summaryrefslogtreecommitdiff
path: root/site/docs/1.3.0/mllib-dimensionality-reduction.html
diff options
context:
space:
mode:
authorPatrick Wendell <pwendell@apache.org>2015-03-13 02:30:55 +0000
committerPatrick Wendell <pwendell@apache.org>2015-03-13 02:30:55 +0000
commitaaf670598f15d47784d8b91b34dd614d0f8162af (patch)
treed86a329b056b3e9e9e79591d5b5bc3ee1781386b /site/docs/1.3.0/mllib-dimensionality-reduction.html
parent0d484ac791630a4f0ca7e82002113d94c931a1e7 (diff)
downloadspark-website-aaf670598f15d47784d8b91b34dd614d0f8162af.tar.gz
spark-website-aaf670598f15d47784d8b91b34dd614d0f8162af.tar.bz2
spark-website-aaf670598f15d47784d8b91b34dd614d0f8162af.zip
Spark 1.3.0 docs
Diffstat (limited to 'site/docs/1.3.0/mllib-dimensionality-reduction.html')
-rw-r--r--site/docs/1.3.0/mllib-dimensionality-reduction.html361
1 files changed, 361 insertions, 0 deletions
diff --git a/site/docs/1.3.0/mllib-dimensionality-reduction.html b/site/docs/1.3.0/mllib-dimensionality-reduction.html
new file mode 100644
index 000000000..08c6ca9e3
--- /dev/null
+++ b/site/docs/1.3.0/mllib-dimensionality-reduction.html
@@ -0,0 +1,361 @@
+<!DOCTYPE html>
+<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
+<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
+<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]-->
+<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
+ <head>
+ <meta charset="utf-8">
+ <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
+ <title>Dimensionality Reduction - MLlib - Spark 1.3.0 Documentation</title>
+
+
+
+
+ <link rel="stylesheet" href="css/bootstrap.min.css">
+ <style>
+ body {
+ padding-top: 60px;
+ padding-bottom: 40px;
+ }
+ </style>
+ <meta name="viewport" content="width=device-width">
+ <link rel="stylesheet" href="css/bootstrap-responsive.min.css">
+ <link rel="stylesheet" href="css/main.css">
+
+ <script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script>
+
+ <link rel="stylesheet" href="css/pygments-default.css">
+
+
+
+ </head>
+ <body>
+ <!--[if lt IE 7]>
+ <p class="chromeframe">You are using an outdated browser. <a href="http://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p>
+ <![endif]-->
+
+ <!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html -->
+
+ <div class="navbar navbar-fixed-top" id="topbar">
+ <div class="navbar-inner">
+ <div class="container">
+ <div class="brand"><a href="index.html">
+ <img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">1.3.0</span>
+ </div>
+ <ul class="nav">
+ <!--TODO(andyk): Add class="active" attribute to li some how.-->
+ <li><a href="index.html">Overview</a></li>
+
+ <li class="dropdown">
+ <a href="#" class="dropdown-toggle" data-toggle="dropdown">Programming Guides<b class="caret"></b></a>
+ <ul class="dropdown-menu">
+ <li><a href="quick-start.html">Quick Start</a></li>
+ <li><a href="programming-guide.html">Spark Programming Guide</a></li>
+ <li class="divider"></li>
+ <li><a href="streaming-programming-guide.html">Spark Streaming</a></li>
+ <li><a href="sql-programming-guide.html">DataFrames and SQL</a></li>
+ <li><a href="mllib-guide.html">MLlib (Machine Learning)</a></li>
+ <li><a href="graphx-programming-guide.html">GraphX (Graph Processing)</a></li>
+ <li><a href="bagel-programming-guide.html">Bagel (Pregel on Spark)</a></li>
+ </ul>
+ </li>
+
+ <li class="dropdown">
+ <a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a>
+ <ul class="dropdown-menu">
+ <li><a href="api/scala/index.html#org.apache.spark.package">Scala</a></li>
+ <li><a href="api/java/index.html">Java</a></li>
+ <li><a href="api/python/index.html">Python</a></li>
+ </ul>
+ </li>
+
+ <li class="dropdown">
+ <a href="#" class="dropdown-toggle" data-toggle="dropdown">Deploying<b class="caret"></b></a>
+ <ul class="dropdown-menu">
+ <li><a href="cluster-overview.html">Overview</a></li>
+ <li><a href="submitting-applications.html">Submitting Applications</a></li>
