aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorReza Zadeh <rizlar@gmail.com>2014-03-20 10:39:20 -0700
committerMatei Zaharia <matei@databricks.com>2014-03-20 10:39:20 -0700
commit66a03e5fe0167f590d150e099b15902e826a188f (patch)
treedcefdd0a43f1fdb80b13a929ec13aec96d4682cb
parentffe272d97c22955fe7744b1c0132cd9877b6df96 (diff)
downloadspark-66a03e5fe0167f590d150e099b15902e826a188f.tar.gz
spark-66a03e5fe0167f590d150e099b15902e826a188f.tar.bz2
spark-66a03e5fe0167f590d150e099b15902e826a188f.zip
Principal Component Analysis
# Principal Component Analysis Computes the top k principal component coefficients for the m-by-n data matrix X. Rows of X correspond to observations and columns correspond to variables. The coefficient matrix is n-by-k. Each column of the coefficients return matrix contains coefficients for one principal component, and the columns are in descending order of component variance. This function centers the data and uses the singular value decomposition (SVD) algorithm. ## Testing Tests included: * All principal components * Only top k principal components * Dense SVD tests * Dense/sparse matrix tests The results are tested against MATLAB's pca: http://www.mathworks.com/help/stats/pca.html ## Documentation Added to mllib-guide.md ## Example Usage Added to examples directory under SparkPCA.scala Author: Reza Zadeh <rizlar@gmail.com> Closes #88 from rezazadeh/sparkpca and squashes the following commits: e298700 [Reza Zadeh] reformat using IDE 3f23271 [Reza Zadeh] documentation and cleanup b025ab2 [Reza Zadeh] documentation e2667d4 [Reza Zadeh] assertMatrixApproximatelyEquals 3787bb4 [Reza Zadeh] stylin c6ecc1f [Reza Zadeh] docs aa2bbcb [Reza Zadeh] rename sparseToTallSkinnyDense 56975b0 [Reza Zadeh] docs 2df9bde [Reza Zadeh] docs update 8fb0015 [Reza Zadeh] rcond documentation dbf7797 [Reza Zadeh] correct argument number a9f1f62 [Reza Zadeh] documentation 4ce6caa [Reza Zadeh] style changes 9a56a02 [Reza Zadeh] use rcond relative to larget svalue 120f796 [Reza Zadeh] housekeeping 156ff78 [Reza Zadeh] string comprehension 2e1cf43 [Reza Zadeh] rename rcond ea223a6 [Reza Zadeh] many style changes f4002d7 [Reza Zadeh] more docs bd53c7a [Reza Zadeh] proper accumulator a8b5ecf [Reza Zadeh] Don't use for loops 0dc7980 [Reza Zadeh] filter zeros in sparse 6115610 [Reza Zadeh] More documentation 36d51e8 [Reza Zadeh] use JBLAS for UVS^-1 computation bc4599f [Reza Zadeh] configurable rcond 86f7515 [Reza Zadeh] compute per parition, use while 09726b3 [Reza Zadeh] more style changes 4195e69 [Reza Zadeh] private, accumulator 17002be [Reza Zadeh] style changes 4ba7471 [Reza Zadeh] style change f4982e6 [Reza Zadeh] Use dense matrix in example 2828d28 [Reza Zadeh] optimizations: normalize once, use inplace ops 72c9fa1 [Reza Zadeh] rename DenseMatrix to TallSkinnyDenseMatrix, lean f807be9 [Reza Zadeh] fix typo 2d7ccde [Reza Zadeh] Array interface for dense svd and pca cd290fa [Reza Zadeh] provide RDD[Array[Double]] support 398d123 [Reza Zadeh] style change 55abbfa [Reza Zadeh] docs fix ef29644 [Reza Zadeh] bad chnage undo 472566e [Reza Zadeh] all files from old pr 555168f [Reza Zadeh] initial files
-rw-r--r--docs/mllib-guide.md1
-rw-r--r--docs/mllib-linear-algebra.md13
-rw-r--r--examples/src/main/scala/org/apache/spark/examples/mllib/SparkPCA.scala51
-rw-r--r--examples/src/main/scala/org/apache/spark/examples/mllib/SparkSVD.scala4
-rw-r--r--mllib/src/main/scala/org/apache/spark/mllib/linalg/MatrixRow.scala26
-rw-r--r--mllib/src/main/scala/org/apache/spark/mllib/linalg/PCA.scala120
-rw-r--r--mllib/src/main/scala/org/apache/spark/mllib/linalg/SVD.scala370
-rw-r--r--mllib/src/main/scala/org/apache/spark/mllib/linalg/TallSkinnyDenseMatrix.scala30
-rw-r--r--mllib/src/main/scala/org/apache/spark/mllib/linalg/TallSkinnyMatrixSVD.scala31
-rw-r--r--mllib/src/main/scala/org/apache/spark/mllib/util/LAUtils.scala65
-rw-r--r--mllib/src/test/scala/org/apache/spark/mllib/linalg/PCASuite.scala124
-rw-r--r--mllib/src/test/scala/org/apache/spark/mllib/linalg/SVDSuite.scala98
12 files changed, 819 insertions, 114 deletions
diff --git a/docs/mllib-guide.md b/docs/mllib-guide.md
index 76308ec9c0..203d235bf9 100644
--- a/docs/mllib-guide.md
+++ b/docs/mllib-guide.md
@@ -29,6 +29,7 @@ The following links provide a detailed explanation of the methods and usage exam
* Gradient Descent and Stochastic Gradient Descent
* <a href="mllib-linear-algebra.html">Linear Algebra</a>
* Singular Value Decomposition
+ * Principal Component Analysis
# Dependencies
MLlib uses the [jblas](https://github.com/mikiobraun/jblas) linear algebra library, which itself
diff --git a/docs/mllib-linear-algebra.md b/docs/mllib-linear-algebra.md
index cc203d833d..09598be790 100644
--- a/docs/mllib-linear-algebra.md
+++ b/docs/mllib-linear-algebra.md
@@ -59,3 +59,16 @@ val = decomposed.S.data
println("singular values = " + s.toArray.mkString)
{% endhighlight %}
+
+
+# Principal Component Analysis
+
+Computes the top k principal component coefficients for the m-by-n data matrix X.
