aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorTimothy Hunter <timhunter@databricks.com>2015-12-08 18:40:21 -0800
committerJoseph K. Bradley <joseph@databricks.com>2015-12-08 18:40:21 -0800
commit765c67f5f2e0b1367e37883f662d313661e3a0d9 (patch)
treed8f03ee26be1dd0e6d427a9f0edab31447fb9856
parent39594894232e0b70c5ca8b0df137da0d61223fd5 (diff)
downloadspark-765c67f5f2e0b1367e37883f662d313661e3a0d9.tar.gz
spark-765c67f5f2e0b1367e37883f662d313661e3a0d9.tar.bz2
spark-765c67f5f2e0b1367e37883f662d313661e3a0d9.zip
[SPARK-8517][ML][DOC] Reorganizes the spark.ml user guide
This PR moves pieces of the spark.ml user guide to reflect suggestions in SPARK-8517. It does not introduce new content, as requested. <img width="192" alt="screen shot 2015-12-08 at 11 36 00 am" src="https://cloud.githubusercontent.com/assets/7594753/11666166/e82b84f2-9d9f-11e5-8904-e215424d8444.png"> Author: Timothy Hunter <timhunter@databricks.com> Closes #10207 from thunterdb/spark-8517.
-rw-r--r--docs/_data/menu-ml.yaml18
-rw-r--r--docs/ml-advanced.md13
-rw-r--r--docs/ml-ann.md62
-rw-r--r--docs/ml-classification-regression.md775
-rw-r--r--docs/ml-clustering.md5
-rw-r--r--docs/ml-features.md4
-rw-r--r--docs/ml-intro.md941
-rw-r--r--docs/mllib-guide.md15
8 files changed, 1752 insertions, 81 deletions
diff --git a/docs/_data/menu-ml.yaml b/docs/_data/menu-ml.yaml
index dff3d33bf4..fe37d0573e 100644
--- a/docs/_data/menu-ml.yaml
+++ b/docs/_data/menu-ml.yaml
@@ -1,10 +1,10 @@
-- text: Feature extraction, transformation, and selection
+- text: "Overview: estimators, transformers and pipelines"
+ url: ml-intro.html
+- text: Extracting, transforming and selecting features
url: ml-features.html
-- text: Decision trees for classification and regression
- url: ml-decision-tree.html
-- text: Ensembles
- url: ml-ensembles.html
-- text: Linear methods with elastic-net regularization
- url: ml-linear-methods.html
-- text: Multilayer perceptron classifier
- url: ml-ann.html
+- text: Classification and Regression
+ url: ml-classification-regression.html
+- text: Clustering
+ url: ml-clustering.html
+- text: Advanced topics
+ url: ml-advanced.html
diff --git a/docs/ml-advanced.md b/docs/ml-advanced.md
new file mode 100644
index 0000000000..b005633e56
--- /dev/null
+++ b/docs/ml-advanced.md
@@ -0,0 +1,13 @@
+---
+layout: global
+title: Advanced topics - spark.ml
+displayTitle: Advanced topics
+---
+
+# Optimization of linear methods
+
+The optimization algorithm underlying the implementation is called
+[Orthant-Wise Limited-memory
+QuasiNewton](http://research-srv.microsoft.com/en-us/um/people/jfgao/paper/icml07scalable.pdf)
+(OWL-QN). It is an extension of L-BFGS that can effectively handle L1
+regularization and elastic net.
diff --git a/docs/ml-ann.md b/docs/ml-ann.md
deleted file mode 100644
index 6e763e8f41..0000000000
--- a/docs/ml-ann.md
+++ /dev/null
@@ -1,62 +0,0 @@
----
-layout: global
-title: Multilayer perceptron classifier - ML
-displayTitle: <a href="ml-guide.html">ML</a> - Multilayer perceptron classifier
----
-
-
-`\[
-\newcommand{\R}{\mathbb{R}}
-\newcommand{\E}{\mathbb{E}}
-\newcommand{\x}{\mathbf{x}}
-\newcommand{\y}{\mathbf{y}}
-\newcommand{\wv}{\mathbf{w}}
-\newcommand{\av}{\mathbf{\alpha}}
-\newcommand{\bv}{\mathbf{b}}
-\newcommand{\N}{\mathbb{N}}
-\newcommand{\id}{\mathbf{I}}
-\newcommand{\ind}{\mathbf{1}}
-\newcommand{\0}{\mathbf{0}}
-\newcommand{\unit}{\mathbf{e}}
-\newcommand{\one}{\mathbf{1}}
-\newcommand{\zero}{\mathbf{0}}
-\]`
-
-
-Multilayer perceptron classifier (MLPC) is a classifier based on the [feedforward artificial neural network](https://en.wikipedia.org/wiki/Feedforward_neural_network).
-MLPC consists of multiple layers of nodes.
-Each layer is fully connected to the next layer in the network. Nodes in the input layer represent the input data. All other nodes maps inputs to the outputs
-by performing linear combination of the inputs with the node's weights `$\wv$` and bias `$\bv$` and applying an activation function.
-It can be written in matrix form for MLPC with `$K+1$` layers as follows:
-`\[
-\mathrm{y}(\x) = \mathrm{f_K}(...\mathrm{f_2}(\wv_2^T\mathrm{f_1}(\wv_1^T \x+b_1)+b_2)...+b_K)
-\]`
-Nodes in intermediate layers use sigmoid (logistic) function:
-`\[
-\mathrm{f}(z_i) = \frac{1}{1 + e^{-z_i}}
-\]`
-Nodes in the output layer use softmax function:
-`\[
-\mathrm{f}(z_i) = \frac{e^{z_i}}{\sum_{k=1}^N e^{z_k}}
-\]`
-The number of nodes `$N$` in the output layer corresponds to the number of classes.
-
-MLPC employes backpropagation for learning the model. We use logistic loss function for optimization and L-BFGS as optimization routine.
-
-**Examples**
-
-<div class="codetabs">
-
-<div data-lang="scala" markdown="1">
-{% include_example scala/org/apache/spark/examples/ml/MultilayerPerceptronClassifierExample.scala %}
-</div>
-
-<div data-lang="java" markdown="1">
-{% include_example java/org/apache/spark/examples/ml/JavaMultilayerPerceptronClassifierExample.java %}
-</div>
-
-<div data-lang="python" markdown="1">
-{% include_example python/ml/multilayer_perceptron_classification.py %}
-</div>
-
-</div>
diff --git a/docs/ml-classification-regression.md b/docs/ml-classification-regression.md
new file mode 100644
index 0000000000..3663ffee32
--- /dev/null
+++ b/docs/ml-classification-regression.md
@@ -0,0 +1,775 @@
+---
+layout: global
+title: Classification and regression - spark.ml
+displayTitle: Classification and regression in spark.ml
+---
+
+
+`\[
+\newcommand{\R}{\mathbb{R}}
+\newcommand{\E}{\mathbb{E}}
+\newcommand{\x}{\mathbf{x}}
+\newcommand{\y}{\mathbf{y}}
+\newcommand{\wv}{\mathbf{w}}
+\newcommand{\av}{\mathbf{\alpha}}
+\newcommand{\bv}{\mathbf{b}}
+\newcommand{\N}{\mathbb{N}}
+\newcommand{\id}{\mathbf{I}}
+\newcommand{\ind}{\mathbf{1}}
+\newcommand{\0}{\mathbf{0}}
+\newcommand{\unit}{\mathbf{e}}
+\newcommand{\one}{\mathbf{1}}
+\newcommand{\zero}{\mathbf{0}}
+\]`
+
+**Table of Contents**
+
+* This will become a table of contents (this text will be scraped).
+{:toc}
+
+In MLlib, we implement popular linear methods such as logistic
+regression and linear least squares with $L_1$ or $L_2$ regularization.
+Refer to [the linear methods in mllib](mllib-linear-methods.html) for
+details. In `spark.ml`, we also include Pipelines API for [Elastic
+net](http://en.wikipedia.org/wiki/Elastic_net_regularization), a hybrid
+of $L_1$ and $L_2$ regularization proposed in [Zou et al, Regularization
+and variable selection via the elastic
+net](http://users.stat.umn.edu/~zouxx019/Papers/elasticnet.pdf).
+Mathematically, it is defined as a convex combination of the $L_1$ and
+the $L_2$ regularization terms:
+`\[
+\alpha \left( \lambda \|\wv\|_1 \right) + (1-\alpha) \left( \frac{\lambda}{2}\|\wv\|_2^2 \right) , \alpha \in [0, 1], \lambda \geq 0
+\]`
+By setting $\alpha$ properly, elastic net contains both $L_1$ and $L_2$
+regularization as special cases. For example, if a [linear
+regression](https://en.wikipedia.org/wiki/Linear_regression) model is
+trained with the elastic net parameter $\alpha$ set to $1$, it is
+equivalent to a
+[Lasso](http://en.wikipedia.org/wiki/Least_squares#Lasso_method) model.
+On the other hand, if $\alpha$ is set to $0$, the trained model reduces
+to a [ridge
+regression](http://en.wikipedia.org/wiki/Tikhonov_regularization) model.
+We implement Pipelines API for both linear regression and logistic
+regression with elastic net regularization.
+
+
+# Classification
+
+## Logistic regression
+
+Logistic regression is a popular method to predict a binary response. It is a special case of [Generalized Linear models](https://en.wikipedia.org/wiki/Generalized_linear_model) that predicts the probability of the outcome.
+For more background and more details about the implementation, refer to the documentation of the [logistic regression in `spark.mllib`](mllib-linear-methods.html#logistic-regression).
+
+ > The current implementation of logistic regression in `spark.ml` only supports binary classes. Support for multiclass regression will be added in the future.
+
+**Example**
+
+The following example shows how to train a logistic regression model
+with elastic net regularization. `elasticNetParam` corresponds to
+$\alpha$ and `regParam` corresponds to $\lambda$.
+
+<div class="codetabs">
+
+<div data-lang="scala" markdown="1">
+{% include_example scala/org/apache/spark/examples/ml/LogisticRegressionWithElasticNetExample.scala %}
+</div>
+
+<div data-lang="java" markdown="1">
+{% include_example java/org/apache/spark/examples/ml/JavaLogisticRegressionWithElasticNetExample.java %}
+</div>
+
+<div data-lang="python" markdown="1">
+{% include_example python/ml/logistic_regression_with_elastic_net.py %}
+</div>
+
+</div>
+
+The `spark.ml` implementation of logistic regression also supports
+extracting a summary of the model over the training set. Note that the
+predictions and metrics which are stored as `Dataframe` in
+`BinaryLogisticRegressionSummary` are annotated `@transient` and hence
+only available on the driver.
