aboutsummaryrefslogtreecommitdiff
path: root/docs/ml-guide.md
diff options
context:
space:
mode:
authorDevaraj K <devaraj@apache.org>2016-02-22 17:21:37 -0800
committerXiangrui Meng <meng@databricks.com>2016-02-22 17:21:37 -0800
commit02b1fefffb00d50c1076a26f2f3f41f3c1fa0001 (patch)
treed0012790986cca246579ce1d4a8b583fff47469a /docs/ml-guide.md
parent9f410871ca03f4c04bd965b2e4f80167ce543139 (diff)
downloadspark-02b1fefffb00d50c1076a26f2f3f41f3c1fa0001.tar.gz
spark-02b1fefffb00d50c1076a26f2f3f41f3c1fa0001.tar.bz2
spark-02b1fefffb00d50c1076a26f2f3f41f3c1fa0001.zip
[SPARK-13012][DOCUMENTATION] Replace example code in ml-guide.md using include_example
Replaced example code in ml-guide.md using include_example Author: Devaraj K <devaraj@apache.org> Closes #11053 from devaraj-kavali/SPARK-13012.
Diffstat (limited to 'docs/ml-guide.md')
-rw-r--r--docs/ml-guide.md660
1 files changed, 10 insertions, 650 deletions
diff --git a/docs/ml-guide.md b/docs/ml-guide.md
index 8eee2fb674..5900d665b3 100644
--- a/docs/ml-guide.md
+++ b/docs/ml-guide.md
@@ -213,209 +213,15 @@ This example covers the concepts of `Estimator`, `Transformer`, and `Param`.
<div class="codetabs">
<div data-lang="scala">
-{% highlight scala %}
-import org.apache.spark.ml.classification.LogisticRegression
-import org.apache.spark.ml.param.ParamMap
-import org.apache.spark.mllib.linalg.{Vector, Vectors}
-import org.apache.spark.sql.Row
-
-// Prepare training data from a list of (label, features) tuples.
-val training = sqlContext.createDataFrame(Seq(
- (1.0, Vectors.dense(0.0, 1.1, 0.1)),
- (0.0, Vectors.dense(2.0, 1.0, -1.0)),
- (0.0, Vectors.dense(2.0, 1.3, 1.0)),
- (1.0, Vectors.dense(0.0, 1.2, -0.5))
-)).toDF("label", "features")
-
-// Create a LogisticRegression instance. This instance is an Estimator.
-val lr = new LogisticRegression()
-// Print out the parameters, documentation, and any default values.
-println("LogisticRegression parameters:\n" + lr.explainParams() + "\n")
-
-// We may set parameters using setter methods.
-lr.setMaxIter(10)
- .setRegParam(0.01)
-
-// Learn a LogisticRegression model. This uses the parameters stored in lr.
-val model1 = lr.fit(training)
-// Since model1 is a Model (i.e., a Transformer produced by an Estimator),
-// we can view the parameters it used during fit().
-// This prints the parameter (name: value) pairs, where names are unique IDs for this
-// LogisticRegression instance.
-println("Model 1 was fit using parameters: " + model1.parent.extractParamMap)
-
-// We may alternatively specify parameters using a ParamMap,
-// which supports several methods for specifying parameters.
-val paramMap = ParamMap(lr.maxIter -> 20)
- .put(lr.maxIter, 30) // Specify 1 Param. This overwrites the original maxIter.
- .put(lr.regParam -> 0.1, lr.threshold -> 0.55) // Specify multiple Params.
-
-// One can also combine ParamMaps.
-val paramMap2 = ParamMap(lr.probabilityCol -> "myProbability") // Change output column name
-val paramMapCombined = paramMap ++ paramMap2
-
-// Now learn a new model using the paramMapCombined parameters.
-// paramMapCombined overrides all parameters set earlier via lr.set* methods.
-val model2 = lr.fit(training, paramMapCombined)
-println("Model 2 was fit using parameters: " + model2.parent.extractParamMap)
-
-// Prepare test data.