+ <li class="divider"></li>
+ <li><a href="spark-standalone.html">Spark Standalone</a></li>
+ <li><a href="running-on-mesos.html">Mesos</a></li>
+ <li><a href="running-on-yarn.html">YARN</a></li>
+ <li class="divider"></li>
+ <li><a href="ec2-scripts.html">Amazon EC2</a></li>
+ </ul>
+ </li>
+
+ <li class="dropdown">
+ <a href="api.html" class="dropdown-toggle" data-toggle="dropdown">More<b class="caret"></b></a>
+ <ul class="dropdown-menu">
+ <li><a href="configuration.html">Configuration</a></li>
+ <li><a href="monitoring.html">Monitoring</a></li>
+ <li><a href="tuning.html">Tuning Guide</a></li>
+ <li><a href="job-scheduling.html">Job Scheduling</a></li>
+ <li><a href="security.html">Security</a></li>
+ <li><a href="hardware-provisioning.html">Hardware Provisioning</a></li>
+ <li><a href="hadoop-third-party-distributions.html">3<sup>rd</sup>-Party Hadoop Distros</a></li>
+ <li class="divider"></li>
+ <li><a href="building-spark.html">Building Spark</a></li>
+ <li><a href="https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark">Contributing to Spark</a></li>
+ <li><a href="https://cwiki.apache.org/confluence/display/SPARK/Supplemental+Spark+Projects">Supplemental Projects</a></li>
+ </ul>
+ </li>
+ </ul>
+ <!--<p class="navbar-text pull-right"><span class="version-text">v1.3.0</span></p>-->
+ </div>
+ </div>
+ </div>
+
+ <div class="container" id="content">
+
+ <h1 class="title"><a href="mllib-guide.html">MLlib</a> - Dimensionality Reduction</h1>
+
+
+ <ul id="markdown-toc">
+ <li><a href="#singular-value-decomposition-svd">Singular value decomposition (SVD)</a> <ul>
+ <li><a href="#performance">Performance</a></li>
+ <li><a href="#svd-example">SVD Example</a></li>
+ </ul>
+ </li>
+ <li><a href="#principal-component-analysis-pca">Principal component analysis (PCA)</a></li>
+</ul>
+
+<p><a href="http://en.wikipedia.org/wiki/Dimensionality_reduction">Dimensionality reduction</a> is the process
+of reducing the number of variables under consideration.
+It can be used to extract latent features from raw and noisy features
+or compress data while maintaining the structure.
+MLlib provides support for dimensionality reduction on the <a href="mllib-data-types.html#rowmatrix">RowMatrix</a> class.</p>
+
+<h2 id="singular-value-decomposition-svd">Singular value decomposition (SVD)</h2>
+
+<p><a href="http://en.wikipedia.org/wiki/Singular_value_decomposition">Singular value decomposition (SVD)</a>
+factorizes a matrix into three matrices: $U$, $\Sigma$, and $V$ such that</p>
+
+<p><code>\[
+A = U \Sigma V^T,
+\]</code></p>
+
+<p>where </p>
+
+<ul>
+ <li>$U$ is an orthonormal matrix, whose columns are called left singular vectors,</li>
+ <li>$\Sigma$ is a diagonal matrix with non-negative diagonals in descending order,
+whose diagonals are called singular values,</li>
+ <li>$V$ is an orthonormal matrix, whose columns are called right singular vectors.</li>
+</ul>
+
+<p>For large matrices, usually we don&#8217;t need the complete factorization but only the top singular
+values and its associated singular vectors. This can save storage, de-noise
+and recover the low-rank structure of the matrix.</p>
+
+<p>If we keep the top $k$ singular values, then the dimensions of the resulting low-rank matrix will be:</p>
+
+<ul>
+ <li><code>$U$</code>: <code>$m \times k$</code>,</li>
+ <li><code>$\Sigma$</code>: <code>$k \times k$</code>,</li>
+ <li><code>$V$</code>: <code>$n \times k$</code>.</li>
+</ul>
+
+<h3 id="performance">Performance</h3>
+<p>We assume $n$ is smaller than $m$. The singular values and the right singular vectors are derived
+from the eigenvalues and the eigenvectors of the Gramian matrix $A^T A$. The matrix
+storing the left singular vectors $U$, is computed via matrix multiplication as
+$U = A (V S^{-1})$, if requested by the user via the computeU parameter.