+
+<div class="codetabs">
+
+<div data-lang="scala" markdown="1">
+
+[`LogisticRegressionTrainingSummary`](api/scala/index.html#org.apache.spark.ml.classification.LogisticRegressionTrainingSummary)
+provides a summary for a
+[`LogisticRegressionModel`](api/scala/index.html#org.apache.spark.ml.classification.LogisticRegressionModel).
+Currently, only binary classification is supported and the
+summary must be explicitly cast to
+[`BinaryLogisticRegressionTrainingSummary`](api/scala/index.html#org.apache.spark.ml.classification.BinaryLogisticRegressionTrainingSummary).
+This will likely change when multiclass classification is supported.
+
+Continuing the earlier example:
+
+{% include_example scala/org/apache/spark/examples/ml/LogisticRegressionSummaryExample.scala %}
+</div>
+
+<div data-lang="java" markdown="1">
+[`LogisticRegressionTrainingSummary`](api/java/org/apache/spark/ml/classification/LogisticRegressionTrainingSummary.html)
+provides a summary for a
+[`LogisticRegressionModel`](api/java/org/apache/spark/ml/classification/LogisticRegressionModel.html).
+Currently, only binary classification is supported and the
+summary must be explicitly cast to
+[`BinaryLogisticRegressionTrainingSummary`](api/java/org/apache/spark/ml/classification/BinaryLogisticRegressionTrainingSummary.html).
+This will likely change when multiclass classification is supported.
+
+Continuing the earlier example:
+
+{% include_example java/org/apache/spark/examples/ml/JavaLogisticRegressionSummaryExample.java %}
+</div>
+
+<!--- TODO: Add python model summaries once implemented -->
+<div data-lang="python" markdown="1">
+Logistic regression model summary is not yet supported in Python.
+</div>
+
+</div>
+
+
+## Decision tree classifier
+
+Decision trees are a popular family of classification and regression methods.
+More information about the `spark.ml` implementation can be found further in the [section on decision trees](#decision-trees).
+
+**Example**
+
+The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
+We use two feature transformers to prepare the data; these help index categories for the label and categorical features, adding metadata to the `DataFrame` which the Decision Tree algorithm can recognize.
+
+<div class="codetabs">
+<div data-lang="scala" markdown="1">
+
+More details on parameters can be found in the [Scala API documentation](api/scala/index.html#org.apache.spark.ml.classification.DecisionTreeClassifier).
+
+{% include_example scala/org/apache/spark/examples/ml/DecisionTreeClassificationExample.scala %}
+
+</div>
+
+<div data-lang="java" markdown="1">
+
+More details on parameters can be found in the [Java API documentation](api/java/org/apache/spark/ml/classification/DecisionTreeClassifier.html).
+
+{% include_example java/org/apache/spark/examples/ml/JavaDecisionTreeClassificationExample.java %}
+
+</div>
+
+<div data-lang="python" markdown="1">
+
+More details on parameters can be found in the [Python API documentation](api/python/pyspark.ml.html#pyspark.ml.classification.DecisionTreeClassifier).
+
+{% include_example python/ml/decision_tree_classification_example.py %}
+
+</div>
+
+</div>
+
+## Random forest classifier
+
+Random forests are a popular family of classification and regression methods.
+More information about the `spark.ml` implementation can be found further in the [section on random forests](#random-forests).
+
+**Example**
+
+The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
+We use two feature transformers to prepare the data; these help index categories for the label and categorical features, adding metadata to the `DataFrame` which the tree-based algorithms can recognize.
+
+<div class="codetabs">
+<div data-lang="scala" markdown="1">
+
+Refer to the [Scala API docs](api/scala/index.html#org.apache.spark.ml.classification.RandomForestClassifier) for more details.
+
+{% include_example scala/org/apache/spark/examples/ml/RandomForestClassifierExample.scala %}
+</div>
+
+<div data-lang="java" markdown="1">
+
+Refer to the [Java API docs](api/java/org/apache/spark/ml/classification/RandomForestClassifier.html) for more details.
+
+{% include_example java/org/apache/spark/examples/ml/JavaRandomForestClassifierExample.java %}
+</div>
+
+<div data-lang="python" markdown="1">
+
+Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.classification.RandomForestClassifier) for more details.
+
+{% include_example python/ml/random_forest_classifier_example.py %}
+</div>
+</div>
+
+## Gradient-boosted tree classifier
+
+Gradient-boosted trees (GBTs) are a popular classification and regression method using ensembles of decision trees.
+More information about the `spark.ml` implementation can be found further in the [section on GBTs](#gradient-boosted-trees-gbts).
+
+**Example**
+
+The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
+We use two feature transformers to prepare the data; these help index categories for the label and categorical features, adding metadata to the `DataFrame` which the tree-based algorithms can recognize.
+
+<div class="codetabs">
+<div data-lang="scala" markdown="1">
+
+Refer to the [Scala API docs](api/scala/index.html#org.apache.spark.ml.classification.GBTClassifier) for more details.
+
+{% include_example scala/org/apache/spark/examples/ml/GradientBoostedTreeClassifierExample.scala %}
+</div>
+
+<div data-lang="java" markdown="1">
+
+Refer to the [Java API docs](api/java/org/apache/spark/ml/classification/GBTClassifier.html) for more details.
+
+{% include_example java/org/apache/spark/examples/ml/JavaGradientBoostedTreeClassifierExample.java %}
+</div>
+
+<div data-lang="python" markdown="1">
+
+Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.classification.GBTClassifier) for more details.
+
+{% include_example python/ml/gradient_boosted_tree_classifier_example.py %}
+</div>
+</div>
+
+## Multilayer perceptron classifier
+
+Multilayer perceptron classifier (MLPC) is a classifier based on the [feedforward artificial neural network](https://en.wikipedia.org/wiki/Feedforward_neural_network).
+MLPC consists of multiple layers of nodes.
+Each layer is fully connected to the next layer in the network. Nodes in the input layer represent the input data. All other nodes maps inputs to the outputs
+by performing linear combination of the inputs with the node's weights `$\wv$` and bias `$\bv$` and applying an activation function.
+It can be written in matrix form for MLPC with `$K+1$` layers as follows:
+`\[
+\mathrm{y}(\x) = \mathrm{f_K}(...\mathrm{f_2}(\wv_2^T\mathrm{f_1}(\wv_1^T \x+b_1)+b_2)...+b_K)
+\]`
+Nodes in intermediate layers use sigmoid (logistic) function:
+`\[
+\mathrm{f}(z_i) = \frac{1}{1 + e^{-z_i}}
+\]`
+Nodes in the output layer use softmax function:
+`\[
+\mathrm{f}(z_i) = \frac{e^{z_i}}{\sum_{k=1}^N e^{z_k}}
+\]`
+The number of nodes `$N$` in the output layer corresponds to the number of classes.
+
+MLPC employes backpropagation for learning the model. We use logistic loss function for optimization and L-BFGS as optimization routine.
+
+**Example**
+
+<div class="codetabs">
+
+<div data-lang="scala" markdown="1">
+{% include_example scala/org/apache/spark/examples/ml/MultilayerPerceptronClassifierExample.scala %}
+</div>
+
+<div data-lang="java" markdown="1">
+{% include_example java/org/apache/spark/examples/ml/JavaMultilayerPerceptronClassifierExample.java %}
+</div>
+
+<div data-lang="python" markdown="1">
+{% include_example python/ml/multilayer_perceptron_classification.py %}
+</div>
+
+</div>
+
+
+## One-vs-Rest classifier (a.k.a. One-vs-All)
+
+[OneVsRest](http://en.wikipedia.org/wiki/Multiclass_classification#One-vs.-rest) is an example of a machine learning reduction for performing multiclass classification given a base classifier that can perform binary classification efficiently. It is also known as "One-vs-All."
+
+`OneVsRest` is implemented as an `Estimator`. For the base classifier it takes instances of `Classifier` and creates a binary classification problem for each of the k classes. The classifier for class i is trained to predict whether the label is i or not, distinguishing class i from all other classes.
+
+Predictions are done by evaluating each binary classifier and the index of the most confident classifier is output as label.
+
+**Example**
+
+The example below demonstrates how to load the
+[Iris dataset](http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/iris.scale), parse it as a DataFrame and perform multiclass classification using `OneVsRest`. The test error is calculated to measure the algorithm accuracy.
+
+<div class="codetabs">
+<div data-lang="scala" markdown="1">
+
+Refer to the [Scala API docs](api/scala/index.html#org.apache.spark.ml.classifier.OneVsRest) for more details.
+
+{% include_example scala/org/apache/spark/examples/ml/OneVsRestExample.scala %}
+</div>
+
+<div data-lang="java" markdown="1">
+
+Refer to the [Java API docs](api/java/org/apache/spark/ml/classification/OneVsRest.html) for more details.
+
+{% include_example java/org/apache/spark/examples/ml/JavaOneVsRestExample.java %}
+</div>
+</div>
+
+
+# Regression
+
+## Linear regression
+
+The interface for working with linear regression models and model
+summaries is similar to the logistic regression case.
+
+**Example**
+
+The following
+example demonstrates training an elastic net regularized linear
+regression model and extracting model summary statistics.
+
+<div class="codetabs">
+
+<div data-lang="scala" markdown="1">
+{% include_example scala/org/apache/spark/examples/ml/LinearRegressionWithElasticNetExample.scala %}
+</div>
+
+<div data-lang="java" markdown="1">
+{% include_example java/org/apache/spark/examples/ml/JavaLinearRegressionWithElasticNetExample.java %}
+</div>
+
+<div data-lang="python" markdown="1">
+<!--- TODO: Add python model summaries once implemented -->
+{% include_example python/ml/linear_regression_with_elastic_net.py %}
+</div>
+
+</div>
+
+
+## Decision tree regression
+
+Decision trees are a popular family of classification and regression methods.
+More information about the `spark.ml` implementation can be found further in the [section on decision trees](#decision-trees).
+
+**Example**
+
+The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
+We use a feature transformer to index categorical features, adding metadata to the `DataFrame` which the Decision Tree algorithm can recognize.