-val test = sqlContext.createDataFrame(Seq(
- (1.0, Vectors.dense(-1.0, 1.5, 1.3)),
- (0.0, Vectors.dense(3.0, 2.0, -0.1)),
- (1.0, Vectors.dense(0.0, 2.2, -1.5))
-)).toDF("label", "features")
-
-// Make predictions on test data using the Transformer.transform() method.
-// LogisticRegression.transform will only use the 'features' column.
-// Note that model2.transform() outputs a 'myProbability' column instead of the usual
-// 'probability' column since we renamed the lr.probabilityCol parameter previously.
-model2.transform(test)
- .select("features", "label", "myProbability", "prediction")
- .collect()
- .foreach { case Row(features: Vector, label: Double, prob: Vector, prediction: Double) =>
- println(s"($features, $label) -> prob=$prob, prediction=$prediction")
- }
-
-{% endhighlight %}
+{% include_example scala/org/apache/spark/examples/ml/EstimatorTransformerParamExample.scala %}
</div>
<div data-lang="java">
-{% highlight java %}
-import java.util.Arrays;
-import java.util.List;
-
-import org.apache.spark.ml.classification.LogisticRegressionModel;
-import org.apache.spark.ml.param.ParamMap;
-import org.apache.spark.ml.classification.LogisticRegression;
-import org.apache.spark.mllib.linalg.Vectors;
-import org.apache.spark.mllib.regression.LabeledPoint;
-import org.apache.spark.sql.DataFrame;
-import org.apache.spark.sql.Row;
-
-// Prepare training data.
-// We use LabeledPoint, which is a JavaBean. Spark SQL can convert RDDs of JavaBeans
-// into DataFrames, where it uses the bean metadata to infer the schema.
-DataFrame training = sqlContext.createDataFrame(Arrays.asList(
- new LabeledPoint(1.0, Vectors.dense(0.0, 1.1, 0.1)),
- new LabeledPoint(0.0, Vectors.dense(2.0, 1.0, -1.0)),
- new LabeledPoint(0.0, Vectors.dense(2.0, 1.3, 1.0)),
- new LabeledPoint(1.0, Vectors.dense(0.0, 1.2, -0.5))
-), LabeledPoint.class);
-
-// Create a LogisticRegression instance. This instance is an Estimator.
-LogisticRegression lr = new LogisticRegression();
-// Print out the parameters, documentation, and any default values.
-System.out.println("LogisticRegression parameters:\n" + lr.explainParams() + "\n");
-
-// We may set parameters using setter methods.
-lr.setMaxIter(10)
- .setRegParam(0.01);
-
-// Learn a LogisticRegression model. This uses the parameters stored in lr.
-LogisticRegressionModel model1 = lr.fit(training);
-// Since model1 is a Model (i.e., a Transformer produced by an Estimator),
-// we can view the parameters it used during fit().
-// This prints the parameter (name: value) pairs, where names are unique IDs for this
-// LogisticRegression instance.
-System.out.println("Model 1 was fit using parameters: " + model1.parent().extractParamMap());
-
-// We may alternatively specify parameters using a ParamMap.
-ParamMap paramMap = new ParamMap()
- .put(lr.maxIter().w(20)) // Specify 1 Param.
- .put(lr.maxIter(), 30) // This overwrites the original maxIter.
- .put(lr.regParam().w(0.1), lr.threshold().w(0.55)); // Specify multiple Params.
-
-// One can also combine ParamMaps.
-ParamMap paramMap2 = new ParamMap()
- .put(lr.probabilityCol().w("myProbability")); // Change output column name
-ParamMap paramMapCombined = paramMap.$plus$plus(paramMap2);
-
-// Now learn a new model using the paramMapCombined parameters.
-// paramMapCombined overrides all parameters set earlier via lr.set* methods.