+The actual method to use is determined automatically based on the computational cost:</p>
+
+<ul>
+ <li>If $n$ is small ($n &lt; 100$) or $k$ is large compared with $n$ ($k &gt; n / 2$), we compute the Gramian matrix
+first and then compute its top eigenvalues and eigenvectors locally on the driver.
+This requires a single pass with $O(n^2)$ storage on each executor and on the driver, and
+$O(n^2 k)$ time on the driver.</li>
+ <li>Otherwise, we compute $(A^T A) v$ in a distributive way and send it to
+<a href="http://www.caam.rice.edu/software/ARPACK/">ARPACK</a> to
+compute $(A^T A)$&#8217;s top eigenvalues and eigenvectors on the driver node. This requires $O(k)$
+passes, $O(n)$ storage on each executor, and $O(n k)$ storage on the driver.</li>
+</ul>
+
+<h3 id="svd-example">SVD Example</h3>
+
+<p>MLlib provides SVD functionality to row-oriented matrices, provided in the
+<a href="mllib-data-types.html#rowmatrix">RowMatrix</a> class. </p>
+
+<div class="codetabs">
+<div data-lang="scala">
+
+ <div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Matrix</span>
+<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.RowMatrix</span>
+<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.SingularValueDecomposition</span>
+
+<span class="k">val</span> <span class="n">mat</span><span class="k">:</span> <span class="kt">RowMatrix</span> <span class="o">=</span> <span class="o">...</span>
+
+<span class="c1">// Compute the top 20 singular values and corresponding singular vectors.</span>
+<span class="k">val</span> <span class="n">svd</span><span class="k">:</span> <span class="kt">SingularValueDecomposition</span><span class="o">[</span><span class="kt">RowMatrix</span>, <span class="kt">Matrix</span><span class="o">]</span> <span class="k">=</span> <span class="n">mat</span><span class="o">.</span><span class="n">computeSVD</span><span class="o">(</span><span class="mi">20</span><span class="o">,</span> <span class="n">computeU</span> <span class="k">=</span> <span class="kc">true</span><span class="o">)</span>
+<span class="k">val</span> <span class="n">U</span><span class="k">:</span> <span class="kt">RowMatrix</span> <span class="o">=</span> <span class="n">svd</span><span class="o">.</span><span class="n">U</span> <span class="c1">// The U factor is a RowMatrix.</span>
+<span class="k">val</span> <span class="n">s</span><span class="k">:</span> <span class="kt">Vector</span> <span class="o">=</span> <span class="n">svd</span><span class="o">.</span><span class="n">s</span> <span class="c1">// The singular values are stored in a local dense vector.</span>
+<span class="k">val</span> <span class="n">V</span><span class="k">:</span> <span class="kt">Matrix</span> <span class="o">=</span> <span class="n">svd</span><span class="o">.</span><span class="n">V</span> <span class="c1">// The V factor is a local dense matrix.</span></code></pre></div>
+
+ <p>The same code applies to <code>IndexedRowMatrix</code> if <code>U</code> is defined as an
+<code>IndexedRowMatrix</code>.</p>
+ </div>
+<div data-lang="java">
+
+ <div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">java.util.LinkedList</span><span class="o">;</span>
+
+<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.*</span><span class="o">;</span>
+<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.RowMatrix</span><span class="o">;</span>
+<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Matrix</span><span class="o">;</span>
+<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.SingularValueDecomposition</span><span class="o">;</span>
+<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span><span class="o">;</span>
+<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span><span class="o">;</span>
+<span class="kn">import</span> <span class="nn">org.apache.spark.rdd.RDD</span><span class="o">;</span>
+<span class="kn">import</span> <span class="nn">org.apache.spark.SparkConf</span><span class="o">;</span>
+<span class="kn">import</span> <span class="nn">org.apache.spark.SparkContext</span><span class="o">;</span>
+
+<span class="kd">public</span> <span class="kd">class</span> <span class="nc">SVD</span> <span class="o">{</span>
