likelihood model</span>
<span class="k">for</span> <span class="o">(</span><span class="n">i</span> <span class="k">&lt;-</span> <span class="mi">0</span> <span class="n">until</span> <span class="n">gmm</span><span class="o">.</span><span class="n">k</span><span class="o">)</span> <span class="o">{</span>
  <span class="n">println</span><span class="o">(</span><span class="s">&quot;weight=%f\nmu=%s\nsigma=\n%s\n&quot;</span> <span class="n">format</span>
    <span class="o">(</span><span class="n">gmm</span><span class="o">.</span><span class="n">weights</span><span class="o">(</span><span class="n">i</span><span class="o">),</span> <span class="n">gmm</span><span class="o">.</span><span class="n">gaussians</span><span class="o">(</span><span class="n">i</span><span class="o">).</span><span class="n">mu</span><span class="o">,</span> <span class="n">gmm</span><span class="o">.</span><span class="n">gaussians</span><span class="o">(</span><span class="n">i</span><span class="o">).</span><span class="n">sigma</span><span class="o">))</span>
<span class="o">}</span></code></pre></div>

  </div>

<div data-lang="java">
    <p>All of MLlib&#8217;s methods use Java-friendly types, so you can import and call them there the same
way you do in Scala. The only caveat is that the methods take Scala RDD objects, while the
Spark Java API uses a separate <code>JavaRDD</code> class. You can convert a Java RDD to a Scala one by
calling <code>.rdd()</code> on your <code>JavaRDD</code> object. A self-contained application example
that is equivalent to the provided example in Scala is given below:</p>

    <div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.api.java.*</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.function.Function</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.clustering.GaussianMixture</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.clustering.GaussianMixtureModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.SparkConf</span><span class="o">;</span>

<span class="kd">public</span> <span class="kd">class</span> <span class="nc">GaussianMixtureExample</span> <span class="o">{</span>
  <span class="kd">public</span> <span class="kd">static</span> <span class="kt">void</span> <span class="nf">main</span><span class="o">(</span><span class="n">String</span><span class="o">[]</span> <span class="n">args</span><span class="o">)</span> <span class="o">{</span>
    <span class="n">SparkConf</span> <span class="n">conf</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">SparkConf</span><span class="o">().</span><span class="na">setAppName</span><span class="o">(</span><span class="s">&quot;GaussianMixture Example&quot;</span><span class="o">);</span>
    <span class="n">JavaSparkContext</span> <span class="n">sc</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">JavaSparkContext</span><span class="o">(</span><span class="n">conf</span><span class="o">);</span>

    <span class="c1">// Load and parse data</span>
    <span class="n">String</span> <span class="n">path</span> <span class="o">=</span> <span class="s">&quot;data/mllib/gmm_data.txt&quot;</span><span class="o">;</span>
    <span class="n">JavaRDD</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;</span> <span class="n">data</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="na">textFile</span><span class="o">(</span><span class="n">path</span><span class="o">);</span>
    <span class="n">JavaRDD</span><span class="o">&lt;</span><span class="n">Vector</span><span class="o">&gt;</span> <span class="n">parsedData</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">map</span><span class="o">(</span>
      <span class="k">new</span> <span class="n">Function</span><span class="o">&lt;</span><span class="n">String</span><span class="o">,</span> <span class="n">Vector</span><span class="o">&gt;()</span> <span class="o">{</span>
        <span class="kd">public</span> <span class="n">Vector</span> <span class="nf">call</span><span class="o">(</span><span class="n">String</span> <span class="n">s</span><span class="o">)</span> <span class="o">{</span>
          <span class="n">String</span><span class="o">[]</span> <span class="n">sarray</span> <span class="o">=</span> <span class="n">s</span><span class="o">.</span><span class="na">trim</span><span class="o">().</span><span class="na">split</span><span class="o">(</span><span class="s">&quot; &quot;</span><span class="o">);</span>
          <span class="kt">double</span><span class="o">[]</span> <span class="n">values</span> <span class="o">=</span> <span class="k">new</span> <span class="kt">double</span><span class="o">[</span><span class="n">sarray</span><span class="o">.</span><span class="na">length</span><span class="o">];</span>
          <span class="k">for</span> <span class="o">(</span><span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span> <span class="n">i</span> <span class="o">&lt;</span> <span class="n">sarray</span><span class="o">.</span><span class="na">length</span><span class="o">;</span> <span class="n">i</span><span class="o">++)</span>
            <span class="n">values</span><span class="o">[</span><span class="n">i</span><span class="o">]</span> <span class="o">=</span> <span class="n">Double</span><span class="o">.</span><span class="na">parseDouble</span><span class="o">(</span><span class="n">sarray</span><span class="o">[</span><span class="n">i</span><span class="o">]);</span>
          <span class="k">return</span> <span class="n">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="n">values</span><span class="o">);</span>
        <span class="o">}</span>
      <span class="o">}</span>
    <span class="o">);</span>
    <span class="n">parsedData</span><span class="o">.</span><span class="na">cache</span><span class="o">();</span>