-LogisticRegressionModel model2 = lr.fit(training, paramMapCombined);
-System.out.println("Model 2 was fit using parameters: " + model2.parent().extractParamMap());
-
-// Prepare test documents.
-DataFrame test = sqlContext.createDataFrame(Arrays.asList(
- new LabeledPoint(1.0, Vectors.dense(-1.0, 1.5, 1.3)),
- new LabeledPoint(0.0, Vectors.dense(3.0, 2.0, -0.1)),
- new LabeledPoint(1.0, Vectors.dense(0.0, 2.2, -1.5))
-), LabeledPoint.class);
-
-// Make predictions on test documents using the Transformer.transform() method.
-// LogisticRegression.transform will only use the 'features' column.
-// Note that model2.transform() outputs a 'myProbability' column instead of the usual
-// 'probability' column since we renamed the lr.probabilityCol parameter previously.
-DataFrame results = model2.transform(test);
-for (Row r: results.select("features", "label", "myProbability", "prediction").collect()) {
- System.out.println("(" + r.get(0) + ", " + r.get(1) + ") -> prob=" + r.get(2)
- + ", prediction=" + r.get(3));
-}
-
-{% endhighlight %}
+{% include_example java/org/apache/spark/examples/ml/JavaEstimatorTransformerParamExample.java %}
</div>
<div data-lang="python">
-{% highlight python %}
-from pyspark.mllib.linalg import Vectors
-from pyspark.ml.classification import LogisticRegression
-from pyspark.ml.param import Param, Params
-
-# Prepare training data from a list of (label, features) tuples.
-training = sqlContext.createDataFrame([
- (1.0, Vectors.dense([0.0, 1.1, 0.1])),
- (0.0, Vectors.dense([2.0, 1.0, -1.0])),
- (0.0, Vectors.dense([2.0, 1.3, 1.0])),
- (1.0, Vectors.dense([0.0, 1.2, -0.5]))], ["label", "features"])
-
-# Create a LogisticRegression instance. This instance is an Estimator.
-lr = LogisticRegression(maxIter=10, regParam=0.01)
-# Print out the parameters, documentation, and any default values.
-print "LogisticRegression parameters:\n" + lr.explainParams() + "\n"
-
-# Learn a LogisticRegression model. This uses the parameters stored in lr.
-model1 = lr.fit(training)
-
-# Since model1 is a Model (i.e., a transformer produced by an Estimator),
-# we can view the parameters it used during fit().
-# This prints the parameter (name: value) pairs, where names are unique IDs for this
-# LogisticRegression instance.
-print "Model 1 was fit using parameters: "
-print model1.extractParamMap()
-
-# We may alternatively specify parameters using a Python dictionary as a paramMap
-paramMap = {lr.maxIter: 20}
-paramMap[lr.maxIter] = 30 # Specify 1 Param, overwriting the original maxIter.
-paramMap.update({lr.regParam: 0.1, lr.threshold: 0.55}) # Specify multiple Params.
-
-# You can combine paramMaps, which are python dictionaries.
-paramMap2 = {lr.probabilityCol: "myProbability"} # Change output column name
-paramMapCombined = paramMap.copy()
-paramMapCombined.update(paramMap2)
-
-# Now learn a new model using the paramMapCombined parameters.
-# paramMapCombined overrides all parameters set earlier via lr.set* methods.
-model2 = lr.fit(training, paramMapCombined)
-print "Model 2 was fit using parameters: "
-print model2.extractParamMap()
-
-# Prepare test data
-test = sqlContext.createDataFrame([
- (1.0, Vectors.dense([-1.0, 1.5, 1.3])),
- (0.0, Vectors.dense([3.0, 2.0, -0.1])),
- (1.0, Vectors.dense([0.0, 2.2, -1.5]))], ["label", "features"])
-
-# Make predictions on test data using the Transformer.transform() method.
-# LogisticRegression.transform will only use the 'features' column.
-# Note that model2.transform() outputs a "myProbability" column instead of the usual
-# 'probability' column since we renamed the lr.probabilityCol parameter previously.