+ <span class="kd">public</span> <span class="kd">static</span> <span class="kt">void</span> <span class="nf">main</span><span class="o">(</span><span class="n">String</span><span class="o">[]</span> <span class="n">args</span><span class="o">)</span> <span class="o">{</span>
+ <span class="n">SparkConf</span> <span class="n">conf</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">SparkConf</span><span class="o">().</span><span class="na">setAppName</span><span class="o">(</span><span class="s">&quot;SVD Example&quot;</span><span class="o">);</span>
+ <span class="n">SparkContext</span> <span class="n">sc</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">SparkContext</span><span class="o">(</span><span class="n">conf</span><span class="o">);</span>
+
+ <span class="kt">double</span><span class="o">[][]</span> <span class="n">array</span> <span class="o">=</span> <span class="o">...</span>
+ <span class="n">LinkedList</span><span class="o">&lt;</span><span class="n">Vector</span><span class="o">&gt;</span> <span class="n">rowsList</span> <span class="o">=</span> <span class="k">new</span> <span class="n">LinkedList</span><span class="o">&lt;</span><span class="n">Vector</span><span class="o">&gt;();</span>
+ <span class="k">for</span> <span class="o">(</span><span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span> <span class="n">i</span> <span class="o">&lt;</span> <span class="n">array</span><span class="o">.</span><span class="na">length</span><span class="o">;</span> <span class="n">i</span><span class="o">++)</span> <span class="o">{</span>
+ <span class="n">Vector</span> <span class="n">currentRow</span> <span class="o">=</span> <span class="n">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="n">array</span><span class="o">[</span><span class="n">i</span><span class="o">]);</span>
+ <span class="n">rowsList</span><span class="o">.</span><span class="na">add</span><span class="o">(</span><span class="n">currentRow</span><span class="o">);</span>
+ <span class="o">}</span>
+ <span class="n">JavaRDD</span><span class="o">&lt;</span><span class="n">Vector</span><span class="o">&gt;</span> <span class="n">rows</span> <span class="o">=</span> <span class="n">JavaSparkContext</span><span class="o">.</span><span class="na">fromSparkContext</span><span class="o">(</span><span class="n">sc</span><span class="o">).</span><span class="na">parallelize</span><span class="o">(</span><span class="n">rowsList</span><span class="o">);</span>
+
+ <span class="c1">// Create a RowMatrix from JavaRDD&lt;Vector&gt;.</span>
+ <span class="n">RowMatrix</span> <span class="n">mat</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">RowMatrix</span><span class="o">(</span><span class="n">rows</span><span class="o">.</span><span class="na">rdd</span><span class="o">());</span>
+
+ <span class="c1">// Compute the top 4 singular values and corresponding singular vectors.</span>
+ <span class="n">SingularValueDecomposition</span><span class="o">&lt;</span><span class="n">RowMatrix</span><span class="o">,</span> <span class="n">Matrix</span><span class="o">&gt;</span> <span class="n">svd</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="na">computeSVD</span><span class="o">(</span><span class="mi">4</span><span class="o">,</span> <span class="kc">true</span><span class="o">,</span> <span class="mf">1.0</span><span class="n">E</span><span class="o">-</span><span class="mi">9</span><span class="n">d</span><span class="o">);</span>
+ <span class="n">RowMatrix</span> <span class="n">U</span> <span class="o">=</span> <span class="n">svd</span><span class="o">.</span><span class="na">U</span><span class="o">();</span>
+ <span class="n">Vector</span> <span class="n">s</span> <span class="o">=</span> <span class="n">svd</span><span class="o">.</span><span class="na">s</span><span class="o">();</span>
+ <span class="n">Matrix</span> <span class="n">V</span> <span class="o">=</span> <span class="n">svd</span><span class="o">.</span><span class="na">V</span><span class="o">();</span>
+ <span class="o">}</span>
+<span class="o">}</span></code></pre></div>
+
+ <p>The same code applies to <code>IndexedRowMatrix</code> if <code>U</code> is defined as an