+Rows of X correspond to observations and columns correspond to variables.
+The coefficient matrix is n-by-k. Each column of the return matrix contains coefficients
+for one principal component, and the columns are in descending
+order of component variance. This function centers the data and uses the
+singular value decomposition (SVD) algorithm.
+
+All input and output is expected in DenseMatrix matrix format. See the examples directory
+under "SparkPCA.scala" for example usage.
diff --git a/examples/src/main/scala/org/apache/spark/examples/mllib/SparkPCA.scala b/examples/src/main/scala/org/apache/spark/examples/mllib/SparkPCA.scala
new file mode 100644
index 0000000000..d4e08c5e12
--- /dev/null
+++ b/examples/src/main/scala/org/apache/spark/examples/mllib/SparkPCA.scala
@@ -0,0 +1,51 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.examples.mllib
+
+import org.apache.spark.SparkContext
+import org.apache.spark.mllib.linalg.PCA
+import org.apache.spark.mllib.linalg.MatrixEntry
+import org.apache.spark.mllib.linalg.SparseMatrix
+import org.apache.spark.mllib.util._
+
+
+/**
+ * Compute PCA of an example matrix.
+ */
+object SparkPCA {
+ def main(args: Array[String]) {
+ if (args.length != 3) {
+ System.err.println("Usage: SparkPCA <master> m n")
+ System.exit(1)
+ }
+ val sc = new SparkContext(args(0), "PCA",
+ System.getenv("SPARK_HOME"), SparkContext.jarOfClass(this.getClass))
+
+ val m = args(2).toInt
+ val n = args(3).toInt
+
+ // Make example matrix
+ val data = Array.tabulate(m, n) { (a, b) =>
+ (a + 2).toDouble * (b + 1) / (1 + a + b) }
+
+ // recover top principal component
+ val coeffs = new PCA().setK(1).compute(sc.makeRDD(data))
+
+ println("top principal component = " + coeffs.mkString(", "))
+ }
+}
diff --git a/examples/src/main/scala/org/apache/spark/examples/mllib/SparkSVD.scala b/examples/src/main/scala/org/apache/spark/examples/mllib/SparkSVD.scala
index ce2b133368..2933cec497 100644
--- a/examples/src/main/scala/org/apache/spark/examples/mllib/SparkSVD.scala
+++ b/examples/src/main/scala/org/apache/spark/examples/mllib/SparkSVD.scala
@@ -38,7 +38,7 @@ object SparkSVD {
System.exit(1)
}
val sc = new SparkContext(args(0), "SVD",
- System.getenv("SPARK_HOME"), Seq(System.getenv("SPARK_EXAMPLES_JAR")))
+ System.getenv("SPARK_HOME"), SparkContext.jarOfClass(this.getClass))
// Load and parse the data file
val data = sc.textFile(args(1)).map { line =>
@@ -49,7 +49,7 @@ object SparkSVD {
val n = args(3).toInt
// recover largest singular vector
- val decomposed = SVD.sparseSVD(SparseMatrix(data, m, n), 1)
+ val decomposed = new SVD().setK(1).compute(SparseMatrix(data, m, n))
val u = decomposed.U.data
val s = decomposed.S.data
val v = decomposed.V.data
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/MatrixRow.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/MatrixRow.scala
new file mode 100644
index 0000000000..2608a67bfe
--- /dev/null
+++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/MatrixRow.scala
@@ -0,0 +1,26 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.mllib.linalg
+
+/**
+ * Class that represents a row of a dense matrix
+ *
+ * @param i row index (0 indexing used)
+ * @param data entries of the row
+ */
+case class MatrixRow(val i: Int, val data: Array[Double])
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/PCA.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/PCA.scala
new file mode 100644
index 0000000000..fe5b3f6c7e
--- /dev/null
+++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/PCA.scala
@@ -0,0 +1,120 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.mllib.linalg
+
+import org.apache.spark.rdd.RDD
+
+
+import org.jblas.DoubleMatrix
+
+
+/**
+ * Class used to obtain principal components
+ */
+class PCA {
+ private var k = 1
+
+ /**
+ * Set the number of top-k principle components to return
+ */
+ def setK(k: Int): PCA = {
+ this.k = k
+ this
+ }
+
+ /**
+ * Compute PCA using the current set parameters
+ */
+ def compute(matrix: TallSkinnyDenseMatrix): Array[Array[Double]] = {
+ computePCA(matrix)
+ }
+
+ /**
+ * Compute PCA using the parameters currently set
+ * See computePCA() for more details
+ */
+ def compute(matrix: RDD[Array[Double]]): Array[Array[Double]] = {
+ computePCA(matrix)
+ }
+
+ /**
+ * Computes the top k principal component coefficients for the m-by-n data matrix X.
+ * Rows of X correspond to observations and columns correspond to variables.
+ * The coefficient matrix is n-by-k. Each column of coeff contains coefficients
+ * for one principal component, and the columns are in descending
+ * order of component variance.
+ * This function centers the data and uses the
+ * singular value decomposition (SVD) algorithm.