+
+<div class="codetabs">
+<div data-lang="scala" markdown="1">
+
+More details on parameters can be found in the [Scala API documentation](api/scala/index.html#org.apache.spark.ml.regression.DecisionTreeRegressor).
+
+{% include_example scala/org/apache/spark/examples/ml/DecisionTreeRegressionExample.scala %}
+</div>
+
+<div data-lang="java" markdown="1">
+
+More details on parameters can be found in the [Java API documentation](api/java/org/apache/spark/ml/regression/DecisionTreeRegressor.html).
+
+{% include_example java/org/apache/spark/examples/ml/JavaDecisionTreeRegressionExample.java %}
+</div>
+
+<div data-lang="python" markdown="1">
+
+More details on parameters can be found in the [Python API documentation](api/python/pyspark.ml.html#pyspark.ml.regression.DecisionTreeRegressor).
+
+{% include_example python/ml/decision_tree_regression_example.py %}
+</div>
+
+</div>
+
+
+## Random forest regression
+
+Random forests are a popular family of classification and regression methods.
+More information about the `spark.ml` implementation can be found further in the [section on random forests](#random-forests).
+
+**Example**
+
+The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
+We use a feature transformer to index categorical features, adding metadata to the `DataFrame` which the tree-based algorithms can recognize.
+
+<div class="codetabs">
+<div data-lang="scala" markdown="1">
+
+Refer to the [Scala API docs](api/scala/index.html#org.apache.spark.ml.regression.RandomForestRegressor) for more details.
+
+{% include_example scala/org/apache/spark/examples/ml/RandomForestRegressorExample.scala %}
+</div>
+
+<div data-lang="java" markdown="1">
+
+Refer to the [Java API docs](api/java/org/apache/spark/ml/regression/RandomForestRegressor.html) for more details.
+
+{% include_example java/org/apache/spark/examples/ml/JavaRandomForestRegressorExample.java %}
+</div>
+
+<div data-lang="python" markdown="1">
+
+Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.regression.RandomForestRegressor) for more details.
+
+{% include_example python/ml/random_forest_regressor_example.py %}
+</div>
+</div>
+
+## Gradient-boosted tree regression
+
+Gradient-boosted trees (GBTs) are a popular regression method using ensembles of decision trees.
+More information about the `spark.ml` implementation can be found further in the [section on GBTs](#gradient-boosted-trees-gbts).
+
+**Example**
+
+Note: For this example dataset, `GBTRegressor` actually only needs 1 iteration, but that will not
+be true in general.
+
+<div class="codetabs">
+<div data-lang="scala" markdown="1">
+
+Refer to the [Scala API docs](api/scala/index.html#org.apache.spark.ml.regression.GBTRegressor) for more details.
+
+{% include_example scala/org/apache/spark/examples/ml/GradientBoostedTreeRegressorExample.scala %}
+</div>
+
+<div data-lang="java" markdown="1">
+
+Refer to the [Java API docs](api/java/org/apache/spark/ml/regression/GBTRegressor.html) for more details.
+
+{% include_example java/org/apache/spark/examples/ml/JavaGradientBoostedTreeRegressorExample.java %}
+</div>
+
+<div data-lang="python" markdown="1">
+
+Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.regression.GBTRegressor) for more details.
+
+{% include_example python/ml/gradient_boosted_tree_regressor_example.py %}
+</div>
+</div>
+
+
+## Survival regression
+
+
+In `spark.ml`, we implement the [Accelerated failure time (AFT)](https://en.wikipedia.org/wiki/Accelerated_failure_time_model)
+model which is a parametric survival regression model for censored data.
+It describes a model for the log of survival time, so it's often called
+log-linear model for survival analysis. Different from
+[Proportional hazards](https://en.wikipedia.org/wiki/Proportional_hazards_model) model
+designed for the same purpose, the AFT model is more easily to parallelize
+because each instance contribute to the objective function independently.
+
+Given the values of the covariates $x^{'}$, for random lifetime $t_{i}$ of
+subjects i = 1, ..., n, with possible right-censoring,
+the likelihood function under the AFT model is given as:
+`\[
+L(\beta,\sigma)=\prod_{i=1}^n[\frac{1}{\sigma}f_{0}(\frac{\log{t_{i}}-x^{'}\beta}{\sigma})]^{\delta_{i}}S_{0}(\frac{\log{t_{i}}-x^{'}\beta}{\sigma})^{1-\delta_{i}}
+\]`
+Where $\delta_{i}$ is the indicator of the event has occurred i.e. uncensored or not.
+Using $\epsilon_{i}=\frac{\log{t_{i}}-x^{'}\beta}{\sigma}$, the log-likelihood function
+assumes the form:
+`\[
+\iota(\beta,\sigma)=\sum_{i=1}^{n}[-\delta_{i}\log\sigma+\delta_{i}\log{f_{0}}(\epsilon_{i})+(1-\delta_{i})\log{S_{0}(\epsilon_{i})}]
+\]`
+Where $S_{0}(\epsilon_{i})$ is the baseline survivor function,
+and $f_{0}(\epsilon_{i})$ is corresponding density function.
+
+The most commonly used AFT model is based on the Weibull distribution of the survival time.
+The Weibull distribution for lifetime corresponding to extreme value distribution for
+log of the lifetime, and the $S_{0}(\epsilon)$ function is:
+`\[
+S_{0}(\epsilon_{i})=\exp(-e^{\epsilon_{i}})
+\]`
+the $f_{0}(\epsilon_{i})$ function is:
+`\[
+f_{0}(\epsilon_{i})=e^{\epsilon_{i}}\exp(-e^{\epsilon_{i}})
+\]`
+The log-likelihood function for AFT model with Weibull distribution of lifetime is:
+`\[
+\iota(\beta,\sigma)= -\sum_{i=1}^n[\delta_{i}\log\sigma-\delta_{i}\epsilon_{i}+e^{\epsilon_{i}}]
+\]`
+Due to minimizing the negative log-likelihood equivalent to maximum a posteriori probability,
+the loss function we use to optimize is $-\iota(\beta,\sigma)$.
+The gradient functions for $\beta$ and $\log\sigma$ respectively are:
+`\[
+\frac{\partial (-\iota)}{\partial \beta}=\sum_{1=1}^{n}[\delta_{i}-e^{\epsilon_{i}}]\frac{x_{i}}{\sigma}
+\]`
+`\[
+\frac{\partial (-\iota)}{\partial (\log\sigma)}=\sum_{i=1}^{n}[\delta_{i}+(\delta_{i}-e^{\epsilon_{i}})\epsilon_{i}]
+\]`
+
+The AFT model can be formulated as a convex optimization problem,
+i.e. the task of finding a minimizer of a convex function $-\iota(\beta,\sigma)$
+that depends coefficients vector $\beta$ and the log of scale parameter $\log\sigma$.
+The optimization algorithm underlying the implementation is L-BFGS.
+The implementation matches the result from R's survival function
+[survreg](https://stat.ethz.ch/R-manual/R-devel/library/survival/html/survreg.html)
+
+**Example**
+
+<div class="codetabs">
+
+<div data-lang="scala" markdown="1">
+{% include_example scala/org/apache/spark/examples/ml/AFTSurvivalRegressionExample.scala %}
+</div>
+
+<div data-lang="java" markdown="1">
+{% include_example java/org/apache/spark/examples/ml/JavaAFTSurvivalRegressionExample.java %}
+</div>
+
+<div data-lang="python" markdown="1">
+{% include_example python/ml/aft_survival_regression.py %}
+</div>
+
+</div>
+
+
+
+# Decision trees
+
+[Decision trees](http://en.wikipedia.org/wiki/Decision_tree_learning)
+and their ensembles are popular methods for the machine learning tasks of
+classification and regression. Decision trees are widely used since they are easy to interpret,
+handle categorical features, extend to the multiclass classification setting, do not require
+feature scaling, and are able to capture non-linearities and feature interactions. Tree ensemble
+algorithms such as random forests and boosting are among the top performers for classification and
+regression tasks.
+
+MLlib supports decision trees for binary and multiclass classification and for regression,
+using both continuous and categorical features. The implementation partitions data by rows,
+allowing distributed training with millions or even billions of instances.
+
+Users can find more information about the decision tree algorithm in the [MLlib Decision Tree guide](mllib-decision-tree.html).
+The main differences between this API and the [original MLlib Decision Tree API](mllib-decision-tree.html) are:
+
+* support for ML Pipelines
+* separation of Decision Trees for classification vs. regression
+* use of DataFrame metadata to distinguish continuous and categorical features
+
+
+The Pipelines API for Decision Trees offers a bit more functionality than the original API. In particular, for classification, users can get the predicted probability of each class (a.k.a. class conditional probabilities).
+
+Ensembles of trees (Random Forests and Gradient-Boosted Trees) are described below in the [Tree ensembles section](#tree-ensembles).
+
+## Inputs and Outputs
+
+We list the input and output (prediction) column types here.
+All output columns are optional; to exclude an output column, set its corresponding Param to an empty string.
+
+### Input Columns
+
+<table class="table">
+ <thead>
+ <tr>
+ <th align="left">Param name</th>
+ <th align="left">Type(s)</th>
+ <th align="left">Default</th>
+ <th align="left">Description</th>
+ </tr>
+ </thead>
+ <tbody>
+ <tr>
+ <td>labelCol</td>
+ <td>Double</td>
+ <td>"label"</td>
+ <td>Label to predict</td>
+ </tr>
+ <tr>
+ <td>featuresCol</td>
+ <td>Vector</td>
+ <td>"features"</td>
+ <td>Feature vector</td>
+ </tr>
+ </tbody>
+</table>
+
+### Output Columns
+
+<table class="table">
+ <thead>
+ <tr>
+ <th align="left">Param name</th>
+ <th align="left">Type(s)</th>
+ <th align="left">Default</th>
+ <th align="left">Description</th>
+ <th align="left">Notes</th>
+ </tr>
+ </thead>
+ <tbody>
+ <tr>
+ <td>predictionCol</td>
+ <td>Double</td>
+ <td>"prediction"</td>
+ <td>Predicted label</td>
+ <td></td>
+ </tr>
+ <tr>
+ <td>rawPredictionCol</td>
+ <td>Vector</td>
+ <td>"rawPrediction"</td>
+ <td>Vector of length # classes, with the counts of training instance labels at the tree node which makes the prediction</td>
+ <td>Classification only</td>
+ </tr>
+ <tr>
+ <td>probabilityCol</td>
+ <td>Vector</td>
+ <td>"probability"</td>
+ <td>Vector of length # classes equal to rawPrediction normalized to a multinomial distribution</td>
+ <td>Classification only</td>
+ </tr>
+ </tbody>
+</table>
+
+
+# Tree Ensembles
+
+The Pipelines API supports two major tree ensemble algorithms: [Random Forests](http://en.wikipedia.org/wiki/Random_forest) and [Gradient-Boosted Trees (GBTs)](http://en.wikipedia.org/wiki/Gradient_boosting).