-prediction = model2.transform(test)
-selected = prediction.select("features", "label", "myProbability", "prediction")
-for row in selected.collect():
- print row
-
-{% endhighlight %}
+{% include_example python/ml/estimator_transformer_param_example.py %}
</div>
</div>
@@ -427,191 +233,15 @@ This example follows the simple text document `Pipeline` illustrated in the figu
<div class="codetabs">
<div data-lang="scala">
-{% highlight scala %}
-import org.apache.spark.ml.{Pipeline, PipelineModel}
-import org.apache.spark.ml.classification.LogisticRegression
-import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
-import org.apache.spark.mllib.linalg.Vector
-import org.apache.spark.sql.Row
-
-// Prepare training documents from a list of (id, text, label) tuples.
-val training = sqlContext.createDataFrame(Seq(
- (0L, "a b c d e spark", 1.0),
- (1L, "b d", 0.0),
- (2L, "spark f g h", 1.0),
- (3L, "hadoop mapreduce", 0.0)
-)).toDF("id", "text", "label")
-
-// Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
-val tokenizer = new Tokenizer()
- .setInputCol("text")
- .setOutputCol("words")
-val hashingTF = new HashingTF()
- .setNumFeatures(1000)
- .setInputCol(tokenizer.getOutputCol)
- .setOutputCol("features")
-val lr = new LogisticRegression()
- .setMaxIter(10)
- .setRegParam(0.01)
-val pipeline = new Pipeline()
- .setStages(Array(tokenizer, hashingTF, lr))
-
-// Fit the pipeline to training documents.
-val model = pipeline.fit(training)
-
-// now we can optionally save the fitted pipeline to disk
-model.save("/tmp/spark-logistic-regression-model")
-
-// we can also save this unfit pipeline to disk
-pipeline.save("/tmp/unfit-lr-model")
-
-// and load it back in during production
-val sameModel = PipelineModel.load("/tmp/spark-logistic-regression-model")
-
-// Prepare test documents, which are unlabeled (id, text) tuples.
-val test = sqlContext.createDataFrame(Seq(
- (4L, "spark i j k"),
- (5L, "l m n"),
- (6L, "mapreduce spark"),
- (7L, "apache hadoop")
-)).toDF("id", "text")
-
-// Make predictions on test documents.
-model.transform(test)
- .select("id", "text", "probability", "prediction")
- .collect()
- .foreach { case Row(id: Long, text: String, prob: Vector, prediction: Double) =>
- println(s"($id, $text) --> prob=$prob, prediction=$prediction")
- }
-
-{% endhighlight %}
+{% include_example scala/org/apache/spark/examples/ml/PipelineExample.scala %}
</div>
<div data-lang="java">
-{% highlight java %}
-import java.util.Arrays;
-import java.util.List;
-
-import org.apache.spark.ml.Pipeline;
-import org.apache.spark.ml.PipelineModel;
-import org.apache.spark.ml.PipelineStage;
-import org.apache.spark.ml.classification.LogisticRegression;
-import org.apache.spark.ml.feature.HashingTF;
-import org.apache.spark.ml.feature.Tokenizer;
-import org.apache.spark.sql.DataFrame;
-import org.apache.spark.sql.Row;
-
-// Labeled and unlabeled instance types.
-// Spark SQL can infer schema from Java Beans.
-public class Document implements Serializable {
- private long id;
- private String text;
-
- public Document(long id, String text) {
- this.id = id;
- this.text = text;
- }
-
- public long getId() { return this.id; }
- public void setId(long id) { this.id = id; }
-
- public String getText() { return this.text; }
- public void setText(String text) { this.text = text; }
-}
-
-public class LabeledDocument extends Document implements Serializable {
- private double label;
-
- public LabeledDocument(long id, String text, double label) {
- super(id, text);
- this.label = label;
- }
-
- public double getLabel() { return this.label; }
- public void setLabel(double label) { this.label = label; }
-}
-
-// Prepare training documents, which are labeled.