+ *
+ * @param matrix dense matrix to perform PCA on
+ * @return An nxk matrix with principal components in columns. Columns are inner arrays
+ */
+ private def computePCA(matrix: TallSkinnyDenseMatrix): Array[Array[Double]] = {
+ val m = matrix.m
+ val n = matrix.n
+
+ if (m <= 0 || n <= 0) {
+ throw new IllegalArgumentException("Expecting a well-formed matrix: m=$m n=$n")
+ }
+
+ computePCA(matrix.rows.map(_.data))
+ }
+
+ /**
+ * Computes the top k principal component coefficients for the m-by-n data matrix X.
+ * Rows of X correspond to observations and columns correspond to variables.
+ * The coefficient matrix is n-by-k. Each column of coeff contains coefficients
+ * for one principal component, and the columns are in descending
+ * order of component variance.
+ * This function centers the data and uses the
+ * singular value decomposition (SVD) algorithm.
+ *
+ * @param matrix dense matrix to perform pca on
+ * @return An nxk matrix of principal components
+ */
+ private def computePCA(matrix: RDD[Array[Double]]): Array[Array[Double]] = {
+ val n = matrix.first.size
+
+ // compute column sums and normalize matrix
+ val colSumsTemp = matrix.map((_, 1)).fold((Array.ofDim[Double](n), 0)) {
+ (a, b) =>
+ val am = new DoubleMatrix(a._1)
+ val bm = new DoubleMatrix(b._1)
+ am.addi(bm)
+ (a._1, a._2 + b._2)
+ }
+
+ val m = colSumsTemp._2
+ val colSums = colSumsTemp._1.map(x => x / m)
+
+ val data = matrix.map {
+ x =>
+ val row = Array.ofDim[Double](n)
+ var i = 0
+ while (i < n) {
+ row(i) = x(i) - colSums(i)
+ i += 1
+ }
+ row
+ }
+
+ val (u, s, v) = new SVD().setK(k).compute(data)
+ v
+ }
+}
+
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/SVD.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/SVD.scala
index e4a26eeb07..3e7cc648d1 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/SVD.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/SVD.scala
@@ -23,12 +23,16 @@ import org.apache.spark.rdd.RDD
import org.jblas.{DoubleMatrix, Singular, MatrixFunctions}
-
/**
* Class used to obtain singular value decompositions
*/
class SVD {
- private var k: Int = 1
+ private var k = 1
+ private var computeU = true
+
+ // All singular values smaller than rCond * sigma(0)
+ // are treated as zero, where sigma(0) is the largest singular value.
+ private var rCond = 1e-9
/**
* Set the number of top-k singular vectors to return
@@ -38,54 +42,235 @@ class SVD {
this
}
- /**
+ /**
+ * Sets the reciprocal condition number (rCond). All singular values
+ * smaller than rCond * sigma(0) are treated as zero,
+ * where sigma(0) is the largest singular value.
+ */
+ def setReciprocalConditionNumber(smallS: Double): SVD = {
+ this.rCond = smallS
+ this
+ }
+
+ /**
+ * Should U be computed?
+ */
+ def setComputeU(compU: Boolean): SVD = {
+ this.computeU = compU
+ this
+ }
+
+ /**
* Compute SVD using the current set parameters
*/
- def compute(matrix: SparseMatrix) : MatrixSVD = {
- SVD.sparseSVD(matrix, k)
+ def compute(matrix: TallSkinnyDenseMatrix): TallSkinnyMatrixSVD = {
+ denseSVD(matrix)
}
-}
+ /**
+ * Compute SVD using the current set parameters
+ * Returns (U, S, V) such that A = USV^T
+ * U is a row-by-row dense matrix
+ * S is a simple double array of singular values
+ * V is a 2d array matrix
+ * See [[denseSVD]] for more documentation
+ */
+ def compute(matrix: RDD[Array[Double]]):
+ (RDD[Array[Double]], Array[Double], Array[Array[Double]]) = {
+ denseSVD(matrix)
+ }
-/**
- * Top-level methods for calling Singular Value Decomposition
- * NOTE: All matrices are in 0-indexed sparse format RDD[((int, int), value)]
- */
-object SVD {
-/**
- * Singular Value Decomposition for Tall and Skinny matrices.
- * Given an m x n matrix A, this will compute matrices U, S, V such that
- * A = U * S * V'
- *
- * There is no restriction on m, but we require n^2 doubles to fit in memory.
- * Further, n should be less than m.
- *
- * The decomposition is computed by first computing A'A = V S^2 V',
- * computing svd locally on that (since n x n is small),
- * from which we recover S and V.
- * Then we compute U via easy matrix multiplication
- * as U = A * V * S^-1
- *
- * Only the k largest singular values and associated vectors are found.
- * If there are k such values, then the dimensions of the return will be:
- *
- * S is k x k and diagonal, holding the singular values on diagonal
- * U is m x k and satisfies U'U = eye(k)
- * V is n x k and satisfies V'V = eye(k)
- *
- * All input and output is expected in sparse matrix format, 0-indexed
- * as tuples of the form ((i,j),value) all in RDDs using the
- * SparseMatrix class
- *
- * @param matrix sparse matrix to factorize
- * @param k Recover k singular values and vectors
- * @return Three sparse matrices: U, S, V such that A = USV^T
- */
- def sparseSVD(
- matrix: SparseMatrix,
- k: Int)
- : MatrixSVD =
- {
+ /**
+ * See full paramter definition of sparseSVD for more description.
+ *
+ * @param matrix sparse matrix to factorize
+ * @return Three sparse matrices: U, S, V such that A = USV^T
+ */
+ def compute(matrix: SparseMatrix): MatrixSVD = {
+ sparseSVD(matrix)
+ }
+
+ /**
+ * Singular Value Decomposition for Tall and Skinny matrices.
+ * Given an m x n matrix A, this will compute matrices U, S, V such that
+ * A = U * S * V'
+ *
+ * There is no restriction on m, but we require n^2 doubles to fit in memory.
+ * Further, n should be less than m.