    <span class="c1">// Cluster the data into two classes using GaussianMixture</span>
    <span class="n">GaussianMixtureModel</span> <span class="n">gmm</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">GaussianMixture</span><span class="o">().</span><span class="na">setK</span><span class="o">(</span><span class="mi">2</span><span class="o">).</span><span class="na">run</span><span class="o">(</span><span class="n">parsedData</span><span class="o">.</span><span class="na">rdd</span><span class="o">());</span>

    <span class="c1">// Output the parameters of the mixture model</span>
    <span class="k">for</span><span class="o">(</span><span class="kt">int</span> <span class="n">j</span><span class="o">=</span><span class="mi">0</span><span class="o">;</span> <span class="n">j</span><span class="o">&lt;</span><span class="n">gmm</span><span class="o">.</span><span class="na">k</span><span class="o">();</span> <span class="n">j</span><span class="o">++)</span> <span class="o">{</span>
        <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">&quot;weight=%f\nmu=%s\nsigma=\n%s\n&quot;</span><span class="o">,</span>
            <span class="n">gmm</span><span class="o">.</span><span class="na">weights</span><span class="o">()[</span><span class="n">j</span><span class="o">],</span> <span class="n">gmm</span><span class="o">.</span><span class="na">gaussians</span><span class="o">()[</span><span class="n">j</span><span class="o">].</span><span class="na">mu</span><span class="o">(),</span> <span class="n">gmm</span><span class="o">.</span><span class="na">gaussians</span><span class="o">()[</span><span class="n">j</span><span class="o">].</span><span class="na">sigma</span><span class="o">());</span>
    <span class="o">}</span>
  <span class="o">}</span>
<span class="o">}</span></code></pre></div>

  </div>

<div data-lang="python">
    <p>In the following example after loading and parsing data, we use a
<a href="api/python/pyspark.mllib.html#pyspark.mllib.clustering.GaussianMixture">GaussianMixture</a>
object to cluster the data into two clusters. The number of desired clusters is passed
to the algorithm. We then output the parameters of the mixture model.</p>

    <div class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">from</span> <span class="nn">pyspark.mllib.clustering</span> <span class="kn">import</span> <span class="n">GaussianMixture</span>
<span class="kn">from</span> <span class="nn">numpy</span> <span class="kn">import</span> <span class="n">array</span>

<span class="c"># Load and parse the data</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">textFile</span><span class="p">(</span><span class="s">&quot;data/mllib/gmm_data.txt&quot;</span><span class="p">)</span>
<span class="n">parsedData</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">line</span><span class="p">:</span> <span class="n">array</span><span class="p">([</span><span class="nb">float</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">line</span><span class="o">.</span><span class="n">strip</span><span class="p">()</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s">&#39; &#39;</span><span class="p">)]))</span>

<span class="c"># Build the model (cluster the data)</span>
<span class="n">gmm</span> <span class="o">=</span> <span class="n">GaussianMixture</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">parsedData</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>

<span class="c"># output parameters of model</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">):</span>
    <span class="k">print</span> <span class="p">(</span><span class="s">&quot;weight = &quot;</span><span class="p">,</span> <span class="n">gmm</span><span class="o">.</span><span class="n">weights</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="s">&quot;mu = &quot;</span><span class="p">,</span> <span class="n">gmm</span><span class="o">.</span><span class="n">gaussians</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">mu</span><span class="p">,</span>
        <span class="s">&quot;sigma = &quot;</span><span class="p">,</span> <span class="n">gmm</span><span class="o">.</span><span class="n">gaussians</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">sigma</span><span class="o">.</span><span class="n">toArray</span><span class="p">())</span></code></pre></div>