+Both use [MLlib decision trees](ml-decision-tree.html) as their base models.
+
+Users can find more information about ensemble algorithms in the [MLlib Ensemble guide](mllib-ensembles.html). In this section, we demonstrate the Pipelines API for ensembles.
+
+The main differences between this API and the [original MLlib ensembles API](mllib-ensembles.html) are:
+
+* support for ML Pipelines
+* separation of classification vs. regression
+* use of DataFrame metadata to distinguish continuous and categorical features
+* a bit more functionality for random forests: estimates of feature importance, as well as the predicted probability of each class (a.k.a. class conditional probabilities) for classification.
+
+## Random Forests
+
+[Random forests](http://en.wikipedia.org/wiki/Random_forest)
+are ensembles of [decision trees](ml-decision-tree.html).
+Random forests combine many decision trees in order to reduce the risk of overfitting.
+MLlib supports random forests for binary and multiclass classification and for regression,
+using both continuous and categorical features.
+
+For more information on the algorithm itself, please see the [`spark.mllib` documentation on random forests](mllib-ensembles.html).
+
+### Inputs and Outputs
+
+We list the input and output (prediction) column types here.
+All output columns are optional; to exclude an output column, set its corresponding Param to an empty string.
+
+#### Input Columns
+
+<table class="table">
+ <thead>
+ <tr>
+ <th align="left">Param name</th>
+ <th align="left">Type(s)</th>
+ <th align="left">Default</th>
+ <th align="left">Description</th>
+ </tr>
+ </thead>
+ <tbody>
+ <tr>
+ <td>labelCol</td>
+ <td>Double</td>
+ <td>"label"</td>
+ <td>Label to predict</td>
+ </tr>
+ <tr>
+ <td>featuresCol</td>
+ <td>Vector</td>
+ <td>"features"</td>
+ <td>Feature vector</td>
+ </tr>
+ </tbody>
+</table>
+
+#### Output Columns (Predictions)
+
+<table class="table">
+ <thead>
+ <tr>
+ <th align="left">Param name</th>
+ <th align="left">Type(s)</th>
+ <th align="left">Default</th>
+ <th align="left">Description</th>
+ <th align="left">Notes</th>
+ </tr>
+ </thead>
+ <tbody>
+ <tr>
+ <td>predictionCol</td>
+ <td>Double</td>
+ <td>"prediction"</td>
+ <td>Predicted label</td>
+ <td></td>
+ </tr>
+ <tr>
+ <td>rawPredictionCol</td>
+ <td>Vector</td>
+ <td>"rawPrediction"</td>
+ <td>Vector of length # classes, with the counts of training instance labels at the tree node which makes the prediction</td>
+ <td>Classification only</td>
+ </tr>
+ <tr>
+ <td>probabilityCol</td>
+ <td>Vector</td>
+ <td>"probability"</td>
+ <td>Vector of length # classes equal to rawPrediction normalized to a multinomial distribution</td>
+ <td>Classification only</td>
+ </tr>
+ </tbody>
+</table>
+
+
+
+## Gradient-Boosted Trees (GBTs)
+
+[Gradient-Boosted Trees (GBTs)](http://en.wikipedia.org/wiki/Gradient_boosting)
+are ensembles of [decision trees](ml-decision-tree.html).
+GBTs iteratively train decision trees in order to minimize a loss function.
+MLlib supports GBTs for binary classification and for regression,
+using both continuous and categorical features.
+
+For more information on the algorithm itself, please see the [`spark.mllib` documentation on GBTs](mllib-ensembles.html).
+
+### Inputs and Outputs
+
+We list the input and output (prediction) column types here.
+All output columns are optional; to exclude an output column, set its corresponding Param to an empty string.
+
+#### Input Columns
+
+<table class="table">
+ <thead>
+ <tr>
+ <th align="left">Param name</th>
+ <th align="left">Type(s)</th>
+ <th align="left">Default</th>
+ <th align="left">Description</th>
+ </tr>
+ </thead>
+ <tbody>
+ <tr>
+ <td>labelCol</td>
+ <td>Double</td>
+ <td>"label"</td>
+ <td>Label to predict</td>
+ </tr>
+ <tr>
+ <td>featuresCol</td>
+ <td>Vector</td>
+ <td>"features"</td>
+ <td>Feature vector</td>
+ </tr>
+ </tbody>
+</table>
+
+Note that `GBTClassifier` currently only supports binary labels.
+
+#### Output Columns (Predictions)
+
+<table class="table">
+ <thead>
+ <tr>
+ <th align="left">Param name</th>
+ <th align="left">Type(s)</th>
+ <th align="left">Default</th>
+ <th align="left">Description</th>
+ <th align="left">Notes</th>
+ </tr>
+ </thead>
+ <tbody>
+ <tr>
+ <td>predictionCol</td>
+ <td>Double</td>
+ <td>"prediction"</td>
+ <td>Predicted label</td>
+ <td></td>
+ </tr>
+ </tbody>
+</table>
+
+In the future, `GBTClassifier` will also output columns for `rawPrediction` and `probability`, just as `RandomForestClassifier` does.
+
diff --git a/docs/ml-clustering.md b/docs/ml-clustering.md
index cfefb5dfbd..697777714b 100644
--- a/docs/ml-clustering.md
+++ b/docs/ml-clustering.md
@@ -6,6 +6,11 @@ displayTitle: <a href="ml-guide.html">ML</a> - Clustering
In this section, we introduce the pipeline API for [clustering in mllib](mllib-clustering.html).
+**Table of Contents**
+
+* This will become a table of contents (this text will be scraped).
+{:toc}
+
## Latent Dirichlet allocation (LDA)
`LDA` is implemented as an `Estimator` that supports both `EMLDAOptimizer` and `OnlineLDAOptimizer`,
diff --git a/docs/ml-features.md b/docs/ml-features.md
index e15c26836a..55e4012219 100644
--- a/docs/ml-features.md
+++ b/docs/ml-features.md
@@ -1,7 +1,7 @@
---
layout: global
-title: Feature Extraction, Transformation, and Selection - SparkML
-displayTitle: <a href="ml-guide.html">ML</a> - Features
+title: Extracting, transforming and selecting features
+displayTitle: Extracting, transforming and selecting features
---
This section covers algorithms for working with features, roughly divided into these groups:
diff --git a/docs/ml-intro.md b/docs/ml-intro.md
new file mode 100644
index 0000000000..d95a66ba23
--- /dev/null
+++ b/docs/ml-intro.md
@@ -0,0 +1,941 @@
+---
+layout: global
+title: "Overview: estimators, transformers and pipelines - spark.ml"
+displayTitle: "Overview: estimators, transformers and pipelines"
+---
+
+
+`\[
+\newcommand{\R}{\mathbb{R}}
+\newcommand{\E}{\mathbb{E}}
+\newcommand{\x}{\mathbf{x}}
+\newcommand{\y}{\mathbf{y}}
+\newcommand{\wv}{\mathbf{w}}
+\newcommand{\av}{\mathbf{\alpha}}
+\newcommand{\bv}{\mathbf{b}}
+\newcommand{\N}{\mathbb{N}}
+\newcommand{\id}{\mathbf{I}}
+\newcommand{\ind}{\mathbf{1}}
+\newcommand{\0}{\mathbf{0}}
+\newcommand{\unit}{\mathbf{e}}
+\newcommand{\one}{\mathbf{1}}
+\newcommand{\zero}{\mathbf{0}}
+\]`
+
+
+The `spark.ml` package aims to provide a uniform set of high-level APIs built on top of
+[DataFrames](sql-programming-guide.html#dataframes) that help users create and tune practical
+machine learning pipelines.
+See the [algorithm guides](#algorithm-guides) section below for guides on sub-packages of
+`spark.ml`, including feature transformers unique to the Pipelines API, ensembles, and more.
+
+**Table of contents**
+
+* This will become a table of contents (this text will be scraped).
+{:toc}
+
+
+# Main concepts in Pipelines
+
+Spark ML standardizes APIs for machine learning algorithms to make it easier to combine multiple
+algorithms into a single pipeline, or workflow.
+This section covers the key concepts introduced by the Spark ML API, where the pipeline concept is
+mostly inspired by the [scikit-learn](http://scikit-learn.org/) project.
+
+* **[`DataFrame`](ml-guide.html#dataframe)**: Spark ML uses `DataFrame` from Spark SQL as an ML
+ dataset, which can hold a variety of data types.
+ E.g., a `DataFrame` could have different columns storing text, feature vectors, true labels, and predictions.
+
+* **[`Transformer`](ml-guide.html#transformers)**: A `Transformer` is an algorithm which can transform one `DataFrame` into another `DataFrame`.
+E.g., an ML model is a `Transformer` which transforms `DataFrame` with features into a `DataFrame` with predictions.
+
+* **[`Estimator`](ml-guide.html#estimators)**: An `Estimator` is an algorithm which can be fit on a `DataFrame` to produce a `Transformer`.
+E.g., a learning algorithm is an `Estimator` which trains on a `DataFrame` and produces a model.
+
+* **[`Pipeline`](ml-guide.html#pipeline)**: A `Pipeline` chains multiple `Transformer`s and `Estimator`s together to specify an ML workflow.
+
+* **[`Parameter`](ml-guide.html#parameters)**: All `Transformer`s and `Estimator`s now share a common API for specifying parameters.
+
+## DataFrame
+
+Machine learning can be applied to a wide variety of data types, such as vectors, text, images, and structured data.
+Spark ML adopts the `DataFrame` from Spark SQL in order to support a variety of data types.
+
+`DataFrame` supports many basic and structured types; see the [Spark SQL datatype reference](sql-programming-guide.html#spark-sql-datatype-reference) for a list of supported types.