+ *
+ * The decomposition is computed by first computing A'A = V S^2 V',
+ * computing svd locally on that (since n x n is small),
+ * from which we recover S and V.
+ * Then we compute U via easy matrix multiplication
+ * as U = A * V * S^-1
+ *
+ * Only the k largest singular values and associated vectors are found.
+ * If there are k such values, then the dimensions of the return will be:
+ *
+ * S is k x k and diagonal, holding the singular values on diagonal
+ * U is m x k and satisfies U'U = eye(k)
+ * V is n x k and satisfies V'V = eye(k)
+ *
+ * @param matrix dense matrix to factorize
+ * @return See [[TallSkinnyMatrixSVD]] for the output matrices and arrays
+ */
+ private def denseSVD(matrix: TallSkinnyDenseMatrix): TallSkinnyMatrixSVD = {
+ val m = matrix.m
+ val n = matrix.n
+
+ if (m < n || m <= 0 || n <= 0) {
+ throw new IllegalArgumentException("Expecting a tall and skinny matrix m=$m n=$n")
+ }
+
+ if (k < 1 || k > n) {
+ throw new IllegalArgumentException("Request up to n singular values n=$n k=$k")
+ }
+
+ val rowIndices = matrix.rows.map(_.i)
+
+ // compute SVD
+ val (u, sigma, v) = denseSVD(matrix.rows.map(_.data))
+
+ if (computeU) {
+ // prep u for returning
+ val retU = TallSkinnyDenseMatrix(
+ u.zip(rowIndices).map {
+ case (row, i) => MatrixRow(i, row)
+ },
+ m,
+ k)
+
+ TallSkinnyMatrixSVD(retU, sigma, v)
+ } else {
+ TallSkinnyMatrixSVD(null, sigma, v)
+ }
+ }
+
+ /**
+ * Singular Value Decomposition for Tall and Skinny matrices.
+ * Given an m x n matrix A, this will compute matrices U, S, V such that
+ * A = U * S * V'
+ *
+ * There is no restriction on m, but we require n^2 doubles to fit in memory.
+ * Further, n should be less than m.
+ *
+ * The decomposition is computed by first computing A'A = V S^2 V',
+ * computing svd locally on that (since n x n is small),
+ * from which we recover S and V.
+ * Then we compute U via easy matrix multiplication
+ * as U = A * V * S^-1
+ *
+ * Only the k largest singular values and associated vectors are found.
+ * If there are k such values, then the dimensions of the return will be:
+ *
+ * S is k x k and diagonal, holding the singular values on diagonal
+ * U is m x k and satisfies U'U = eye(k)
+ * V is n x k and satisfies V'V = eye(k)
+ *
+ * The return values are as lean as possible: an RDD of rows for U,
+ * a simple array for sigma, and a dense 2d matrix array for V
+ *
+ * @param matrix dense matrix to factorize
+ * @return Three matrices: U, S, V such that A = USV^T
+ */
+ private def denseSVD(matrix: RDD[Array[Double]]):
+ (RDD[Array[Double]], Array[Double], Array[Array[Double]]) = {
+ val n = matrix.first.size
+
+ if (k < 1 || k > n) {
+ throw new IllegalArgumentException(
+ "Request up to n singular values k=$k n=$n")
+ }
+
+ // Compute A^T A
+ val fullata = matrix.mapPartitions {
+ iter =>
+ val localATA = Array.ofDim[Double](n, n)
+ while (iter.hasNext) {
+ val row = iter.next()
+ var i = 0
+ while (i < n) {
+ var j = 0
+ while (j < n) {
+ localATA(i)(j) += row(i) * row(j)
+ j += 1
+ }
+ i += 1
+ }
+ }
+ Iterator(localATA)
+ }.fold(Array.ofDim[Double](n, n)) {
+ (a, b) =>
+ var i = 0
+ while (i < n) {
+ var j = 0
+ while (j < n) {
+ a(i)(j) += b(i)(j)
+ j += 1
+ }
+ i += 1
+ }
+ a
+ }
+
+ // Construct jblas A^T A locally
+ val ata = new DoubleMatrix(fullata)
+
+ // Since A^T A is small, we can compute its SVD directly
+ val svd = Singular.sparseSVD(ata)
+ val V = svd(0)
+ val sigmas = MatrixFunctions.sqrt(svd(1)).toArray.filter(x => x / svd(1).get(0) > rCond)
+
+ val sk = Math.min(k, sigmas.size)
+ val sigma = sigmas.take(sk)
+
+ // prepare V for returning
+ val retV = Array.tabulate(n, sk)((i, j) => V.get(i, j))
+
+ if (computeU) {
+ // Compute U as U = A V S^-1
+ // Compute VS^-1
+ val vsinv = new DoubleMatrix(Array.tabulate(n, sk)((i, j) => V.get(i, j) / sigma(j)))
+ val retU = matrix.map {
+ x =>
+ val v = new DoubleMatrix(Array(x))
+ v.mmul(vsinv).data
+ }
+ (retU, sigma, retV)
+ } else {
+ (null, sigma, retV)
+ }
+ }
+
+ /**
+ * Singular Value Decomposition for Tall and Skinny sparse matrices.
+ * Given an m x n matrix A, this will compute matrices U, S, V such that
+ * A = U * S * V'
+ *
+ * There is no restriction on m, but we require O(n^2) doubles to fit in memory.
+ * Further, n should be less than m.
+ *
+ * The decomposition is computed by first computing A'A = V S^2 V',
+ * computing svd locally on that (since n x n is small),
+ * from which we recover S and V.
+ * Then we compute U via easy matrix multiplication
+ * as U = A * V * S^-1
+ *
+ * Only the k largest singular values and associated vectors are found.