  </div>

</div>

<h2 id="power-iteration-clustering-pic">Power iteration clustering (PIC)</h2>

<p>Power iteration clustering (PIC) is a scalable and efficient algorithm for clustering vertices of a
graph given pairwise similarties as edge properties,
described in <a href="http://www.icml2010.org/papers/387.pdf">Lin and Cohen, Power Iteration Clustering</a>.
It computes a pseudo-eigenvector of the normalized affinity matrix of the graph via
<a href="http://en.wikipedia.org/wiki/Power_iteration">power iteration</a>  and uses it to cluster vertices.
MLlib includes an implementation of PIC using GraphX as its backend.
It takes an <code>RDD</code> of <code>(srcId, dstId, similarity)</code> tuples and outputs a model with the clustering assignments.
The similarities must be nonnegative.
PIC assumes that the similarity measure is symmetric.
A pair <code>(srcId, dstId)</code> regardless of the ordering should appear at most once in the input data.
If a pair is missing from input, their similarity is treated as zero.
MLlib&#8217;s PIC implementation takes the following (hyper-)parameters:</p>

<ul>
  <li><code>k</code>: number of clusters</li>
  <li><code>maxIterations</code>: maximum number of power iterations</li>
  <li><code>initializationMode</code>: initialization model. This can be either &#8220;random&#8221;, which is the default,
to use a random vector as vertex properties, or &#8220;degree&#8221; to use normalized sum similarities.</li>
</ul>

<p><strong>Examples</strong></p>

<p>In the following, we show code snippets to demonstrate how to use PIC in MLlib.</p>

<div class="codetabs">
<div data-lang="scala">

    <p><a href="api/scala/index.html#org.apache.spark.mllib.clustering.PowerIterationClustering"><code>PowerIterationClustering</code></a> 
implements the PIC algorithm.
It takes an <code>RDD</code> of <code>(srcId: Long, dstId: Long, similarity: Double)</code> tuples representing the
affinity matrix.
Calling <code>PowerIterationClustering.run</code> returns a
<a href="api/scala/index.html#org.apache.spark.mllib.clustering.PowerIterationClusteringModel"><code>PowerIterationClusteringModel</code></a>,
which contains the computed clustering assignments.</p>

    <div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.mllib.clustering.PowerIterationClustering</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span>

<span class="k">val</span> <span class="n">similarities</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[(</span><span class="kt">Long</span>, <span class="kt">Long</span>, <span class="kt">Double</span><span class="o">)]</span> <span class="k">=</span> <span class="o">...</span>

<span class="k">val</span> <span class="n">pic</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">PowerIteartionClustering</span><span class="o">()</span>
  <span class="o">.</span><span class="n">setK</span><span class="o">(</span><span class="mi">3</span><span class="o">)</span>
  <span class="o">.</span><span class="n">setMaxIterations</span><span class="o">(</span><span class="mi">20</span><span class="o">)</span>
<span class="k">val</span> <span class="n">model</span> <span class="k">=</span> <span class="n">pic</span><span class="o">.</span><span class="n">run</span><span class="o">(</span><span class="n">similarities</span><span class="o">)</span>

<span class="n">model</span><span class="o">.</span><span class="n">assignments</span><span class="o">.</span><span class="n">foreach</span> <span class="o">{</span> <span class="n">a</span> <span class="k">=&gt;</span>
  <span class="n">println</span><span class="o">(</span><span class="n">s</span><span class="s">&quot;${a.id} -&gt; ${a.cluster}&quot;</span><span class="o">)</span>
<span class="o">}</span></code></pre></div>

    <p>A full example that produces the experiment described in the PIC paper can be found under
<a href="https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/PowerIterationClusteringExample.scala"><code>examples/</code></a>.</p>

  </div>

<div data-lang="java">

    <p><a href="api/java/org/apache/spark/mllib/clustering/PowerIterationClustering.html"><code>PowerIterationClustering</code></a>
implements the PIC algorithm.
It takes an <code>JavaRDD</code> of <code>(srcId: Long, dstId: Long, similarity: Double)</code> tuples representing the
affinity matrix.
Calling <code>PowerIterationClustering.run</code> returns a
<a href="api/java/org/apache/spark/mllib/clustering/PowerIterationClusteringModel.html"><code>PowerIterationClusteringModel</code></a>
which contains the computed clustering assignments.</p>

    <div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">scala.Tuple2</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">scala.Tuple3</span><span class="o">;</span>

