aboutsummaryrefslogtreecommitdiff
path: root/docs
diff options
context:
space:
mode:
authorMatei Zaharia <matei@databricks.com>2014-01-22 14:01:30 -0800
committerMatei Zaharia <matei@databricks.com>2014-01-22 14:01:30 -0800
commitd009b17d137edf2f1b9da04254e55fb7455faa3d (patch)
tree9265b72663c85f4a25f40edf00154ac7e3536f2f /docs
parent749f842827c7e7766a342b6b0a437803044a9f90 (diff)
parent85b95d039ddfc7a2b2b27f506852859181ed16c1 (diff)
downloadspark-d009b17d137edf2f1b9da04254e55fb7455faa3d.tar.gz
spark-d009b17d137edf2f1b9da04254e55fb7455faa3d.tar.bz2
spark-d009b17d137edf2f1b9da04254e55fb7455faa3d.zip
Merge pull request #315 from rezazadeh/sparsesvd
Sparse SVD # Singular Value Decomposition Given an *m x n* matrix *A*, compute matrices *U, S, V* such that *A = U * S * V^T* There is no restriction on m, but we require n^2 doubles to fit in memory. Further, n should be less than m. The decomposition is computed by first computing *A^TA = V S^2 V^T*, computing svd locally on that (since n x n is small), from which we recover S and V. Then we compute U via easy matrix multiplication as *U = A * V * S^-1* Only singular vectors associated with the largest k singular values If there are k such values, then the dimensions of the return will be: * *S* is *k x k* and diagonal, holding the singular values on diagonal. * *U* is *m x k* and satisfies U^T*U = eye(k). * *V* is *n x k* and satisfies V^TV = eye(k). All input and output is expected in sparse matrix format, 0-indexed as tuples of the form ((i,j),value) all in RDDs. # Testing Tests included. They test: - Decomposition promise (A = USV^T) - For small matrices, output is compared to that of jblas - Rank 1 matrix test included - Full Rank matrix test included - Middle-rank matrix forced via k included # Example Usage import org.apache.spark.SparkContext import org.apache.spark.mllib.linalg.SVD import org.apache.spark.mllib.linalg.SparseMatrix import org.apache.spark.mllib.linalg.MatrixyEntry // Load and parse the data file val data = sc.textFile("mllib/data/als/test.data").map { line => val parts = line.split(',') MatrixEntry(parts(0).toInt, parts(1).toInt, parts(2).toDouble) } val m = 4 val n = 4 // recover top 1 singular vector val decomposed = SVD.sparseSVD(SparseMatrix(data, m, n), 1) println("singular values = " + decomposed.S.data.toArray.mkString) # Documentation Added to docs/mllib-guide.md
Diffstat (limited to 'docs')
-rw-r--r--docs/mllib-guide.md51
1 files changed, 51 insertions, 0 deletions
diff --git a/docs/mllib-guide.md b/docs/mllib-guide.md
index a22a22184b..0cc5505b50 100644
--- a/docs/mllib-guide.md
+++ b/docs/mllib-guide.md
@@ -438,3 +438,54 @@ signals), you can use the trainImplicit method to get better results.
# Build the recommendation model using Alternating Least Squares based on implicit ratings
model = ALS.trainImplicit(ratings, 1, 20)
{% endhighlight %}
+
+
+# Singular Value Decomposition
+Singular Value Decomposition for Tall and Skinny matrices.
+Given an *m x n* matrix *A*, we can compute matrices *U, S, V* such that
+
+*A = U * S * V^T*
+
+There is no restriction on m, but we require n^2 doubles to
+fit in memory locally on one machine.
+Further, n should be less than m.
+
+The decomposition is computed by first computing *A^TA = V S^2 V^T*,
+computing SVD locally on that (since n x n is small),
+from which we recover S and V.
+Then we compute U via easy matrix multiplication
+as *U = A * V * S^-1*
+
+Only singular vectors associated with largest k singular values
+are recovered. If there are k
+such values, then the dimensions of the return will be:
+
+* *S* is *k x k* and diagonal, holding the singular values on diagonal.
+* *U* is *m x k* and satisfies U^T*U = eye(k).
+* *V* is *n x k* and satisfies V^TV = eye(k).
+
+All input and output is expected in sparse matrix format, 0-indexed
+as tuples of the form ((i,j),value) all in
+SparseMatrix RDDs. Below is example usage.
+
+{% highlight scala %}
+
+import org.apache.spark.SparkContext
+import org.apache.spark.mllib.linalg.SVD
+import org.apache.spark.mllib.linalg.SparseMatrix
+import org.apache.spark.mllib.linalg.MatrixEntry
+
+// Load and parse the data file
+val data = sc.textFile("mllib/data/als/test.data").map { line =>
+ val parts = line.split(',')
+ MatrixEntry(parts(0).toInt, parts(1).toInt, parts(2).toDouble)
+}
+val m = 4
+val n = 4
+val k = 1
+
+// recover largest singular vector
+val decomposed = SVD.sparseSVD(SparseMatrix(data, m, n), k)
+val = decomposed.S.data
+
+println("singular values = " + s.toArray.mkString)