+<code>IndexedRowMatrix</code>.</p>
+
+ <p>In order to run the above application, follow the instructions
+provided in the <a href="quick-start.html#self-contained-applications">Self-Contained
+Applications</a> section of the Spark
+quick-start guide. Be sure to also include <em>spark-mllib</em> to your build file as
+a dependency.</p>
+
+ </div>
+</div>
+
+<h2 id="principal-component-analysis-pca">Principal component analysis (PCA)</h2>
+
+<p><a href="http://en.wikipedia.org/wiki/Principal_component_analysis">Principal component analysis (PCA)</a> is a
+statistical method to find a rotation such that the first coordinate has the largest variance
+possible, and each succeeding coordinate in turn has the largest variance possible. The columns of
+the rotation matrix are called principal components. PCA is used widely in dimensionality reduction.</p>
+
+<p>MLlib supports PCA for tall-and-skinny matrices stored in row-oriented format.</p>
+
+<div class="codetabs">
+<div data-lang="scala">
+
+ <p>The following code demonstrates how to compute principal components on a <code>RowMatrix</code>
+and use them to project the vectors into a low-dimensional space.</p>
+
+ <div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Matrix</span>
+<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.RowMatrix</span>
+
+<span class="k">val</span> <span class="n">mat</span><span class="k">:</span> <span class="kt">RowMatrix</span> <span class="o">=</span> <span class="o">...</span>
+
+<span class="c1">// Compute the top 10 principal components.</span>
+<span class="k">val</span> <span class="n">pc</span><span class="k">:</span> <span class="kt">Matrix</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="n">computePrincipalComponents</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span> <span class="c1">// Principal components are stored in a local dense matrix.</span>
+
+<span class="c1">// Project the rows to the linear space spanned by the top 10 principal components.</span>
+<span class="k">val</span> <span class="n">projected</span><span class="k">:</span> <span class="kt">RowMatrix</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="n">multiply</span><span class="o">(</span><span class="n">pc</span><span class="o">)</span></code></pre></div>
+
+ </div>
+
+<div data-lang="java">
+
+ <p>The following code demonstrates how to compute principal components on a <code>RowMatrix</code>
+and use them to project the vectors into a low-dimensional space.
+The number of columns should be small, e.g, less than 1000.</p>
+
+ <div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">java.util.LinkedList</span><span class="o">;</span>
+
+<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.*</span><span class="o">;</span>
+<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.RowMatrix</span><span class="o">;</span>
+<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Matrix</span><span class="o">;</span>
+<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span><span class="o">;</span>
+<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span><span class="o">;</span>
+<span class="kn">import</span> <span class="nn">org.apache.spark.rdd.RDD</span><span class="o">;</span>
+<span class="kn">import</span> <span class="nn">org.apache.spark.SparkConf</span><span class="o">;</span>
+<span class="kn">import</span> <span class="nn">org.apache.spark.SparkContext</span><span class="o">;</span>
+
+<span class="kd">public</span> <span class="kd">class</span> <span class="nc">PCA</span> <span class="o">{</span>
+ <span class="kd">public</span> <span class="kd">static</span> <span class="kt">void</span> <span class="nf">main</span><span class="o">(</span><span class="n">String</span><span class="o">[]</span> <span class="n">args</span><span class="o">)</span> <span class="o">{</span>
+ <span class="n">SparkConf</span> <span class="n">conf</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">SparkConf</span><span class="o">().</span><span class="na">setAppName</span><span class="o">(</span><span class="s">&quot;PCA Example&quot;</span><span class="o">);</span>