<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.clustering.PowerIterationClustering</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.clustering.PowerIterationClusteringModel</span><span class="o">;</span>

<span class="n">JavaRDD</span><span class="o">&lt;</span><span class="n">Tuple3</span><span class="o">&lt;</span><span class="n">Long</span><span class="o">,</span> <span class="n">Long</span><span class="o">,</span> <span class="n">Double</span><span class="o">&gt;&gt;</span> <span class="n">similarities</span> <span class="o">=</span> <span class="o">...</span>

<span class="n">PowerIterationClustering</span> <span class="n">pic</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">PowerIterationClustering</span><span class="o">()</span>
  <span class="o">.</span><span class="na">setK</span><span class="o">(</span><span class="mi">2</span><span class="o">)</span>
  <span class="o">.</span><span class="na">setMaxIterations</span><span class="o">(</span><span class="mi">10</span><span class="o">);</span>
<span class="n">PowerIterationClusteringModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">pic</span><span class="o">.</span><span class="na">run</span><span class="o">(</span><span class="n">similarities</span><span class="o">);</span>

<span class="k">for</span> <span class="o">(</span><span class="n">PowerIterationClustering</span><span class="o">.</span><span class="na">Assignment</span> <span class="nl">a:</span> <span class="n">model</span><span class="o">.</span><span class="na">assignments</span><span class="o">().</span><span class="na">toJavaRDD</span><span class="o">().</span><span class="na">collect</span><span class="o">())</span> <span class="o">{</span>
  <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">a</span><span class="o">.</span><span class="na">id</span><span class="o">()</span> <span class="o">+</span> <span class="s">&quot; -&gt; &quot;</span> <span class="o">+</span> <span class="n">a</span><span class="o">.</span><span class="na">cluster</span><span class="o">());</span>
<span class="o">}</span></code></pre></div>

  </div>

</div>

<h2 id="latent-dirichlet-allocation-lda">Latent Dirichlet allocation (LDA)</h2>

<p><a href="http://en.wikipedia.org/wiki/Latent_Dirichlet_allocation">Latent Dirichlet allocation (LDA)</a>
is a topic model which infers topics from a collection of text documents.
LDA can be thought of as a clustering algorithm as follows:</p>

<ul>
  <li>Topics correspond to cluster centers, and documents correspond to examples (rows) in a dataset.</li>
  <li>Topics and documents both exist in a feature space, where feature vectors are vectors of word counts.</li>
  <li>Rather than estimating a clustering using a traditional distance, LDA uses a function based
 on a statistical model of how text documents are generated.</li>
</ul>

<p>LDA takes in a collection of documents as vectors of word counts.
It learns clustering using <a href="http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm">expectation-maximization</a>
on the likelihood function. After fitting on the documents, LDA provides:</p>

<ul>
  <li>Topics: Inferred topics, each of which is a probability distribution over terms (words).</li>
  <li>Topic distributions for documents: For each document in the training set, LDA gives a probability distribution over topics.</li>
</ul>

<p>LDA takes the following parameters:</p>

<ul>
  <li><code>k</code>: Number of topics (i.e., cluster centers)</li>
  <li><code>maxIterations</code>: Limit on the number of iterations of EM used for learning</li>
  <li><code>docConcentration</code>: Hyperparameter for prior over documents&#8217; distributions over topics. Currently must be &gt; 1, where larger values encourage smoother inferred distributions.</li>
  <li><code>topicConcentration</code>: Hyperparameter for prior over topics&#8217; distributions over terms (words). Currently must be &gt; 1, where larger values encourage smoother inferred distributions.</li>
  <li><code>checkpointInterval</code>: If using checkpointing (set in the Spark configuration), this parameter specifies the frequency with which checkpoints will be created.  If <code>maxIterations</code> is large, using checkpointing can help reduce shuffle file sizes on disk and help with failure recovery.</li>
</ul>

<p><em>Note</em>: LDA is a new feature with some missing functionality.  In particular, it does not yet
support prediction on new documents, and it does not have a Python API.  These will be added in the future.</p>

<p><strong>Examples</strong></p>

<p>In the following example, we load word count vectors representing a corpus of documents.
We then use <a href="api/scala/index.html#org.apache.spark.mllib.clustering.LDA">LDA</a>
to infer three topics from the documents. The number of desired clusters is passed
to the algorithm. We then output the topics, represented as probability distributions over words.</p>

<div class="codetabs">
<div data-lang="scala">

    <div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.mllib.clustering.LDA</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span>