+In addition to the types listed in the Spark SQL guide, `DataFrame` can use ML [`Vector`](mllib-data-types.html#local-vector) types.
+
+A `DataFrame` can be created either implicitly or explicitly from a regular `RDD`. See the code examples below and the [Spark SQL programming guide](sql-programming-guide.html) for examples.
+
+Columns in a `DataFrame` are named. The code examples below use names such as "text," "features," and "label."
+
+## Pipeline components
+
+### Transformers
+
+A `Transformer` is an abstraction that includes feature transformers and learned models.
+Technically, a `Transformer` implements a method `transform()`, which converts one `DataFrame` into
+another, generally by appending one or more columns.
+For example:
+
+* A feature transformer might take a `DataFrame`, read a column (e.g., text), map it into a new
+ column (e.g., feature vectors), and output a new `DataFrame` with the mapped column appended.
+* A learning model might take a `DataFrame`, read the column containing feature vectors, predict the
+ label for each feature vector, and output a new `DataFrame` with predicted labels appended as a
+ column.
+
+### Estimators
+
+An `Estimator` abstracts the concept of a learning algorithm or any algorithm that fits or trains on
+data.
+Technically, an `Estimator` implements a method `fit()`, which accepts a `DataFrame` and produces a
+`Model`, which is a `Transformer`.
+For example, a learning algorithm such as `LogisticRegression` is an `Estimator`, and calling
+`fit()` trains a `LogisticRegressionModel`, which is a `Model` and hence a `Transformer`.
+
+### Properties of pipeline components
+
+`Transformer.transform()`s and `Estimator.fit()`s are both stateless. In the future, stateful algorithms may be supported via alternative concepts.
+
+Each instance of a `Transformer` or `Estimator` has a unique ID, which is useful in specifying parameters (discussed below).
+
+## Pipeline
+
+In machine learning, it is common to run a sequence of algorithms to process and learn from data.
+E.g., a simple text document processing workflow might include several stages:
+
+* Split each document's text into words.
+* Convert each document's words into a numerical feature vector.
+* Learn a prediction model using the feature vectors and labels.
+
+Spark ML represents such a workflow as a `Pipeline`, which consists of a sequence of
+`PipelineStage`s (`Transformer`s and `Estimator`s) to be run in a specific order.
+We will use this simple workflow as a running example in this section.
+
+### How it works
+
+A `Pipeline` is specified as a sequence of stages, and each stage is either a `Transformer` or an `Estimator`.
+These stages are run in order, and the input `DataFrame` is transformed as it passes through each stage.
+For `Transformer` stages, the `transform()` method is called on the `DataFrame`.
+For `Estimator` stages, the `fit()` method is called to produce a `Transformer` (which becomes part of the `PipelineModel`, or fitted `Pipeline`), and that `Transformer`'s `transform()` method is called on the `DataFrame`.
+
+We illustrate this for the simple text document workflow. The figure below is for the *training time* usage of a `Pipeline`.
+
+<p style="text-align: center;">
+ <img
+ src="img/ml-Pipeline.png"
+ title="Spark ML Pipeline Example"
+ alt="Spark ML Pipeline Example"
+ width="80%"
+ />
+</p>
+
+Above, the top row represents a `Pipeline` with three stages.
+The first two (`Tokenizer` and `HashingTF`) are `Transformer`s (blue), and the third (`LogisticRegression`) is an `Estimator` (red).
+The bottom row represents data flowing through the pipeline, where cylinders indicate `DataFrame`s.
+The `Pipeline.fit()` method is called on the original `DataFrame`, which has raw text documents and labels.
+The `Tokenizer.transform()` method splits the raw text documents into words, adding a new column with words to the `DataFrame`.
+The `HashingTF.transform()` method converts the words column into feature vectors, adding a new column with those vectors to the `DataFrame`.
+Now, since `LogisticRegression` is an `Estimator`, the `Pipeline` first calls `LogisticRegression.fit()` to produce a `LogisticRegressionModel`.
+If the `Pipeline` had more stages, it would call the `LogisticRegressionModel`'s `transform()`
+method on the `DataFrame` before passing the `DataFrame` to the next stage.
+
+A `Pipeline` is an `Estimator`.
+Thus, after a `Pipeline`'s `fit()` method runs, it produces a `PipelineModel`, which is a
+`Transformer`.
+This `PipelineModel` is used at *test time*; the figure below illustrates this usage.
+
+<p style="text-align: center;">
+ <img
+ src="img/ml-PipelineModel.png"
+ title="Spark ML PipelineModel Example"
+ alt="Spark ML PipelineModel Example"
+ width="80%"
+ />
+</p>
+
+In the figure above, the `PipelineModel` has the same number of stages as the original `Pipeline`, but all `Estimator`s in the original `Pipeline` have become `Transformer`s.
+When the `PipelineModel`'s `transform()` method is called on a test dataset, the data are passed
+through the fitted pipeline in order.
+Each stage's `transform()` method updates the dataset and passes it to the next stage.
+
+`Pipeline`s and `PipelineModel`s help to ensure that training and test data go through identical feature processing steps.
+
+### Details
+
+*DAG `Pipeline`s*: A `Pipeline`'s stages are specified as an ordered array. The examples given here are all for linear `Pipeline`s, i.e., `Pipeline`s in which each stage uses data produced by the previous stage. It is possible to create non-linear `Pipeline`s as long as the data flow graph forms a Directed Acyclic Graph (DAG). This graph is currently specified implicitly based on the input and output column names of each stage (generally specified as parameters). If the `Pipeline` forms a DAG, then the stages must be specified in topological order.
+
+*Runtime checking*: Since `Pipeline`s can operate on `DataFrame`s with varied types, they cannot use
+compile-time type checking.
+`Pipeline`s and `PipelineModel`s instead do runtime checking before actually running the `Pipeline`.
+This type checking is done using the `DataFrame` *schema*, a description of the data types of columns in the `DataFrame`.
+
+*Unique Pipeline stages*: A `Pipeline`'s stages should be unique instances. E.g., the same instance
+`myHashingTF` should not be inserted into the `Pipeline` twice since `Pipeline` stages must have
+unique IDs. However, different instances `myHashingTF1` and `myHashingTF2` (both of type `HashingTF`)
+can be put into the same `Pipeline` since different instances will be created with different IDs.
+
+## Parameters
+
+Spark ML `Estimator`s and `Transformer`s use a uniform API for specifying parameters.
+
+A `Param` is a named parameter with self-contained documentation.
+A `ParamMap` is a set of (parameter, value) pairs.
+
+There are two main ways to pass parameters to an algorithm:
+
+1. Set parameters for an instance. E.g., if `lr` is an instance of `LogisticRegression`, one could
+ call `lr.setMaxIter(10)` to make `lr.fit()` use at most 10 iterations.
+ This API resembles the API used in `spark.mllib` package.
+2. Pass a `ParamMap` to `fit()` or `transform()`. Any parameters in the `ParamMap` will override parameters previously specified via setter methods.
+
+Parameters belong to specific instances of `Estimator`s and `Transformer`s.
+For example, if we have two `LogisticRegression` instances `lr1` and `lr2`, then we can build a `ParamMap` with both `maxIter` parameters specified: `ParamMap(lr1.maxIter -> 10, lr2.maxIter -> 20)`.
+This is useful if there are two algorithms with the `maxIter` parameter in a `Pipeline`.
+
+# Code examples
+
+This section gives code examples illustrating the functionality discussed above.
+For more info, please refer to the API documentation
+([Scala](api/scala/index.html#org.apache.spark.ml.package),
+[Java](api/java/org/apache/spark/ml/package-summary.html),
+and [Python](api/python/pyspark.ml.html)).
+Some Spark ML algorithms are wrappers for `spark.mllib` algorithms, and the
+[MLlib programming guide](mllib-guide.html) has details on specific algorithms.
+
+## Example: Estimator, Transformer, and Param
+
+This example covers the concepts of `Estimator`, `Transformer`, and `Param`.
+
+<div class="codetabs">
+
+<div data-lang="scala">
+{% highlight scala %}
+import org.apache.spark.ml.classification.LogisticRegression
+import org.apache.spark.ml.param.ParamMap
+import org.apache.spark.mllib.linalg.{Vector, Vectors}
+import org.apache.spark.sql.Row
+
+// Prepare training data from a list of (label, features) tuples.
+val training = sqlContext.createDataFrame(Seq(
+ (1.0, Vectors.dense(0.0, 1.1, 0.1)),
+ (0.0, Vectors.dense(2.0, 1.0, -1.0)),
+ (0.0, Vectors.dense(2.0, 1.3, 1.0)),
+ (1.0, Vectors.dense(0.0, 1.2, -0.5))
+)).toDF("label", "features")
+
+// Create a LogisticRegression instance. This instance is an Estimator.
+val lr = new LogisticRegression()
+// Print out the parameters, documentation, and any default values.
+println("LogisticRegression parameters:\n" + lr.explainParams() + "\n")
+
+// We may set parameters using setter methods.
+lr.setMaxIter(10)
+ .setRegParam(0.01)
+
+// Learn a LogisticRegression model. This uses the parameters stored in lr.
+val model1 = lr.fit(training)
+// Since model1 is a Model (i.e., a Transformer produced by an Estimator),
+// we can view the parameters it used during fit().
+// This prints the parameter (name: value) pairs, where names are unique IDs for this
+// LogisticRegression instance.
+println("Model 1 was fit using parameters: " + model1.parent.extractParamMap)
+
+// We may alternatively specify parameters using a ParamMap,
+// which supports several methods for specifying parameters.
+val paramMap = ParamMap(lr.maxIter -> 20)
+ .put(lr.maxIter, 30) // Specify 1 Param. This overwrites the original maxIter.
+ .put(lr.regParam -> 0.1, lr.threshold -> 0.55) // Specify multiple Params.
+
+// One can also combine ParamMaps.
+val paramMap2 = ParamMap(lr.probabilityCol -> "myProbability") // Change output column name
+val paramMapCombined = paramMap ++ paramMap2
+
+// Now learn a new model using the paramMapCombined parameters.
+// paramMapCombined overrides all parameters set earlier via lr.set* methods.
+val model2 = lr.fit(training, paramMapCombined)
+println("Model 2 was fit using parameters: " + model2.parent.extractParamMap)
+
+// Prepare test data.