+ <span class="n">SparkContext</span> <span class="n">sc</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">SparkContext</span><span class="o">(</span><span class="n">conf</span><span class="o">);</span>
+
+ <span class="kt">double</span><span class="o">[][]</span> <span class="n">array</span> <span class="o">=</span> <span class="o">...</span>
+ <span class="n">LinkedList</span><span class="o">&lt;</span><span class="n">Vector</span><span class="o">&gt;</span> <span class="n">rowsList</span> <span class="o">=</span> <span class="k">new</span> <span class="n">LinkedList</span><span class="o">&lt;</span><span class="n">Vector</span><span class="o">&gt;();</span>
+ <span class="k">for</span> <span class="o">(</span><span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span> <span class="n">i</span> <span class="o">&lt;</span> <span class="n">array</span><span class="o">.</span><span class="na">length</span><span class="o">;</span> <span class="n">i</span><span class="o">++)</span> <span class="o">{</span>
+ <span class="n">Vector</span> <span class="n">currentRow</span> <span class="o">=</span> <span class="n">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="n">array</span><span class="o">[</span><span class="n">i</span><span class="o">]);</span>
+ <span class="n">rowsList</span><span class="o">.</span><span class="na">add</span><span class="o">(</span><span class="n">currentRow</span><span class="o">);</span>
+ <span class="o">}</span>
+ <span class="n">JavaRDD</span><span class="o">&lt;</span><span class="n">Vector</span><span class="o">&gt;</span> <span class="n">rows</span> <span class="o">=</span> <span class="n">JavaSparkContext</span><span class="o">.</span><span class="na">fromSparkContext</span><span class="o">(</span><span class="n">sc</span><span class="o">).</span><span class="na">parallelize</span><span class="o">(</span><span class="n">rowsList</span><span class="o">);</span>
+
+ <span class="c1">// Create a RowMatrix from JavaRDD&lt;Vector&gt;.</span>
+ <span class="n">RowMatrix</span> <span class="n">mat</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">RowMatrix</span><span class="o">(</span><span class="n">rows</span><span class="o">.</span><span class="na">rdd</span><span class="o">());</span>
+
+ <span class="c1">// Compute the top 3 principal components.</span>
+ <span class="n">Matrix</span> <span class="n">pc</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="na">computePrincipalComponents</span><span class="o">(</span><span class="mi">3</span><span class="o">);</span>
+ <span class="n">RowMatrix</span> <span class="n">projected</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="na">multiply</span><span class="o">(</span><span class="n">pc</span><span class="o">);</span>
+ <span class="o">}</span>
+<span class="o">}</span></code></pre></div>
+
+ </div>
+</div>
+
+<p>In order to run the above application, follow the instructions
+provided in the <a href="quick-start.html#self-contained-applications">Self-Contained Applications</a>
+section of the Spark
+quick-start guide. Be sure to also include <em>spark-mllib</em> to your build file as
+a dependency.</p>
+
+
+ </div> <!-- /container -->
+
+ <script src="js/vendor/jquery-1.8.0.min.js"></script>
+ <script src="js/vendor/bootstrap.min.js"></script>
+ <script src="js/main.js"></script>
+
+ <!-- MathJax Section -->
+ <script type="text/x-mathjax-config">
+ MathJax.Hub.Config({
+ TeX: { equationNumbers: { autoNumber: "AMS" } }
+ });
+ </script>
+ <script>
+ // Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS.
+ // We could use "//cdn.mathjax...", but that won't support "file://".
+ (function(d, script) {
+ script = d.createElement('script');
+ script.type = 'text/javascript';
+ script.async = true;
+ script.onload = function(){
+ MathJax.Hub.Config({
+ tex2jax: {
+ inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ],
+ displayMath: [ ["$$","$$"], ["\\[", "\\]"] ],
+ processEscapes: true,
+ skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
+ }
+ });
+ };
+ script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') +
+ 'cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
+ d.getElementsByTagName('head')[0].appendChild(script);
+ }(document));
+ </script>
+ </body>
+</html>