-DataFrame training = sqlContext.createDataFrame(Arrays.asList(
- new LabeledDocument(0L, "a b c d e spark", 1.0),
- new LabeledDocument(1L, "b d", 0.0),
- new LabeledDocument(2L, "spark f g h", 1.0),
- new LabeledDocument(3L, "hadoop mapreduce", 0.0)
-), LabeledDocument.class);
-
-// Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
-Tokenizer tokenizer = new Tokenizer()
- .setInputCol("text")
- .setOutputCol("words");
-HashingTF hashingTF = new HashingTF()
- .setNumFeatures(1000)
- .setInputCol(tokenizer.getOutputCol())
- .setOutputCol("features");
-LogisticRegression lr = new LogisticRegression()
- .setMaxIter(10)
- .setRegParam(0.01);
-Pipeline pipeline = new Pipeline()
- .setStages(new PipelineStage[] {tokenizer, hashingTF, lr});
-
-// Fit the pipeline to training documents.
-PipelineModel model = pipeline.fit(training);
-
-// Prepare test documents, which are unlabeled.
-DataFrame test = sqlContext.createDataFrame(Arrays.asList(
- new Document(4L, "spark i j k"),
- new Document(5L, "l m n"),
- new Document(6L, "mapreduce spark"),
- new Document(7L, "apache hadoop")
-), Document.class);
-
-// Make predictions on test documents.
-DataFrame predictions = model.transform(test);
-for (Row r: predictions.select("id", "text", "probability", "prediction").collect()) {
- System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> prob=" + r.get(2)
- + ", prediction=" + r.get(3));
-}
-
-{% endhighlight %}
+{% include_example java/org/apache/spark/examples/ml/JavaPipelineExample.java %}
</div>
<div data-lang="python">
-{% highlight python %}
-from pyspark.ml import Pipeline
-from pyspark.ml.classification import LogisticRegression
-from pyspark.ml.feature import HashingTF, Tokenizer
-from pyspark.sql import Row
-
-# Prepare training documents from a list of (id, text, label) tuples.
-LabeledDocument = Row("id", "text", "label")
-training = sqlContext.createDataFrame([
- (0L, "a b c d e spark", 1.0),
- (1L, "b d", 0.0),
- (2L, "spark f g h", 1.0),
- (3L, "hadoop mapreduce", 0.0)], ["id", "text", "label"])
-
-# Configure an ML pipeline, which consists of tree stages: tokenizer, hashingTF, and lr.
-tokenizer = Tokenizer(inputCol="text", outputCol="words")
-hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")
-lr = LogisticRegression(maxIter=10, regParam=0.01)
-pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])
-
-# Fit the pipeline to training documents.
-model = pipeline.fit(training)
-
-# Prepare test documents, which are unlabeled (id, text) tuples.
-test = sqlContext.createDataFrame([
- (4L, "spark i j k"),
- (5L, "l m n"),
- (6L, "mapreduce spark"),
- (7L, "apache hadoop")], ["id", "text"])
-
-# Make predictions on test documents and print columns of interest.
-prediction = model.transform(test)
-selected = prediction.select("id", "text", "prediction")
-for row in selected.collect():
- print(row)
-
-{% endhighlight %}
+{% include_example python/ml/pipeline_example.py %}
</div>
</div>
@@ -646,201 +276,11 @@ However, it is also a well-established method for choosing parameters which is m
<div class="codetabs">
<div data-lang="scala">
-{% highlight scala %}
-import org.apache.spark.ml.Pipeline
-import org.apache.spark.ml.classification.LogisticRegression
-import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
-import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
-import org.apache.spark.ml.tuning.{ParamGridBuilder, CrossValidator}
-import org.apache.spark.mllib.linalg.Vector
-import org.apache.spark.sql.Row
-
-// Prepare training data from a list of (id, text, label) tuples.