+val test = sqlContext.createDataFrame(Seq(
+ (1.0, Vectors.dense(-1.0, 1.5, 1.3)),
+ (0.0, Vectors.dense(3.0, 2.0, -0.1)),
+ (1.0, Vectors.dense(0.0, 2.2, -1.5))
+)).toDF("label", "features")
+
+// Make predictions on test data using the Transformer.transform() method.
+// LogisticRegression.transform will only use the 'features' column.
+// Note that model2.transform() outputs a 'myProbability' column instead of the usual
+// 'probability' column since we renamed the lr.probabilityCol parameter previously.
+model2.transform(test)
+ .select("features", "label", "myProbability", "prediction")
+ .collect()
+ .foreach { case Row(features: Vector, label: Double, prob: Vector, prediction: Double) =>
+ println(s"($features, $label) -> prob=$prob, prediction=$prediction")
+ }
+
+{% endhighlight %}
+</div>
+
+<div data-lang="java">
+{% highlight java %}
+import java.util.Arrays;
+import java.util.List;
+
+import org.apache.spark.ml.classification.LogisticRegressionModel;
+import org.apache.spark.ml.param.ParamMap;
+import org.apache.spark.ml.classification.LogisticRegression;
+import org.apache.spark.mllib.linalg.Vectors;
+import org.apache.spark.mllib.regression.LabeledPoint;
+import org.apache.spark.sql.DataFrame;
+import org.apache.spark.sql.Row;
+
+// Prepare training data.
+// We use LabeledPoint, which is a JavaBean. Spark SQL can convert RDDs of JavaBeans
+// into DataFrames, where it uses the bean metadata to infer the schema.
+DataFrame training = sqlContext.createDataFrame(Arrays.asList(
+ new LabeledPoint(1.0, Vectors.dense(0.0, 1.1, 0.1)),
+ new LabeledPoint(0.0, Vectors.dense(2.0, 1.0, -1.0)),
+ new LabeledPoint(0.0, Vectors.dense(2.0, 1.3, 1.0)),
+ new LabeledPoint(1.0, Vectors.dense(0.0, 1.2, -0.5))
+), LabeledPoint.class);
+
+// Create a LogisticRegression instance. This instance is an Estimator.
+LogisticRegression lr = new LogisticRegression();
+// Print out the parameters, documentation, and any default values.
+System.out.println("LogisticRegression parameters:\n" + lr.explainParams() + "\n");
+
+// We may set parameters using setter methods.
+lr.setMaxIter(10)
+ .setRegParam(0.01);
+
+// Learn a LogisticRegression model. This uses the parameters stored in lr.
+LogisticRegressionModel model1 = lr.fit(training);
+// Since model1 is a Model (i.e., a Transformer produced by an Estimator),
+// we can view the parameters it used during fit().
+// This prints the parameter (name: value) pairs, where names are unique IDs for this
+// LogisticRegression instance.
+System.out.println("Model 1 was fit using parameters: " + model1.parent().extractParamMap());
+
+// We may alternatively specify parameters using a ParamMap.
+ParamMap paramMap = new ParamMap()
+ .put(lr.maxIter().w(20)) // Specify 1 Param.
+ .put(lr.maxIter(), 30) // This overwrites the original maxIter.
+ .put(lr.regParam().w(0.1), lr.threshold().w(0.55)); // Specify multiple Params.
+
+// One can also combine ParamMaps.
+ParamMap paramMap2 = new ParamMap()
+ .put(lr.probabilityCol().w("myProbability")); // Change output column name
+ParamMap paramMapCombined = paramMap.$plus$plus(paramMap2);
+
+// Now learn a new model using the paramMapCombined parameters.
+// paramMapCombined overrides all parameters set earlier via lr.set* methods.
+LogisticRegressionModel model2 = lr.fit(training, paramMapCombined);
+System.out.println("Model 2 was fit using parameters: " + model2.parent().extractParamMap());
+
+// Prepare test documents.
+DataFrame test = sqlContext.createDataFrame(Arrays.asList(
+ new LabeledPoint(1.0, Vectors.dense(-1.0, 1.5, 1.3)),
+ new LabeledPoint(0.0, Vectors.dense(3.0, 2.0, -0.1)),
+ new LabeledPoint(1.0, Vectors.dense(0.0, 2.2, -1.5))
+), LabeledPoint.class);
+
+// Make predictions on test documents using the Transformer.transform() method.
+// LogisticRegression.transform will only use the 'features' column.
+// Note that model2.transform() outputs a 'myProbability' column instead of the usual
+// 'probability' column since we renamed the lr.probabilityCol parameter previously.
+DataFrame results = model2.transform(test);
+for (Row r: results.select("features", "label", "myProbability", "prediction").collect()) {
+ System.out.println("(" + r.get(0) + ", " + r.get(1) + ") -> prob=" + r.get(2)
+ + ", prediction=" + r.get(3));
+}
+
+{% endhighlight %}
+</div>
+
+<div data-lang="python">
+{% highlight python %}
+from pyspark.mllib.linalg import Vectors
+from pyspark.ml.classification import LogisticRegression
+from pyspark.ml.param import Param, Params
+
+# Prepare training data from a list of (label, features) tuples.
+training = sqlContext.createDataFrame([
+ (1.0, Vectors.dense([0.0, 1.1, 0.1])),
+ (0.0, Vectors.dense([2.0, 1.0, -1.0])),
+ (0.0, Vectors.dense([2.0, 1.3, 1.0])),
+ (1.0, Vectors.dense([0.0, 1.2, -0.5]))], ["label", "features"])
+
+# Create a LogisticRegression instance. This instance is an Estimator.
+lr = LogisticRegression(maxIter=10, regParam=0.01)
+# Print out the parameters, documentation, and any default values.
+print "LogisticRegression parameters:\n" + lr.explainParams() + "\n"
+
+# Learn a LogisticRegression model. This uses the parameters stored in lr.
+model1 = lr.fit(training)
+
+# Since model1 is a Model (i.e., a transformer produced by an Estimator),
+# we can view the parameters it used during fit().
+# This prints the parameter (name: value) pairs, where names are unique IDs for this
+# LogisticRegression instance.
+print "Model 1 was fit using parameters: "
+print model1.extractParamMap()
+
+# We may alternatively specify parameters using a Python dictionary as a paramMap
+paramMap = {lr.maxIter: 20}
+paramMap[lr.maxIter] = 30 # Specify 1 Param, overwriting the original maxIter.
+paramMap.update({lr.regParam: 0.1, lr.threshold: 0.55}) # Specify multiple Params.
+
+# You can combine paramMaps, which are python dictionaries.
+paramMap2 = {lr.probabilityCol: "myProbability"} # Change output column name
+paramMapCombined = paramMap.copy()
+paramMapCombined.update(paramMap2)
+
+# Now learn a new model using the paramMapCombined parameters.
+# paramMapCombined overrides all parameters set earlier via lr.set* methods.
+model2 = lr.fit(training, paramMapCombined)
+print "Model 2 was fit using parameters: "
+print model2.extractParamMap()
+
+# Prepare test data
+test = sqlContext.createDataFrame([
+ (1.0, Vectors.dense([-1.0, 1.5, 1.3])),
+ (0.0, Vectors.dense([3.0, 2.0, -0.1])),
+ (1.0, Vectors.dense([0.0, 2.2, -1.5]))], ["label", "features"])
+
+# Make predictions on test data using the Transformer.transform() method.
+# LogisticRegression.transform will only use the 'features' column.
+# Note that model2.transform() outputs a "myProbability" column instead of the usual
+# 'probability' column since we renamed the lr.probabilityCol parameter previously.
+prediction = model2.transform(test)
+selected = prediction.select("features", "label", "myProbability", "prediction")
+for row in selected.collect():
+ print row
+
+{% endhighlight %}
+</div>
+
+</div>
+
+## Example: Pipeline
+
+This example follows the simple text document `Pipeline` illustrated in the figures above.
+
+<div class="codetabs">
+
+<div data-lang="scala">
+{% highlight scala %}
+import org.apache.spark.ml.Pipeline
+import org.apache.spark.ml.classification.LogisticRegression
+import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
+import org.apache.spark.mllib.linalg.Vector
+import org.apache.spark.sql.Row
+
+// Prepare training documents from a list of (id, text, label) tuples.
+val training = sqlContext.createDataFrame(Seq(
+ (0L, "a b c d e spark", 1.0),
+ (1L, "b d", 0.0),
+ (2L, "spark f g h", 1.0),
+ (3L, "hadoop mapreduce", 0.0)
+)).toDF("id", "text", "label")
+
+// Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
+val tokenizer = new Tokenizer()
+ .setInputCol("text")
+ .setOutputCol("words")
+val hashingTF = new HashingTF()
+ .setNumFeatures(1000)
+ .setInputCol(tokenizer.getOutputCol)
+ .setOutputCol("features")
+val lr = new LogisticRegression()
+ .setMaxIter(10)
+ .setRegParam(0.01)
+val pipeline = new Pipeline()
+ .setStages(Array(tokenizer, hashingTF, lr))
+
+// Fit the pipeline to training documents.
+val model = pipeline.fit(training)
+
+// Prepare test documents, which are unlabeled (id, text) tuples.
+val test = sqlContext.createDataFrame(Seq(
+ (4L, "spark i j k"),
+ (5L, "l m n"),
+ (6L, "mapreduce spark"),
+ (7L, "apache hadoop")
+)).toDF("id", "text")
+
+// Make predictions on test documents.
+model.transform(test)
+ .select("id", "text", "probability", "prediction")
+ .collect()
+ .foreach { case Row(id: Long, text: String, prob: Vector, prediction: Double) =>
+ println(s"($id, $text) --> prob=$prob, prediction=$prediction")
+ }
+
+{% endhighlight %}
+</div>
+
+<div data-lang="java">
+{% highlight java %}
+import java.util.Arrays;
+import java.util.List;
+
+import org.apache.spark.ml.Pipeline;
+import org.apache.spark.ml.PipelineModel;
+import org.apache.spark.ml.PipelineStage;
+import org.apache.spark.ml.classification.LogisticRegression;
+import org.apache.spark.ml.feature.HashingTF;
+import org.apache.spark.ml.feature.Tokenizer;
+import org.apache.spark.sql.DataFrame;
+import org.apache.spark.sql.Row;
+
+// Labeled and unlabeled instance types.
+// Spark SQL can infer schema from Java Beans.