<span class="c1">// Load and parse the data</span>
<span class="k">val</span> <span class="n">data</span> <span class="k">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">textFile</span><span class="o">(</span><span class="s">&quot;data/mllib/sample_lda_data.txt&quot;</span><span class="o">)</span>
<span class="k">val</span> <span class="n">parsedData</span> <span class="k">=</span> <span class="n">data</span><span class="o">.</span><span class="n">map</span><span class="o">(</span><span class="n">s</span> <span class="k">=&gt;</span> <span class="nc">Vectors</span><span class="o">.</span><span class="n">dense</span><span class="o">(</span><span class="n">s</span><span class="o">.</span><span class="n">trim</span><span class="o">.</span><span class="n">split</span><span class="o">(</span><span class="sc">&#39; &#39;</span><span class="o">).</span><span class="n">map</span><span class="o">(</span><span class="k">_</span><span class="o">.</span><span class="n">toDouble</span><span class="o">)))</span>
<span class="c1">// Index documents with unique IDs</span>
<span class="k">val</span> <span class="n">corpus</span> <span class="k">=</span> <span class="n">parsedData</span><span class="o">.</span><span class="n">zipWithIndex</span><span class="o">.</span><span class="n">map</span><span class="o">(</span><span class="k">_</span><span class="o">.</span><span class="n">swap</span><span class="o">).</span><span class="n">cache</span><span class="o">()</span>

<span class="c1">// Cluster the documents into three topics using LDA</span>
<span class="k">val</span> <span class="n">ldaModel</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">LDA</span><span class="o">().</span><span class="n">setK</span><span class="o">(</span><span class="mi">3</span><span class="o">).</span><span class="n">run</span><span class="o">(</span><span class="n">corpus</span><span class="o">)</span>

<span class="c1">// Output topics. Each is a distribution over words (matching word count vectors)</span>
<span class="n">println</span><span class="o">(</span><span class="s">&quot;Learned topics (as distributions over vocab of &quot;</span> <span class="o">+</span> <span class="n">ldaModel</span><span class="o">.</span><span class="n">vocabSize</span> <span class="o">+</span> <span class="s">&quot; words):&quot;</span><span class="o">)</span>
<span class="k">val</span> <span class="n">topics</span> <span class="k">=</span> <span class="n">ldaModel</span><span class="o">.</span><span class="n">topicsMatrix</span>
<span class="k">for</span> <span class="o">(</span><span class="n">topic</span> <span class="k">&lt;-</span> <span class="nc">Range</span><span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="mi">3</span><span class="o">))</span> <span class="o">{</span>
  <span class="n">print</span><span class="o">(</span><span class="s">&quot;Topic &quot;</span> <span class="o">+</span> <span class="n">topic</span> <span class="o">+</span> <span class="s">&quot;:&quot;</span><span class="o">)</span>
  <span class="k">for</span> <span class="o">(</span><span class="n">word</span> <span class="k">&lt;-</span> <span class="nc">Range</span><span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="n">ldaModel</span><span class="o">.</span><span class="n">vocabSize</span><span class="o">))</span> <span class="o">{</span> <span class="n">print</span><span class="o">(</span><span class="s">&quot; &quot;</span> <span class="o">+</span> <span class="n">topics</span><span class="o">(</span><span class="n">word</span><span class="o">,</span> <span class="n">topic</span><span class="o">));</span> <span class="o">}</span>
  <span class="n">println</span><span class="o">()</span>
<span class="o">}</span></code></pre></div>

  </div>

<div data-lang="java">

    <div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">scala.Tuple2</span><span class="o">;</span>

<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.*</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.function.Function</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.clustering.DistributedLDAModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.clustering.LDA</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Matrix</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.SparkConf</span><span class="o">;</span>

<span class="kd">public</span> <span class="kd">class</span> <span class="nc">JavaLDAExample</span> <span class="o">{</span>
  <span class="kd">public</span> <span class="kd">static</span> <span class="kt">void</span> <span class="nf">main</span><span class="o">(</span><span class="n">String</span><span class="o">[]</span> <span class="n">args</span><span class="o">)</span> <span class="o">{</span>
    <span class="n">SparkConf</span> <span class="n">conf</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">SparkConf</span><span class="o">().</span><span class="na">setAppName</span><span class="o">(</span><span class="s">&quot;LDA Example&quot;</span><span class="o">);</span>
    <span class="n">JavaSparkContext</span> <span class="n">sc</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">JavaSparkContext</span><span class="o">(</span><span class="n">conf</span><span class="o">);</span>