+ * If there are k such values, then the dimensions of the return will be:
+ *
+ * S is k x k and diagonal, holding the singular values on diagonal
+ * U is m x k and satisfies U'U = eye(k)
+ * V is n x k and satisfies V'V = eye(k)
+ *
+ * All input and output is expected in sparse matrix format, 0-indexed
+ * as tuples of the form ((i,j),value) all in RDDs using the
+ * SparseMatrix class
+ *
+ * @param matrix sparse matrix to factorize
+ * @return Three sparse matrices: U, S, V such that A = USV^T
+ */
+ private def sparseSVD(matrix: SparseMatrix): MatrixSVD = {
val data = matrix.data
val m = matrix.m
val n = matrix.n
@@ -100,11 +285,16 @@ object SVD {
// Compute A^T A, assuming rows are sparse enough to fit in memory
val rows = data.map(entry =>
- (entry.i, (entry.j, entry.mval))).groupByKey()
- val emits = rows.flatMap{ case (rowind, cols) =>
- cols.flatMap{ case (colind1, mval1) =>
- cols.map{ case (colind2, mval2) =>
- ((colind1, colind2), mval1*mval2) } }
+ (entry.i, (entry.j, entry.mval))).groupByKey()
+ val emits = rows.flatMap {
+ case (rowind, cols) =>
+ cols.flatMap {
+ case (colind1, mval1) =>
+ cols.map {
+ case (colind2, mval2) =>
+ ((colind1, colind2), mval1 * mval2)
+ }
+ }
}.reduceByKey(_ + _)
// Construct jblas A^T A locally
@@ -116,11 +306,12 @@ object SVD {
// Since A^T A is small, we can compute its SVD directly
val svd = Singular.sparseSVD(ata)
val V = svd(0)
+ // This will be updated to rcond
val sigmas = MatrixFunctions.sqrt(svd(1)).toArray.filter(x => x > 1e-9)
if (sigmas.size < k) {
- throw new Exception("Not enough singular values to return")
- }
+ throw new Exception("Not enough singular values to return k=" + k + " s=" + sigmas.size)
+ }
val sigma = sigmas.take(k)
@@ -128,56 +319,73 @@ object SVD {
// prepare V for returning
val retVdata = sc.makeRDD(
- Array.tabulate(V.rows, sigma.length){ (i,j) =>
- MatrixEntry(i, j, V.get(i,j)) }.flatten)
+ Array.tabulate(V.rows, sigma.length) {
+ (i, j) =>
+ MatrixEntry(i, j, V.get(i, j))
+ }.flatten)
val retV = SparseMatrix(retVdata, V.rows, sigma.length)
-
- val retSdata = sc.makeRDD(Array.tabulate(sigma.length){
- x => MatrixEntry(x, x, sigma(x))})
+
+ val retSdata = sc.makeRDD(Array.tabulate(sigma.length) {
+ x => MatrixEntry(x, x, sigma(x))
+ })
val retS = SparseMatrix(retSdata, sigma.length, sigma.length)
// Compute U as U = A V S^-1
// turn V S^-1 into an RDD as a sparse matrix
- val vsirdd = sc.makeRDD(Array.tabulate(V.rows, sigma.length)
- { (i,j) => ((i, j), V.get(i,j) / sigma(j)) }.flatten)
-
- // Multiply A by VS^-1
- val aCols = data.map(entry => (entry.j, (entry.i, entry.mval)))
- val bRows = vsirdd.map(entry => (entry._1._1, (entry._1._2, entry._2)))
- val retUdata = aCols.join(bRows).map( {case (key, ( (rowInd, rowVal), (colInd, colVal)))
- => ((rowInd, colInd), rowVal*colVal)}).reduceByKey(_ + _)
- .map{ case ((row, col), mval) => MatrixEntry(row, col, mval)}
- val retU = SparseMatrix(retUdata, m, sigma.length)
-
- MatrixSVD(retU, retS, retV)
- }
+ val vsirdd = sc.makeRDD(Array.tabulate(V.rows, sigma.length) {
+ (i, j) => ((i, j), V.get(i, j) / sigma(j))
+ }.flatten)
+ if (computeU) {
+ // Multiply A by VS^-1
+ val aCols = data.map(entry => (entry.j, (entry.i, entry.mval)))
+ val bRows = vsirdd.map(entry => (entry._1._1, (entry._1._2, entry._2)))
+ val retUdata = aCols.join(bRows).map {
+ case (key, ((rowInd, rowVal), (colInd, colVal))) =>
+ ((rowInd, colInd), rowVal * colVal)
+ }.reduceByKey(_ + _).map {
+ case ((row, col), mval) => MatrixEntry(row, col, mval)
+ }
+ val retU = SparseMatrix(retUdata, m, sigma.length)
+ MatrixSVD(retU, retS, retV)
+ } else {
+ MatrixSVD(null, retS, retV)
+ }
+ }
+}
+
+/**
+ * Top-level methods for calling sparse Singular Value Decomposition
+ * NOTE: All matrices are 0-indexed
+ */
+object SVD {
def main(args: Array[String]) {
if (args.length < 8) {
println("Usage: SVD <master> <matrix_file> <m> <n> " +
- "<k> <output_U_file> <output_S_file> <output_V_file>")
+ "<k> <output_U_file> <output_S_file> <output_V_file>")
System.exit(1)
}
- val (master, inputFile, m, n, k, output_u, output_s, output_v) =
+ val (master, inputFile, m, n, k, output_u, output_s, output_v) =
(args(0), args(1), args(2).toInt, args(3).toInt,
- args(4).toInt, args(5), args(6), args(7))
-
+ args(4).toInt, args(5), args(6), args(7))
+
val sc = new SparkContext(master, "SVD")
-
- val rawdata = sc.textFile(inputFile)
- val data = rawdata.map { line =>