+public class Document implements Serializable {
+ private long id;
+ private String text;
+
+ public Document(long id, String text) {
+ this.id = id;
+ this.text = text;
+ }
+
+ public long getId() { return this.id; }
+ public void setId(long id) { this.id = id; }
+
+ public String getText() { return this.text; }
+ public void setText(String text) { this.text = text; }
+}
+
+public class LabeledDocument extends Document implements Serializable {
+ private double label;
+
+ public LabeledDocument(long id, String text, double label) {
+ super(id, text);
+ this.label = label;
+ }
+
+ public double getLabel() { return this.label; }
+ public void setLabel(double label) { this.label = label; }
+}
+
+// Prepare training documents, which are labeled.
+DataFrame training = sqlContext.createDataFrame(Arrays.asList(
+ new LabeledDocument(0L, "a b c d e spark", 1.0),
+ new LabeledDocument(1L, "b d", 0.0),
+ new LabeledDocument(2L, "spark f g h", 1.0),
+ new LabeledDocument(3L, "hadoop mapreduce", 0.0)
+), LabeledDocument.class);
+
+// Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
+Tokenizer tokenizer = new Tokenizer()
+ .setInputCol("text")
+ .setOutputCol("words");
+HashingTF hashingTF = new HashingTF()
+ .setNumFeatures(1000)
+ .setInputCol(tokenizer.getOutputCol())
+ .setOutputCol("features");
+LogisticRegression lr = new LogisticRegression()
+ .setMaxIter(10)
+ .setRegParam(0.01);
+Pipeline pipeline = new Pipeline()
+ .setStages(new PipelineStage[] {tokenizer, hashingTF, lr});
+
+// Fit the pipeline to training documents.
+PipelineModel model = pipeline.fit(training);
+
+// Prepare test documents, which are unlabeled.
+DataFrame test = sqlContext.createDataFrame(Arrays.asList(
+ new Document(4L, "spark i j k"),
+ new Document(5L, "l m n"),
+ new Document(6L, "mapreduce spark"),
+ new Document(7L, "apache hadoop")
+), Document.class);
+
+// Make predictions on test documents.
+DataFrame predictions = model.transform(test);
+for (Row r: predictions.select("id", "text", "probability", "prediction").collect()) {
+ System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> prob=" + r.get(2)
+ + ", prediction=" + r.get(3));
+}
+
+{% endhighlight %}
+</div>
+
+<div data-lang="python">
+{% highlight python %}
+from pyspark.ml import Pipeline
+from pyspark.ml.classification import LogisticRegression
+from pyspark.ml.feature import HashingTF, Tokenizer
+from pyspark.sql import Row
+
+# Prepare training documents from a list of (id, text, label) tuples.
+LabeledDocument = Row("id", "text", "label")
+training = sqlContext.createDataFrame([
+ (0L, "a b c d e spark", 1.0),
+ (1L, "b d", 0.0),
+ (2L, "spark f g h", 1.0),
+ (3L, "hadoop mapreduce", 0.0)], ["id", "text", "label"])
+
+# Configure an ML pipeline, which consists of tree stages: tokenizer, hashingTF, and lr.
+tokenizer = Tokenizer(inputCol="text", outputCol="words")
+hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")
+lr = LogisticRegression(maxIter=10, regParam=0.01)
+pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])
+
+# Fit the pipeline to training documents.
+model = pipeline.fit(training)
+
+# Prepare test documents, which are unlabeled (id, text) tuples.
+test = sqlContext.createDataFrame([
+ (4L, "spark i j k"),
+ (5L, "l m n"),
+ (6L, "mapreduce spark"),
+ (7L, "apache hadoop")], ["id", "text"])
+
+# Make predictions on test documents and print columns of interest.
+prediction = model.transform(test)
+selected = prediction.select("id", "text", "prediction")
+for row in selected.collect():
+ print(row)
+
+{% endhighlight %}
+</div>
+
+</div>
+
+## Example: model selection via cross-validation
+
+An important task in ML is *model selection*, or using data to find the best model or parameters for a given task. This is also called *tuning*.
+`Pipeline`s facilitate model selection by making it easy to tune an entire `Pipeline` at once, rather than tuning each element in the `Pipeline` separately.
+
+Currently, `spark.ml` supports model selection using the [`CrossValidator`](api/scala/index.html#org.apache.spark.ml.tuning.CrossValidator) class, which takes an `Estimator`, a set of `ParamMap`s, and an [`Evaluator`](api/scala/index.html#org.apache.spark.ml.evaluation.Evaluator).
+`CrossValidator` begins by splitting the dataset into a set of *folds* which are used as separate training and test datasets; e.g., with `$k=3$` folds, `CrossValidator` will generate 3 (training, test) dataset pairs, each of which uses 2/3 of the data for training and 1/3 for testing.
+`CrossValidator` iterates through the set of `ParamMap`s. For each `ParamMap`, it trains the given `Estimator` and evaluates it using the given `Evaluator`.
+
+The `Evaluator` can be a [`RegressionEvaluator`](api/scala/index.html#org.apache.spark.ml.evaluation.RegressionEvaluator)
+for regression problems, a [`BinaryClassificationEvaluator`](api/scala/index.html#org.apache.spark.ml.evaluation.BinaryClassificationEvaluator)
+for binary data, or a [`MultiClassClassificationEvaluator`](api/scala/index.html#org.apache.spark.ml.evaluation.MultiClassClassificationEvaluator)
+for multiclass problems. The default metric used to choose the best `ParamMap` can be overriden by the `setMetric`
+method in each of these evaluators.
+
+The `ParamMap` which produces the best evaluation metric (averaged over the `$k$` folds) is selected as the best model.
+`CrossValidator` finally fits the `Estimator` using the best `ParamMap` and the entire dataset.
+
+The following example demonstrates using `CrossValidator` to select from a grid of parameters.
+To help construct the parameter grid, we use the [`ParamGridBuilder`](api/scala/index.html#org.apache.spark.ml.tuning.ParamGridBuilder) utility.
+
+Note that cross-validation over a grid of parameters is expensive.
+E.g., in the example below, the parameter grid has 3 values for `hashingTF.numFeatures` and 2 values for `lr.regParam`, and `CrossValidator` uses 2 folds. This multiplies out to `$(3 \times 2) \times 2 = 12$` different models being trained.
+In realistic settings, it can be common to try many more parameters and use more folds (`$k=3$` and `$k=10$` are common).
+In other words, using `CrossValidator` can be very expensive.
+However, it is also a well-established method for choosing parameters which is more statistically sound than heuristic hand-tuning.
+
+<div class="codetabs">
+
+<div data-lang="scala">
+{% highlight scala %}
+import org.apache.spark.ml.Pipeline
+import org.apache.spark.ml.classification.LogisticRegression
+import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
+import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
+import org.apache.spark.ml.tuning.{ParamGridBuilder, CrossValidator}
+import org.apache.spark.mllib.linalg.Vector
+import org.apache.spark.sql.Row
+
+// Prepare training data from a list of (id, text, label) tuples.
+val training = sqlContext.createDataFrame(Seq(
+ (0L, "a b c d e spark", 1.0),
+ (1L, "b d", 0.0),
+ (2L, "spark f g h", 1.0),
+ (3L, "hadoop mapreduce", 0.0),
+ (4L, "b spark who", 1.0),
+ (5L, "g d a y", 0.0),
+ (6L, "spark fly", 1.0),
+ (7L, "was mapreduce", 0.0),
+ (8L, "e spark program", 1.0),
+ (9L, "a e c l", 0.0),
+ (10L, "spark compile", 1.0),
+ (11L, "hadoop software", 0.0)
+)).toDF("id", "text", "label")
+
+// Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
+val tokenizer = new Tokenizer()
+ .setInputCol("text")
+ .setOutputCol("words")
+val hashingTF = new HashingTF()
+ .setInputCol(tokenizer.getOutputCol)
+ .setOutputCol("features")
+val lr = new LogisticRegression()
+ .setMaxIter(10)
+val pipeline = new Pipeline()
+ .setStages(Array(tokenizer, hashingTF, lr))
+
+// We use a ParamGridBuilder to construct a grid of parameters to search over.
+// With 3 values for hashingTF.numFeatures and 2 values for lr.regParam,
+// this grid will have 3 x 2 = 6 parameter settings for CrossValidator to choose from.
+val paramGrid = new ParamGridBuilder()
+ .addGrid(hashingTF.numFeatures, Array(10, 100, 1000))
+ .addGrid(lr.regParam, Array(0.1, 0.01))
+ .build()
+
+// We now treat the Pipeline as an Estimator, wrapping it in a CrossValidator instance.
+// This will allow us to jointly choose parameters for all Pipeline stages.
+// A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
+// Note that the evaluator here is a BinaryClassificationEvaluator and its default metric
+// is areaUnderROC.
+val cv = new CrossValidator()
+ .setEstimator(pipeline)
+ .setEvaluator(new BinaryClassificationEvaluator)
+ .setEstimatorParamMaps(paramGrid)
+ .setNumFolds(2) // Use 3+ in practice
+
+// Run cross-validation, and choose the best set of parameters.
+val cvModel = cv.fit(training)
+
+// Prepare test documents, which are unlabeled (id, text) tuples.
+val test = sqlContext.createDataFrame(Seq(
+ (4L, "spark i j k"),
+ (5L, "l m n"),
+ (6L, "mapreduce spark"),
+ (7L, "apache hadoop")
+)).toDF("id", "text")
+
+// Make predictions on test documents. cvModel uses the best model found (lrModel).
+cvModel.transform(test)
+ .select("id", "text", "probability", "prediction")
+ .collect()
+ .foreach { case Row(id: Long, text: String, prob: Vector, prediction: Double) =>
+ println(s"($id, $text) --> prob=$prob, prediction=$prediction")
+ }
+
+{% endhighlight %}
+</div>
+
+<div data-lang="java">
+{% highlight java %}
+import java.util.Arrays;
+import java.util.List;
+
+import org.apache.spark.ml.Pipeline;
+import org.apache.spark.ml.PipelineStage;
+import org.apache.spark.ml.classification.LogisticRegression;
+import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator;
+import org.apache.spark.ml.feature.HashingTF;
+import org.apache.spark.ml.feature.Tokenizer;
+import org.apache.spark.ml.param.ParamMap;
+import org.apache.spark.ml.tuning.CrossValidator;
+import org.apache.spark.ml.tuning.CrossValidatorModel;
+import org.apache.spark.ml.tuning.ParamGridBuilder;
+import org.apache.spark.sql.DataFrame;
+import org.apache.spark.sql.Row;
+
+// Labeled and unlabeled instance types.