    <span class="c1">// Load and parse the data</span>
    <span class="n">String</span> <span class="n">path</span> <span class="o">=</span> <span class="s">&quot;data/mllib/sample_lda_data.txt&quot;</span><span class="o">;</span>
    <span class="n">JavaRDD</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;</span> <span class="n">data</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="na">textFile</span><span class="o">(</span><span class="n">path</span><span class="o">);</span>
    <span class="n">JavaRDD</span><span class="o">&lt;</span><span class="n">Vector</span><span class="o">&gt;</span> <span class="n">parsedData</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">map</span><span class="o">(</span>
        <span class="k">new</span> <span class="n">Function</span><span class="o">&lt;</span><span class="n">String</span><span class="o">,</span> <span class="n">Vector</span><span class="o">&gt;()</span> <span class="o">{</span>
          <span class="kd">public</span> <span class="n">Vector</span> <span class="nf">call</span><span class="o">(</span><span class="n">String</span> <span class="n">s</span><span class="o">)</span> <span class="o">{</span>
            <span class="n">String</span><span class="o">[]</span> <span class="n">sarray</span> <span class="o">=</span> <span class="n">s</span><span class="o">.</span><span class="na">trim</span><span class="o">().</span><span class="na">split</span><span class="o">(</span><span class="s">&quot; &quot;</span><span class="o">);</span>
            <span class="kt">double</span><span class="o">[]</span> <span class="n">values</span> <span class="o">=</span> <span class="k">new</span> <span class="kt">double</span><span class="o">[</span><span class="n">sarray</span><span class="o">.</span><span class="na">length</span><span class="o">];</span>
            <span class="k">for</span> <span class="o">(</span><span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span> <span class="n">i</span> <span class="o">&lt;</span> <span class="n">sarray</span><span class="o">.</span><span class="na">length</span><span class="o">;</span> <span class="n">i</span><span class="o">++)</span>
              <span class="n">values</span><span class="o">[</span><span class="n">i</span><span class="o">]</span> <span class="o">=</span> <span class="n">Double</span><span class="o">.</span><span class="na">parseDouble</span><span class="o">(</span><span class="n">sarray</span><span class="o">[</span><span class="n">i</span><span class="o">]);</span>
            <span class="k">return</span> <span class="n">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="n">values</span><span class="o">);</span>
          <span class="o">}</span>
        <span class="o">}</span>
    <span class="o">);</span>
    <span class="c1">// Index documents with unique IDs</span>
    <span class="n">JavaPairRDD</span><span class="o">&lt;</span><span class="n">Long</span><span class="o">,</span> <span class="n">Vector</span><span class="o">&gt;</span> <span class="n">corpus</span> <span class="o">=</span> <span class="n">JavaPairRDD</span><span class="o">.</span><span class="na">fromJavaRDD</span><span class="o">(</span><span class="n">parsedData</span><span class="o">.</span><span class="na">zipWithIndex</span><span class="o">().</span><span class="na">map</span><span class="o">(</span>
        <span class="k">new</span> <span class="n">Function</span><span class="o">&lt;</span><span class="n">Tuple2</span><span class="o">&lt;</span><span class="n">Vector</span><span class="o">,</span> <span class="n">Long</span><span class="o">&gt;,</span> <span class="n">Tuple2</span><span class="o">&lt;</span><span class="n">Long</span><span class="o">,</span> <span class="n">Vector</span><span class="o">&gt;&gt;()</span> <span class="o">{</span>
          <span class="kd">public</span> <span class="n">Tuple2</span><span class="o">&lt;</span><span class="n">Long</span><span class="o">,</span> <span class="n">Vector</span><span class="o">&gt;</span> <span class="nf">call</span><span class="o">(</span><span class="n">Tuple2</span><span class="o">&lt;</span><span class="n">Vector</span><span class="o">,</span> <span class="n">Long</span><span class="o">&gt;</span> <span class="n">doc_id</span><span class="o">)</span> <span class="o">{</span>
            <span class="k">return</span> <span class="n">doc_id</span><span class="o">.</span><span class="na">swap</span><span class="o">();</span>
          <span class="o">}</span>
        <span class="o">}</span>
    <span class="o">));</span>
    <span class="n">corpus</span><span class="o">.</span><span class="na">cache</span><span class="o">();</span>