- val parts = line.split(',')
- MatrixEntry(parts(0).toInt, parts(1).toInt, parts(2).toDouble)
+
+ val rawData = sc.textFile(inputFile)
+ val data = rawData.map {
+ line =>
+ val parts = line.split(',')
+ MatrixEntry(parts(0).toInt, parts(1).toInt, parts(2).toDouble)
}
- val decomposed = SVD.sparseSVD(SparseMatrix(data, m, n), k)
+ val decomposed = new SVD().setK(k).compute(SparseMatrix(data, m, n))
val u = decomposed.U.data
val s = decomposed.S.data
val v = decomposed.V.data
-
+
println("Computed " + s.collect().length + " singular values and vectors")
u.saveAsTextFile(output_u)
s.saveAsTextFile(output_s)
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/TallSkinnyDenseMatrix.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/TallSkinnyDenseMatrix.scala
new file mode 100644
index 0000000000..e4ef3c58e8
--- /dev/null
+++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/TallSkinnyDenseMatrix.scala
@@ -0,0 +1,30 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.mllib.linalg
+
+import org.apache.spark.rdd.RDD
+
+
+/**
+ * Class that represents a dense matrix
+ *
+ * @param rows RDD of rows
+ * @param m number of rows
+ * @param n number of columns
+ */
+case class TallSkinnyDenseMatrix(val rows: RDD[MatrixRow], val m: Int, val n: Int)
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/TallSkinnyMatrixSVD.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/TallSkinnyMatrixSVD.scala
new file mode 100644
index 0000000000..b3a450e923
--- /dev/null
+++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/TallSkinnyMatrixSVD.scala
@@ -0,0 +1,31 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.mllib.linalg
+
+/**
+ * Class that represents the singular value decomposition of a matrix
+ *
+ * @param U such that A = USV^T is a TallSkinnyDenseMatrix
+ * @param S such that A = USV^T is a simple double array
+ * @param V such that A = USV^T, V is a 2d array matrix that holds
+ * singular vectors in columns. Columns are inner arrays
+ * i.e. V(i)(j) is standard math notation V_{ij}
+ */
+case class TallSkinnyMatrixSVD(val U: TallSkinnyDenseMatrix,
+ val S: Array[Double],
+ val V: Array[Array[Double]])
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/util/LAUtils.scala b/mllib/src/main/scala/org/apache/spark/mllib/util/LAUtils.scala
new file mode 100644
index 0000000000..afe081295b
--- /dev/null
+++ b/mllib/src/main/scala/org/apache/spark/mllib/util/LAUtils.scala
@@ -0,0 +1,65 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.mllib.util
+
+import org.apache.spark.SparkContext._
+
+import org.apache.spark.mllib.linalg._
+
+/**
+ * Helper methods for linear algebra
+ */
+object LAUtils {
+ /**
+ * Convert a SparseMatrix into a TallSkinnyDenseMatrix
+ *
+ * @param sp Sparse matrix to be converted
+ * @return dense version of the input
+ */
+ def sparseToTallSkinnyDense(sp: SparseMatrix): TallSkinnyDenseMatrix = {
+ val m = sp.m
+ val n = sp.n
+ val rows = sp.data.map(x => (x.i, (x.j, x.mval))).groupByKey().map {
+ case (i, cols) =>
+ val rowArray = Array.ofDim[Double](n)
+ var j = 0
+ while (j < cols.size) {
+ rowArray(cols(j)._1) = cols(j)._2
+ j += 1
+ }
+ MatrixRow(i, rowArray)
+ }
+ TallSkinnyDenseMatrix(rows, m, n)
+ }
+
+ /**
+ * Convert a TallSkinnyDenseMatrix to a SparseMatrix
+ *
+ * @param a matrix to be converted
+ * @return sparse version of the input
+ */
+ def denseToSparse(a: TallSkinnyDenseMatrix): SparseMatrix = {
+ val m = a.m
+ val n = a.n
+ val data = a.rows.flatMap {
+ mrow => Array.tabulate(n)(j => MatrixEntry(mrow.i, j, mrow.data(j)))
+ .filter(x => x.mval != 0)
+ }
+ SparseMatrix(data, m, n)
+ }
+}
diff --git a/mllib/src/test/scala/org/apache/spark/mllib/linalg/PCASuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/linalg/PCASuite.scala
new file mode 100644
index 0000000000..5e5086b1bf
--- /dev/null
+++ b/mllib/src/test/scala/org/apache/spark/mllib/linalg/PCASuite.scala
@@ -0,0 +1,124 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.mllib.linalg
+
+import scala.util.Random
+
+import org.scalatest.BeforeAndAfterAll
+import org.scalatest.FunSuite
+
+import org.apache.spark.SparkContext
+import org.apache.spark.SparkContext._
+import org.apache.spark.rdd.RDD
+
+import org.apache.spark.mllib.util._
+
+import org.jblas._
+
+class PCASuite extends FunSuite with BeforeAndAfterAll {
+ @transient private var sc: SparkContext = _
+
+ override def beforeAll() {
+ sc = new SparkContext("local", "test")