-val training = sqlContext.createDataFrame(Seq(
- (0L, "a b c d e spark", 1.0),
- (1L, "b d", 0.0),
- (2L, "spark f g h", 1.0),
- (3L, "hadoop mapreduce", 0.0),
- (4L, "b spark who", 1.0),
- (5L, "g d a y", 0.0),
- (6L, "spark fly", 1.0),
- (7L, "was mapreduce", 0.0),
- (8L, "e spark program", 1.0),
- (9L, "a e c l", 0.0),
- (10L, "spark compile", 1.0),
- (11L, "hadoop software", 0.0)
-)).toDF("id", "text", "label")
-
-// Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
-val tokenizer = new Tokenizer()
- .setInputCol("text")
- .setOutputCol("words")
-val hashingTF = new HashingTF()
- .setInputCol(tokenizer.getOutputCol)
- .setOutputCol("features")
-val lr = new LogisticRegression()
- .setMaxIter(10)
-val pipeline = new Pipeline()
- .setStages(Array(tokenizer, hashingTF, lr))
-
-// We use a ParamGridBuilder to construct a grid of parameters to search over.
-// With 3 values for hashingTF.numFeatures and 2 values for lr.regParam,
-// this grid will have 3 x 2 = 6 parameter settings for CrossValidator to choose from.
-val paramGrid = new ParamGridBuilder()
- .addGrid(hashingTF.numFeatures, Array(10, 100, 1000))
- .addGrid(lr.regParam, Array(0.1, 0.01))
- .build()
-
-// We now treat the Pipeline as an Estimator, wrapping it in a CrossValidator instance.
-// This will allow us to jointly choose parameters for all Pipeline stages.
-// A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
-// Note that the evaluator here is a BinaryClassificationEvaluator and its default metric
-// is areaUnderROC.
-val cv = new CrossValidator()
- .setEstimator(pipeline)
- .setEvaluator(new BinaryClassificationEvaluator)
- .setEstimatorParamMaps(paramGrid)
- .setNumFolds(2) // Use 3+ in practice
-
-// Run cross-validation, and choose the best set of parameters.
-val cvModel = cv.fit(training)
-
-// Prepare test documents, which are unlabeled (id, text) tuples.
-val test = sqlContext.createDataFrame(Seq(
- (4L, "spark i j k"),
- (5L, "l m n"),
- (6L, "mapreduce spark"),
- (7L, "apache hadoop")
-)).toDF("id", "text")
-
-// Make predictions on test documents. cvModel uses the best model found (lrModel).
-cvModel.transform(test)
- .select("id", "text", "probability", "prediction")
- .collect()
- .foreach { case Row(id: Long, text: String, prob: Vector, prediction: Double) =>
- println(s"($id, $text) --> prob=$prob, prediction=$prediction")
- }
-
-{% endhighlight %}
+{% include_example scala/org/apache/spark/examples/ml/ModelSelectionViaCrossValidationExample.scala %}
</div>
<div data-lang="java">
-{% highlight java %}
-import java.util.Arrays;
-import java.util.List;
-
-import org.apache.spark.ml.Pipeline;
-import org.apache.spark.ml.PipelineStage;
-import org.apache.spark.ml.classification.LogisticRegression;
-import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator;
-import org.apache.spark.ml.feature.HashingTF;
-import org.apache.spark.ml.feature.Tokenizer;
-import org.apache.spark.ml.param.ParamMap;
-import org.apache.spark.ml.tuning.CrossValidator;
-import org.apache.spark.ml.tuning.CrossValidatorModel;
-import org.apache.spark.ml.tuning.ParamGridBuilder;
-import org.apache.spark.sql.DataFrame;
-import org.apache.spark.sql.Row;
-
-// Labeled and unlabeled instance types.
-// Spark SQL can infer schema from Java Beans.