    <span class="c1">// Cluster the documents into three topics using LDA</span>
    <span class="n">DistributedLDAModel</span> <span class="n">ldaModel</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">LDA</span><span class="o">().</span><span class="na">setK</span><span class="o">(</span><span class="mi">3</span><span class="o">).</span><span class="na">run</span><span class="o">(</span><span class="n">corpus</span><span class="o">);</span>

    <span class="c1">// Output topics. Each is a distribution over words (matching word count vectors)</span>
    <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">&quot;Learned topics (as distributions over vocab of &quot;</span> <span class="o">+</span> <span class="n">ldaModel</span><span class="o">.</span><span class="na">vocabSize</span><span class="o">()</span>
        <span class="o">+</span> <span class="s">&quot; words):&quot;</span><span class="o">);</span>
    <span class="n">Matrix</span> <span class="n">topics</span> <span class="o">=</span> <span class="n">ldaModel</span><span class="o">.</span><span class="na">topicsMatrix</span><span class="o">();</span>
    <span class="k">for</span> <span class="o">(</span><span class="kt">int</span> <span class="n">topic</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span> <span class="n">topic</span> <span class="o">&lt;</span> <span class="mi">3</span><span class="o">;</span> <span class="n">topic</span><span class="o">++)</span> <span class="o">{</span>
      <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">print</span><span class="o">(</span><span class="s">&quot;Topic &quot;</span> <span class="o">+</span> <span class="n">topic</span> <span class="o">+</span> <span class="s">&quot;:&quot;</span><span class="o">);</span>
      <span class="k">for</span> <span class="o">(</span><span class="kt">int</span> <span class="n">word</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span> <span class="n">word</span> <span class="o">&lt;</span> <span class="n">ldaModel</span><span class="o">.</span><span class="na">vocabSize</span><span class="o">();</span> <span class="n">word</span><span class="o">++)</span> <span class="o">{</span>
        <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">print</span><span class="o">(</span><span class="s">&quot; &quot;</span> <span class="o">+</span> <span class="n">topics</span><span class="o">.</span><span class="na">apply</span><span class="o">(</span><span class="n">word</span><span class="o">,</span> <span class="n">topic</span><span class="o">));</span>
      <span class="o">}</span>
      <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">();</span>
    <span class="o">}</span>
  <span class="o">}</span>
<span class="o">}</span></code></pre></div>

  </div>

</div>

<h2 id="streaming-k-means">Streaming k-means</h2>

<p>When data arrive in a stream, we may want to estimate clusters dynamically,
updating them as new data arrive. MLlib provides support for streaming k-means clustering,
with parameters to control the decay (or &#8220;forgetfulness&#8221;) of the estimates. The algorithm
uses a generalization of the mini-batch k-means update rule. For each batch of data, we assign
all points to their nearest cluster, compute new cluster centers, then update each cluster using:</p>

<p><code>\begin{equation}
    c_{t+1} = \frac{c_tn_t\alpha + x_tm_t}{n_t\alpha+m_t}
\end{equation}</code>
<code>\begin{equation}
    n_{t+1} = n_t + m_t
\end{equation}</code></p>

<p>Where <code>$c_t$</code> is the previous center for the cluster, <code>$n_t$</code> is the number of points assigned
to the cluster thus far, <code>$x_t$</code> is the new cluster center from the current batch, and <code>$m_t$</code>
is the number of points added to the cluster in the current batch. The decay factor <code>$\alpha$</code>
can be used to ignore the past: with <code>$\alpha$=1</code> all data will be used from the beginning;
with <code>$\alpha$=0</code> only the most recent data will be used. This is analogous to an
exponentially-weighted moving average.</p>

<p>The decay can be specified using a <code>halfLife</code> parameter, which determines the
correct decay factor <code>a</code> such that, for data acquired
at time <code>t</code>, its contribution by time <code>t + halfLife</code> will have dropped to 0.5.
The unit of time can be specified either as <code>batches</code> or <code>points</code> and the update rule
will be adjusted accordingly.</p>

<p><strong>Examples</strong></p>

<p>This example shows how to estimate clusters on streaming data.</p>

<div class="codetabs">

<div data-lang="scala">

    <p>First we import the neccessary classes.</p>

    <div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.regression.LabeledPoint</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.clustering.StreamingKMeans</span></code></pre></div>