+ }
+
+ override def afterAll() {
+ sc.stop()
+ System.clearProperty("spark.driver.port")
+ }
+
+ val EPSILON = 1e-3
+
+ // Return jblas matrix from sparse matrix RDD
+ def getDenseMatrix(matrix: SparseMatrix) : DoubleMatrix = {
+ val data = matrix.data
+ val ret = DoubleMatrix.zeros(matrix.m, matrix.n)
+ matrix.data.collect().map(x => ret.put(x.i, x.j, x.mval))
+ ret
+ }
+
+ def assertMatrixApproximatelyEquals(a: DoubleMatrix, b: DoubleMatrix) {
+ assert(a.rows == b.rows && a.columns == b.columns,
+ "dimension mismatch: $a.rows vs $b.rows and $a.columns vs $b.columns")
+ for (i <- 0 until a.columns) {
+ val aCol = a.getColumn(i)
+ val bCol = b.getColumn(i)
+ val diff = Math.min(aCol.sub(bCol).norm1, aCol.add(bCol).norm1)
+ assert(diff < EPSILON, "matrix mismatch: " + diff)
+ }
+ }
+
+ test("full rank matrix pca") {
+ val m = 5
+ val n = 3
+ val dataArr = Array.tabulate(m,n){ (a, b) =>
+ MatrixEntry(a, b, Math.sin(a + b + a * b)) }.flatten
+ val data = sc.makeRDD(dataArr, 3)
+ val a = LAUtils.sparseToTallSkinnyDense(SparseMatrix(data, m, n))
+
+ val realPCAArray = Array((0,0,-0.2579), (0,1,-0.6602), (0,2,0.7054),
+ (1,0,-0.1448), (1,1,0.7483), (1,2,0.6474),
+ (2,0,0.9553), (2,1,-0.0649), (2,2,0.2886))
+ val realPCA = sc.makeRDD(realPCAArray.map(x => MatrixEntry(x._1, x._2, x._3)), 3)
+
+ val coeffs = new DoubleMatrix(new PCA().setK(n).compute(a))
+
+ assertMatrixApproximatelyEquals(getDenseMatrix(SparseMatrix(realPCA,n,n)), coeffs)
+ }
+
+ test("sparse matrix full rank matrix pca") {
+ val m = 5
+ val n = 3
+ // the entry that gets dropped is zero to test sparse support
+ val dataArr = Array.tabulate(m,n){ (a, b) =>
+ MatrixEntry(a, b, Math.sin(a + b + a * b)) }.flatten.drop(1)
+ val data = sc.makeRDD(dataArr, 3)
+ val a = LAUtils.sparseToTallSkinnyDense(SparseMatrix(data, m, n))
+
+ val realPCAArray = Array((0,0,-0.2579), (0,1,-0.6602), (0,2,0.7054),
+ (1,0,-0.1448), (1,1,0.7483), (1,2,0.6474),
+ (2,0,0.9553), (2,1,-0.0649), (2,2,0.2886))
+ val realPCA = sc.makeRDD(realPCAArray.map(x => MatrixEntry(x._1, x._2, x._3)))
+
+ val coeffs = new DoubleMatrix(new PCA().setK(n).compute(a))
+
+ assertMatrixApproximatelyEquals(getDenseMatrix(SparseMatrix(realPCA,n,n)), coeffs)
+ }
+
+ test("truncated matrix pca") {
+ val m = 5
+ val n = 3
+ val dataArr = Array.tabulate(m,n){ (a, b) =>
+ MatrixEntry(a, b, Math.sin(a + b + a * b)) }.flatten
+
+ val data = sc.makeRDD(dataArr, 3)
+ val a = LAUtils.sparseToTallSkinnyDense(SparseMatrix(data, m, n))
+
+ val realPCAArray = Array((0,0,-0.2579), (0,1,-0.6602),
+ (1,0,-0.1448), (1,1,0.7483),
+ (2,0,0.9553), (2,1,-0.0649))
+ val realPCA = sc.makeRDD(realPCAArray.map(x => MatrixEntry(x._1, x._2, x._3)))
+
+ val k = 2
+ val coeffs = new DoubleMatrix(new PCA().setK(k).compute(a))
+
+ assertMatrixApproximatelyEquals(getDenseMatrix(SparseMatrix(realPCA,n,k)), coeffs)
+ }
+}
+
+
diff --git a/mllib/src/test/scala/org/apache/spark/mllib/linalg/SVDSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/linalg/SVDSuite.scala
index a92386865a..20e2b0f84b 100644
--- a/mllib/src/test/scala/org/apache/spark/mllib/linalg/SVDSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/mllib/linalg/SVDSuite.scala
@@ -28,6 +28,8 @@ import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.rdd.RDD
+import org.apache.spark.mllib.util._
+
import org.jblas._
class SVDSuite extends FunSuite with BeforeAndAfterAll {
@@ -54,43 +56,77 @@ class SVDSuite extends FunSuite with BeforeAndAfterAll {
ret
}
- def assertMatrixEquals(a: DoubleMatrix, b: DoubleMatrix) {
- assert(a.rows == b.rows && a.columns == b.columns, "dimension mismatch")
- val diff = DoubleMatrix.zeros(a.rows, a.columns)
- Array.tabulate(a.rows, a.columns){(i, j) =>
- diff.put(i, j,
- Math.min(Math.abs(a.get(i, j) - b.get(i, j)),
- Math.abs(a.get(i, j) + b.get(i, j)))) }
- assert(diff.norm1 < EPSILON, "matrix mismatch: " + diff.norm1)
+ def assertMatrixApproximatelyEquals(a: DoubleMatrix, b: DoubleMatrix) {
+ assert(a.rows == b.rows && a.columns == b.columns,
+ "dimension mismatch: $a.rows vs $b.rows and $a.columns vs $b.columns")
+ for (i <- 0 until a.columns) {
+ val aCol = a.getColumn(i)
+ val bCol = b.getColumn(i)
+ val diff = Math.min(aCol.sub(bCol).norm1, aCol.add(bCol).norm1)
+ assert(diff < EPSILON, "matrix mismatch: " + diff)
+ }
}
test("full rank matrix svd") {
val m = 10
val n = 3
- val data = sc.makeRDD(Array.tabulate(m,n){ (a, b) =>