-public class Document implements Serializable {
- private long id;
- private String text;
-
- public Document(long id, String text) {
- this.id = id;
- this.text = text;
- }
-
- public long getId() { return this.id; }
- public void setId(long id) { this.id = id; }
-
- public String getText() { return this.text; }
- public void setText(String text) { this.text = text; }
-}
-
-public class LabeledDocument extends Document implements Serializable {
- private double label;
-
- public LabeledDocument(long id, String text, double label) {
- super(id, text);
- this.label = label;
- }
-
- public double getLabel() { return this.label; }
- public void setLabel(double label) { this.label = label; }
-}
-
-
-// Prepare training documents, which are labeled.
-DataFrame training = sqlContext.createDataFrame(Arrays.asList(
- new LabeledDocument(0L, "a b c d e spark", 1.0),
- new LabeledDocument(1L, "b d", 0.0),
- new LabeledDocument(2L, "spark f g h", 1.0),
- new LabeledDocument(3L, "hadoop mapreduce", 0.0),
- new LabeledDocument(4L, "b spark who", 1.0),
- new LabeledDocument(5L, "g d a y", 0.0),
- new LabeledDocument(6L, "spark fly", 1.0),
- new LabeledDocument(7L, "was mapreduce", 0.0),
- new LabeledDocument(8L, "e spark program", 1.0),
- new LabeledDocument(9L, "a e c l", 0.0),
- new LabeledDocument(10L, "spark compile", 1.0),
- new LabeledDocument(11L, "hadoop software", 0.0)
-), LabeledDocument.class);
-
-// Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
-Tokenizer tokenizer = new Tokenizer()
- .setInputCol("text")
- .setOutputCol("words");
-HashingTF hashingTF = new HashingTF()
- .setNumFeatures(1000)
- .setInputCol(tokenizer.getOutputCol())
- .setOutputCol("features");
-LogisticRegression lr = new LogisticRegression()
- .setMaxIter(10)
- .setRegParam(0.01);
-Pipeline pipeline = new Pipeline()
- .setStages(new PipelineStage[] {tokenizer, hashingTF, lr});
-
-// We use a ParamGridBuilder to construct a grid of parameters to search over.
-// With 3 values for hashingTF.numFeatures and 2 values for lr.regParam,
-// this grid will have 3 x 2 = 6 parameter settings for CrossValidator to choose from.
-ParamMap[] paramGrid = new ParamGridBuilder()
- .addGrid(hashingTF.numFeatures(), new int[]{10, 100, 1000})
- .addGrid(lr.regParam(), new double[]{0.1, 0.01})
- .build();
-
-// We now treat the Pipeline as an Estimator, wrapping it in a CrossValidator instance.
-// This will allow us to jointly choose parameters for all Pipeline stages.
-// A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
-// Note that the evaluator here is a BinaryClassificationEvaluator and its default metric
-// is areaUnderROC.
-CrossValidator cv = new CrossValidator()
- .setEstimator(pipeline)
- .setEvaluator(new BinaryClassificationEvaluator())
- .setEstimatorParamMaps(paramGrid)
- .setNumFolds(2); // Use 3+ in practice
-
-// Run cross-validation, and choose the best set of parameters.
-CrossValidatorModel cvModel = cv.fit(training);
-
-// Prepare test documents, which are unlabeled.
-DataFrame test = sqlContext.createDataFrame(Arrays.asList(
- new Document(4L, "spark i j k"),
- new Document(5L, "l m n"),
- new Document(6L, "mapreduce spark"),
- new Document(7L, "apache hadoop")
-), Document.class);
-
-// Make predictions on test documents. cvModel uses the best model found (lrModel).
-DataFrame predictions = cvModel.transform(test);
-for (Row r: predictions.select("id", "text", "probability", "prediction").collect()) {
- System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> prob=" + r.get(2)
- + ", prediction=" + r.get(3));
-}
-
-{% endhighlight %}
+{% include_example java/org/apache/spark/examples/ml/JavaModelSelectionViaCrossValidationExample.java %}
</div>
</div>
@@ -864,91 +304,11 @@ The `ParamMap` which produces the best evaluation metric is selected as the best
<div class="codetabs">
<div data-lang="scala" markdown="1">
-{% highlight scala %}
-import org.apache.spark.ml.evaluation.RegressionEvaluator
-import org.apache.spark.ml.regression.LinearRegression
-import org.apache.spark.ml.tuning.{ParamGridBuilder, TrainValidationSplit}
-
-// Prepare training and test data.