    <p>Then we make an input stream of vectors for training, as well as a stream of labeled data
points for testing. We assume a StreamingContext <code>ssc</code> has been created, see
<a href="streaming-programming-guide.html#initializing">Spark Streaming Programming Guide</a> for more info.</p>

    <div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">val</span> <span class="n">trainingData</span> <span class="k">=</span> <span class="n">ssc</span><span class="o">.</span><span class="n">textFileStream</span><span class="o">(</span><span class="s">&quot;/training/data/dir&quot;</span><span class="o">).</span><span class="n">map</span><span class="o">(</span><span class="nc">Vectors</span><span class="o">.</span><span class="n">parse</span><span class="o">)</span>
<span class="k">val</span> <span class="n">testData</span> <span class="k">=</span> <span class="n">ssc</span><span class="o">.</span><span class="n">textFileStream</span><span class="o">(</span><span class="s">&quot;/testing/data/dir&quot;</span><span class="o">).</span><span class="n">map</span><span class="o">(</span><span class="nc">LabeledPoint</span><span class="o">.</span><span class="n">parse</span><span class="o">)</span></code></pre></div>

    <p>We create a model with random clusters and specify the number of clusters to find</p>

    <div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">val</span> <span class="n">numDimensions</span> <span class="k">=</span> <span class="mi">3</span>
<span class="k">val</span> <span class="n">numClusters</span> <span class="k">=</span> <span class="mi">2</span>
<span class="k">val</span> <span class="n">model</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">StreamingKMeans</span><span class="o">()</span>
  <span class="o">.</span><span class="n">setK</span><span class="o">(</span><span class="n">numClusters</span><span class="o">)</span>
  <span class="o">.</span><span class="n">setDecayFactor</span><span class="o">(</span><span class="mf">1.0</span><span class="o">)</span>
  <span class="o">.</span><span class="n">setRandomCenters</span><span class="o">(</span><span class="n">numDimensions</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">)</span></code></pre></div>

    <p>Now register the streams for training and testing and start the job, printing
the predicted cluster assignments on new data points as they arrive.</p>

    <div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="n">model</span><span class="o">.</span><span class="n">trainOn</span><span class="o">(</span><span class="n">trainingData</span><span class="o">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">predictOnValues</span><span class="o">(</span><span class="n">testData</span><span class="o">.</span><span class="n">map</span><span class="o">(</span><span class="n">lp</span> <span class="k">=&gt;</span> <span class="o">(</span><span class="n">lp</span><span class="o">.</span><span class="n">label</span><span class="o">,</span> <span class="n">lp</span><span class="o">.</span><span class="n">features</span><span class="o">))).</span><span class="n">print</span><span class="o">()</span>

<span class="n">ssc</span><span class="o">.</span><span class="n">start</span><span class="o">()</span>
<span class="n">ssc</span><span class="o">.</span><span class="n">awaitTermination</span><span class="o">()</span></code></pre></div>

    <p>As you add new text files with data the cluster centers will update. Each training
point should be formatted as <code>[x1, x2, x3]</code>, and each test data point
should be formatted as <code>(y, [x1, x2, x3])</code>, where <code>y</code> is some useful label or identifier
(e.g. a true category assignment). Anytime a text file is placed in <code>/training/data/dir</code>
the model will update. Anytime a text file is placed in <code>/testing/data/dir</code>
you will see predictions. With new data, the cluster centers will change!</p>

  </div>

</div>


        </div> <!-- /container -->

        <script src="js/vendor/jquery-1.8.0.min.js"></script>
        <script src="js/vendor/bootstrap.min.js"></script>
        <script src="js/main.js"></script>

        <!-- MathJax Section -->
        <script type="text/x-mathjax-config">
            MathJax.Hub.Config({
                TeX: { equationNumbers: { autoNumber: "AMS" } }
            });
        </script>
        <script>
            // Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS.
            // We could use "//cdn.mathjax...", but that won't support "file://".
            (function(d, script) {
                script = d.createElement('script');
                script.type = 'text/javascript';
                script.async = true;
                script.onload = function(){
                    MathJax.Hub.Config({
                        tex2jax: {
                            inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ],
                            displayMath: [ ["$$","$$"], ["\\[", "\\]"] ],
                            processEscapes: true,
                            skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
                        }
                    });
                };
                script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') +
                    'cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
                d.getElementsByTagName('head')[0].appendChild(script);
            }(document));
        </script>
    </body>
</html>