+// Spark SQL can infer schema from Java Beans.
+public class Document implements Serializable {
+ private long id;
+ private String text;
+
+ public Document(long id, String text) {
+ this.id = id;
+ this.text = text;
+ }
+
+ public long getId() { return this.id; }
+ public void setId(long id) { this.id = id; }
+
+ public String getText() { return this.text; }
+ public void setText(String text) { this.text = text; }
+}
+
+public class LabeledDocument extends Document implements Serializable {
+ private double label;
+
+ public LabeledDocument(long id, String text, double label) {
+ super(id, text);
+ this.label = label;
+ }
+
+ public double getLabel() { return this.label; }
+ public void setLabel(double label) { this.label = label; }
+}
+
+
+// Prepare training documents, which are labeled.
+DataFrame training = sqlContext.createDataFrame(Arrays.asList(
+ new LabeledDocument(0L, "a b c d e spark", 1.0),
+ new LabeledDocument(1L, "b d", 0.0),
+ new LabeledDocument(2L, "spark f g h", 1.0),
+ new LabeledDocument(3L, "hadoop mapreduce", 0.0),
+ new LabeledDocument(4L, "b spark who", 1.0),
+ new LabeledDocument(5L, "g d a y", 0.0),
+ new LabeledDocument(6L, "spark fly", 1.0),
+ new LabeledDocument(7L, "was mapreduce", 0.0),
+ new LabeledDocument(8L, "e spark program", 1.0),
+ new LabeledDocument(9L, "a e c l", 0.0),
+ new LabeledDocument(10L, "spark compile", 1.0),
+ new LabeledDocument(11L, "hadoop software", 0.0)
+), LabeledDocument.class);
+
+// Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
+Tokenizer tokenizer = new Tokenizer()
+ .setInputCol("text")
+ .setOutputCol("words");
+HashingTF hashingTF = new HashingTF()
+ .setNumFeatures(1000)
+ .setInputCol(tokenizer.getOutputCol())
+ .setOutputCol("features");
+LogisticRegression lr = new LogisticRegression()
+ .setMaxIter(10)
+ .setRegParam(0.01);
+Pipeline pipeline = new Pipeline()
+ .setStages(new PipelineStage[] {tokenizer, hashingTF, lr});
+
+// We use a ParamGridBuilder to construct a grid of parameters to search over.
+// With 3 values for hashingTF.numFeatures and 2 values for lr.regParam,
+// this grid will have 3 x 2 = 6 parameter settings for CrossValidator to choose from.
+ParamMap[] paramGrid = new ParamGridBuilder()
+ .addGrid(hashingTF.numFeatures(), new int[]{10, 100, 1000})
+ .addGrid(lr.regParam(), new double[]{0.1, 0.01})
+ .build();
+
+// We now treat the Pipeline as an Estimator, wrapping it in a CrossValidator instance.
+// This will allow us to jointly choose parameters for all Pipeline stages.
+// A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
+// Note that the evaluator here is a BinaryClassificationEvaluator and its default metric
+// is areaUnderROC.
+CrossValidator cv = new CrossValidator()
+ .setEstimator(pipeline)
+ .setEvaluator(new BinaryClassificationEvaluator())
+ .setEstimatorParamMaps(paramGrid)
+ .setNumFolds(2); // Use 3+ in practice
+
+// Run cross-validation, and choose the best set of parameters.
+CrossValidatorModel cvModel = cv.fit(training);
+
+// Prepare test documents, which are unlabeled.
+DataFrame test = sqlContext.createDataFrame(Arrays.asList(
+ new Document(4L, "spark i j k"),
+ new Document(5L, "l m n"),
+ new Document(6L, "mapreduce spark"),
+ new Document(7L, "apache hadoop")
+), Document.class);
+
+// Make predictions on test documents. cvModel uses the best model found (lrModel).
+DataFrame predictions = cvModel.transform(test);
+for (Row r: predictions.select("id", "text", "probability", "prediction").collect()) {
+ System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> prob=" + r.get(2)
+ + ", prediction=" + r.get(3));
+}
+
+{% endhighlight %}
+</div>
+
+</div>
+
+## Example: model selection via train validation split
+In addition to `CrossValidator` Spark also offers `TrainValidationSplit` for hyper-parameter tuning.
+`TrainValidationSplit` only evaluates each combination of parameters once as opposed to k times in
+ case of `CrossValidator`. It is therefore less expensive,
+ but will not produce as reliable results when the training dataset is not sufficiently large.
+
+`TrainValidationSplit` takes an `Estimator`, a set of `ParamMap`s provided in the `estimatorParamMaps` parameter,
+and an `Evaluator`.
+It begins by splitting the dataset into two parts using `trainRatio` parameter
+which are used as separate training and test datasets. For example with `$trainRatio=0.75$` (default),
+`TrainValidationSplit` will generate a training and test dataset pair where 75% of the data is used for training and 25% for validation.
+Similar to `CrossValidator`, `TrainValidationSplit` also iterates through the set of `ParamMap`s.
+For each combination of parameters, it trains the given `Estimator` and evaluates it using the given `Evaluator`.
+The `ParamMap` which produces the best evaluation metric is selected as the best option.
+`TrainValidationSplit` finally fits the `Estimator` using the best `ParamMap` and the entire dataset.
+
+<div class="codetabs">
+
+<div data-lang="scala" markdown="1">
+{% highlight scala %}
+import org.apache.spark.ml.evaluation.RegressionEvaluator
+import org.apache.spark.ml.regression.LinearRegression
+import org.apache.spark.ml.tuning.{ParamGridBuilder, TrainValidationSplit}
+
+// Prepare training and test data.
+val data = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
+val Array(training, test) = data.randomSplit(Array(0.9, 0.1), seed = 12345)
+
+val lr = new LinearRegression()
+
+// We use a ParamGridBuilder to construct a grid of parameters to search over.
+// TrainValidationSplit will try all combinations of values and determine best model using
+// the evaluator.
+val paramGrid = new ParamGridBuilder()
+ .addGrid(lr.regParam, Array(0.1, 0.01))
+ .addGrid(lr.fitIntercept)
+ .addGrid(lr.elasticNetParam, Array(0.0, 0.5, 1.0))
+ .build()
+
+// In this case the estimator is simply the linear regression.
+// A TrainValidationSplit requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
+val trainValidationSplit = new TrainValidationSplit()
+ .setEstimator(lr)
+ .setEvaluator(new RegressionEvaluator)
+ .setEstimatorParamMaps(paramGrid)
+ // 80% of the data will be used for training and the remaining 20% for validation.
+ .setTrainRatio(0.8)
+
+// Run train validation split, and choose the best set of parameters.
+val model = trainValidationSplit.fit(training)
+
+// Make predictions on test data. model is the model with combination of parameters
+// that performed best.
+model.transform(test)
+ .select("features", "label", "prediction")
+ .show()
+
+{% endhighlight %}
+</div>
+
+<div data-lang="java" markdown="1">
+{% highlight java %}
+import org.apache.spark.ml.evaluation.RegressionEvaluator;
+import org.apache.spark.ml.param.ParamMap;
+import org.apache.spark.ml.regression.LinearRegression;
+import org.apache.spark.ml.tuning.*;
+import org.apache.spark.sql.DataFrame;
+
+DataFrame data = jsql.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt");
+
+// Prepare training and test data.
+DataFrame[] splits = data.randomSplit(new double[] {0.9, 0.1}, 12345);
+DataFrame training = splits[0];
+DataFrame test = splits[1];
+
+LinearRegression lr = new LinearRegression();
+
+// We use a ParamGridBuilder to construct a grid of parameters to search over.
+// TrainValidationSplit will try all combinations of values and determine best model using
+// the evaluator.
+ParamMap[] paramGrid = new ParamGridBuilder()
+ .addGrid(lr.regParam(), new double[] {0.1, 0.01})
+ .addGrid(lr.fitIntercept())
+ .addGrid(lr.elasticNetParam(), new double[] {0.0, 0.5, 1.0})
+ .build();
+
+// In this case the estimator is simply the linear regression.
+// A TrainValidationSplit requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
+TrainValidationSplit trainValidationSplit = new TrainValidationSplit()
+ .setEstimator(lr)
+ .setEvaluator(new RegressionEvaluator())
+ .setEstimatorParamMaps(paramGrid)
+ .setTrainRatio(0.8); // 80% for training and the remaining 20% for validation
+
+// Run train validation split, and choose the best set of parameters.
+TrainValidationSplitModel model = trainValidationSplit.fit(training);
+
+// Make predictions on test data. model is the model with combination of parameters
+// that performed best.
+model.transform(test)
+ .select("features", "label", "prediction")
+ .show();
+
+{% endhighlight %}
+</div>
+
+</div> \ No newline at end of file
diff --git a/docs/mllib-guide.md b/docs/mllib-guide.md
index 43772adcf2..3bc2b78060 100644
--- a/docs/mllib-guide.md
+++ b/docs/mllib-guide.md
@@ -66,15 +66,14 @@ We list major functionality from both below, with links to detailed guides.
# spark.ml: high-level APIs for ML pipelines
-**[spark.ml programming guide](ml-guide.html)** provides an overview of the Pipelines API and major
-concepts. It also contains sections on using algorithms within the Pipelines API, for example:
-
-* [Feature extraction, transformation, and selection](ml-features.html)
+* [Overview: estimators, transformers and pipelines](ml-intro.html)
+* [Extracting, transforming and selecting features](ml-features.html)
+* [Classification and regression](ml-classification-regression.html)
* [Clustering](ml-clustering.html)
-* [Decision trees for classification and regression](ml-decision-tree.html)
-* [Ensembles](ml-ensembles.html)
-* [Linear methods with elastic net regularization](ml-linear-methods.html)
-* [Multilayer perceptron classifier](ml-ann.html)
+* [Advanced topics](ml-advanced.html)
+
+Some techniques are not available yet in spark.ml, most notably dimensionality reduction
+Users can seemlessly combine the implementation of these techniques found in `spark.mllib` with the rest of the algorithms found in `spark.ml`.
# Dependencies