- MatrixEntry(a, b, (a + 2).toDouble * (b + 1) / (1 + a + b)) }.flatten )
+ val datarr = Array.tabulate(m,n){ (a, b) =>
+ MatrixEntry(a, b, (a + 2).toDouble * (b + 1) / (1 + a + b)) }.flatten
+ val data = sc.makeRDD(datarr, 3)
val a = SparseMatrix(data, m, n)
- val decomposed = SVD.sparseSVD(a, n)
+ val decomposed = new SVD().setK(n).compute(a)
val u = decomposed.U
val v = decomposed.V
val s = decomposed.S
- val densea = getDenseMatrix(a)
- val svd = Singular.sparseSVD(densea)
+ val denseA = getDenseMatrix(a)
+ val svd = Singular.sparseSVD(denseA)
val retu = getDenseMatrix(u)
val rets = getDenseMatrix(s)
val retv = getDenseMatrix(v)
-
+
+
+ // check individual decomposition
+ assertMatrixApproximatelyEquals(retu, svd(0))
+ assertMatrixApproximatelyEquals(rets, DoubleMatrix.diag(svd(1)))
+ assertMatrixApproximatelyEquals(retv, svd(2))
+
+ // check multiplication guarantee
+ assertMatrixApproximatelyEquals(retu.mmul(rets).mmul(retv.transpose), denseA)
+ }
+
+ test("dense full rank matrix svd") {
+ val m = 10
+ val n = 3
+ val datarr = Array.tabulate(m,n){ (a, b) =>
+ MatrixEntry(a, b, (a + 2).toDouble * (b + 1) / (1 + a + b)) }.flatten
+ val data = sc.makeRDD(datarr, 3)
+
+ val a = LAUtils.sparseToTallSkinnyDense(SparseMatrix(data, m, n))
+
+ val decomposed = new SVD().setK(n).setComputeU(true).compute(a)
+ val u = LAUtils.denseToSparse(decomposed.U)
+ val v = decomposed.V
+ val s = decomposed.S
+
+ val denseA = getDenseMatrix(LAUtils.denseToSparse(a))
+ val svd = Singular.sparseSVD(denseA)
+
+ val retu = getDenseMatrix(u)
+ val rets = DoubleMatrix.diag(new DoubleMatrix(s))
+ val retv = new DoubleMatrix(v)
+
+
// check individual decomposition
- assertMatrixEquals(retu, svd(0))
- assertMatrixEquals(rets, DoubleMatrix.diag(svd(1)))
- assertMatrixEquals(retv, svd(2))
+ assertMatrixApproximatelyEquals(retu, svd(0))
+ assertMatrixApproximatelyEquals(rets, DoubleMatrix.diag(svd(1)))
+ assertMatrixApproximatelyEquals(retv, svd(2))
// check multiplication guarantee
- assertMatrixEquals(retu.mmul(rets).mmul(retv.transpose), densea)
+ assertMatrixApproximatelyEquals(retu.mmul(rets).mmul(retv.transpose), denseA)
}
test("rank one matrix svd") {
@@ -102,7 +138,7 @@ class SVDSuite extends FunSuite with BeforeAndAfterAll {
val a = SparseMatrix(data, m, n)
- val decomposed = SVD.sparseSVD(a, k)
+ val decomposed = new SVD().setK(k).compute(a)
val u = decomposed.U
val s = decomposed.S
val v = decomposed.V
@@ -110,20 +146,20 @@ class SVDSuite extends FunSuite with BeforeAndAfterAll {
assert(retrank == 1, "rank returned not one")
- val densea = getDenseMatrix(a)
- val svd = Singular.sparseSVD(densea)
+ val denseA = getDenseMatrix(a)
+ val svd = Singular.sparseSVD(denseA)
val retu = getDenseMatrix(u)
val rets = getDenseMatrix(s)
val retv = getDenseMatrix(v)
// check individual decomposition
- assertMatrixEquals(retu, svd(0).getColumn(0))
- assertMatrixEquals(rets, DoubleMatrix.diag(svd(1).getRow(0)))
- assertMatrixEquals(retv, svd(2).getColumn(0))
+ assertMatrixApproximatelyEquals(retu, svd(0).getColumn(0))
+ assertMatrixApproximatelyEquals(rets, DoubleMatrix.diag(svd(1).getRow(0)))
+ assertMatrixApproximatelyEquals(retv, svd(2).getColumn(0))
// check multiplication guarantee
- assertMatrixEquals(retu.mmul(rets).mmul(retv.transpose), densea)
+ assertMatrixApproximatelyEquals(retu.mmul(rets).mmul(retv.transpose), denseA)
}
test("truncated with k") {
@@ -135,14 +171,14 @@ class SVDSuite extends FunSuite with BeforeAndAfterAll {
val k = 1 // only one svalue above this
- val decomposed = SVD.sparseSVD(a, k)
+ val decomposed = new SVD().setK(k).compute(a)
val u = decomposed.U
val s = decomposed.S
val v = decomposed.V
val retrank = s.data.collect().length
- val densea = getDenseMatrix(a)
- val svd = Singular.sparseSVD(densea)
+ val denseA = getDenseMatrix(a)
+ val svd = Singular.sparseSVD(denseA)
val retu = getDenseMatrix(u)
val rets = getDenseMatrix(s)
@@ -151,8 +187,8 @@ class SVDSuite extends FunSuite with BeforeAndAfterAll {
assert(retrank == 1, "rank returned not one")
// check individual decomposition
- assertMatrixEquals(retu, svd(0).getColumn(0))
- assertMatrixEquals(rets, DoubleMatrix.diag(svd(1).getRow(0)))
- assertMatrixEquals(retv, svd(2).getColumn(0))
+ assertMatrixApproximatelyEquals(retu, svd(0).getColumn(0))
+ assertMatrixApproximatelyEquals(rets, DoubleMatrix.diag(svd(1).getRow(0)))
+ assertMatrixApproximatelyEquals(retv, svd(2).getColumn(0))
}
}