-val data = sqlContext.read.format("libsvm").load("data/mllib/sample_linear_regression_data.txt")
-val Array(training, test) = data.randomSplit(Array(0.9, 0.1), seed = 12345)
-
-val lr = new LinearRegression()
-
-// We use a ParamGridBuilder to construct a grid of parameters to search over.
-// TrainValidationSplit will try all combinations of values and determine best model using
-// the evaluator.
-val paramGrid = new ParamGridBuilder()
- .addGrid(lr.regParam, Array(0.1, 0.01))
- .addGrid(lr.fitIntercept)
- .addGrid(lr.elasticNetParam, Array(0.0, 0.5, 1.0))
- .build()
-
-// In this case the estimator is simply the linear regression.
-// A TrainValidationSplit requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
-val trainValidationSplit = new TrainValidationSplit()
- .setEstimator(lr)
- .setEvaluator(new RegressionEvaluator)
- .setEstimatorParamMaps(paramGrid)
- // 80% of the data will be used for training and the remaining 20% for validation.
- .setTrainRatio(0.8)
-
-// Run train validation split, and choose the best set of parameters.
-val model = trainValidationSplit.fit(training)
-
-// Make predictions on test data. model is the model with combination of parameters
-// that performed best.
-model.transform(test)
- .select("features", "label", "prediction")
- .show()
-
-{% endhighlight %}
+{% include_example scala/org/apache/spark/examples/ml/ModelSelectionViaTrainValidationSplitExample.scala %}
</div>
<div data-lang="java" markdown="1">
-{% highlight java %}
-import org.apache.spark.ml.evaluation.RegressionEvaluator;
-import org.apache.spark.ml.param.ParamMap;
-import org.apache.spark.ml.regression.LinearRegression;
-import org.apache.spark.ml.tuning.*;
-import org.apache.spark.sql.DataFrame;
-
-DataFrame data = jsql.read().format("libsvm").load("data/mllib/sample_linear_regression_data.txt");
-
-// Prepare training and test data.
-DataFrame[] splits = data.randomSplit(new double[] {0.9, 0.1}, 12345);
-DataFrame training = splits[0];
-DataFrame test = splits[1];
-
-LinearRegression lr = new LinearRegression();
-
-// We use a ParamGridBuilder to construct a grid of parameters to search over.
-// TrainValidationSplit will try all combinations of values and determine best model using
-// the evaluator.
-ParamMap[] paramGrid = new ParamGridBuilder()
- .addGrid(lr.regParam(), new double[] {0.1, 0.01})
- .addGrid(lr.fitIntercept())
- .addGrid(lr.elasticNetParam(), new double[] {0.0, 0.5, 1.0})
- .build();
-
-// In this case the estimator is simply the linear regression.
-// A TrainValidationSplit requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
-TrainValidationSplit trainValidationSplit = new TrainValidationSplit()
- .setEstimator(lr)
- .setEvaluator(new RegressionEvaluator())
- .setEstimatorParamMaps(paramGrid)
- .setTrainRatio(0.8); // 80% for training and the remaining 20% for validation
-
-// Run train validation split, and choose the best set of parameters.
-TrainValidationSplitModel model = trainValidationSplit.fit(training);
-
-// Make predictions on test data. model is the model with combination of parameters
-// that performed best.
-model.transform(test)
- .select("features", "label", "prediction")
- .show();
-
-{% endhighlight %}
+{% include_example java/org/apache/spark/examples/ml/JavaModelSelectionViaTrainValidationSplitExample.java %}
</div>
</div>