aboutsummaryrefslogtreecommitdiff
path: root/mllib
diff options
context:
space:
mode:
authorHolden Karau <holden@us.ibm.com>2016-01-26 17:59:05 -0800
committerDB Tsai <dbt@netflix.com>2016-01-26 17:59:05 -0800
commitb72611f20a03c790b6fd341b6ffdb3b5437609ee (patch)
tree89275beeab22511f74526b54f6c02022d429f5fe /mllib
parent555127387accdd7c1cf236912941822ba8af0a52 (diff)
downloadspark-b72611f20a03c790b6fd341b6ffdb3b5437609ee.tar.gz
spark-b72611f20a03c790b6fd341b6ffdb3b5437609ee.tar.bz2
spark-b72611f20a03c790b6fd341b6ffdb3b5437609ee.zip
[SPARK-7780][MLLIB] intercept in logisticregressionwith lbfgs should not be regularized
The intercept in Logistic Regression represents a prior on categories which should not be regularized. In MLlib, the regularization is handled through Updater, and the Updater penalizes all the components without excluding the intercept which resulting poor training accuracy with regularization. The new implementation in ML framework handles this properly, and we should call the implementation in ML from MLlib since majority of users are still using MLlib api. Note that both of them are doing feature scalings to improve the convergence, and the only difference is ML version doesn't regularize the intercept. As a result, when lambda is zero, they will converge to the same solution. Previously partially reviewed at https://github.com/apache/spark/pull/6386#issuecomment-168781424 re-opening for dbtsai to review. Author: Holden Karau <holden@us.ibm.com> Author: Holden Karau <holden@pigscanfly.ca> Closes #10788 from holdenk/SPARK-7780-intercept-in-logisticregressionwithLBFGS-should-not-be-regularized.
Diffstat (limited to 'mllib')
-rw-r--r--mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala36
-rw-r--r--mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala82
-rw-r--r--mllib/src/main/scala/org/apache/spark/mllib/optimization/LBFGS.scala28
-rw-r--r--mllib/src/main/scala/org/apache/spark/mllib/regression/GeneralizedLinearAlgorithm.scala34
-rw-r--r--mllib/src/test/scala/org/apache/spark/ml/classification/OneVsRestSuite.scala2
-rw-r--r--mllib/src/test/scala/org/apache/spark/mllib/classification/LogisticRegressionSuite.scala25
6 files changed, 179 insertions, 28 deletions
diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala
index c98a78a515..9b2340a1f1 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala
@@ -247,15 +247,27 @@ class LogisticRegression @Since("1.2.0") (
@Since("1.5.0")
override def getThresholds: Array[Double] = super.getThresholds
- override protected def train(dataset: DataFrame): LogisticRegressionModel = {
- // Extract columns from data. If dataset is persisted, do not persist oldDataset.
+ private var optInitialModel: Option[LogisticRegressionModel] = None
+
+ /** @group setParam */
+ private[spark] def setInitialModel(model: LogisticRegressionModel): this.type = {
+ this.optInitialModel = Some(model)
+ this
+ }
+
+ override protected[spark] def train(dataset: DataFrame): LogisticRegressionModel = {
+ val handlePersistence = dataset.rdd.getStorageLevel == StorageLevel.NONE
+ train(dataset, handlePersistence)
+ }
+
+ protected[spark] def train(dataset: DataFrame, handlePersistence: Boolean):
+ LogisticRegressionModel = {
val w = if ($(weightCol).isEmpty) lit(1.0) else col($(weightCol))
val instances: RDD[Instance] = dataset.select(col($(labelCol)), w, col($(featuresCol))).map {
case Row(label: Double, weight: Double, features: Vector) =>
Instance(label, weight, features)
}
- val handlePersistence = dataset.rdd.getStorageLevel == StorageLevel.NONE
if (handlePersistence) instances.persist(StorageLevel.MEMORY_AND_DISK)
val (summarizer, labelSummarizer) = {
@@ -343,7 +355,21 @@ class LogisticRegression @Since("1.2.0") (
val initialCoefficientsWithIntercept =
Vectors.zeros(if ($(fitIntercept)) numFeatures + 1 else numFeatures)
- if ($(fitIntercept)) {
+ if (optInitialModel.isDefined && optInitialModel.get.coefficients.size != numFeatures) {
+ val vec = optInitialModel.get.coefficients
+ logWarning(
+ s"Initial coefficients provided ${vec} did not match the expected size ${numFeatures}")
+ }
+
+ if (optInitialModel.isDefined && optInitialModel.get.coefficients.size == numFeatures) {
+ val initialCoefficientsWithInterceptArray = initialCoefficientsWithIntercept.toArray
+ optInitialModel.get.coefficients.foreachActive { case (index, value) =>
+ initialCoefficientsWithInterceptArray(index) = value
+ }
+ if ($(fitIntercept)) {
+ initialCoefficientsWithInterceptArray(numFeatures) == optInitialModel.get.intercept
+ }
+ } else if ($(fitIntercept)) {
/*
For binary logistic regression, when we initialize the coefficients as zeros,
it will converge faster if we initialize the intercept such that
@@ -434,7 +460,7 @@ object LogisticRegression extends DefaultParamsReadable[LogisticRegression] {
*/
@Since("1.4.0")
@Experimental
-class LogisticRegressionModel private[ml] (
+class LogisticRegressionModel private[spark] (
@Since("1.4.0") override val uid: String,
@Since("1.6.0") val coefficients: Vector,
@Since("1.3.0") val intercept: Double)
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala b/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala
index 2a7697b5a7..bf68e3edd7 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala
@@ -19,15 +19,18 @@ package org.apache.spark.mllib.classification
import org.apache.spark.SparkContext
import org.apache.spark.annotation.Since
+import org.apache.spark.ml.util.Identifiable
import org.apache.spark.mllib.classification.impl.GLMClassificationModel
-import org.apache.spark.mllib.linalg.{DenseVector, Vector}
+import org.apache.spark.mllib.linalg.{DenseVector, Vector, Vectors}
import org.apache.spark.mllib.linalg.BLAS.dot
import org.apache.spark.mllib.optimization._
import org.apache.spark.mllib.pmml.PMMLExportable
import org.apache.spark.mllib.regression._
import org.apache.spark.mllib.util.{DataValidators, Loader, Saveable}
+import org.apache.spark.mllib.util.MLUtils.appendBias
import org.apache.spark.rdd.RDD
-
+import org.apache.spark.sql.SQLContext
+import org.apache.spark.storage.StorageLevel
/**
* Classification model trained using Multinomial/Binary Logistic Regression.
@@ -332,6 +335,13 @@ object LogisticRegressionWithSGD {
* Limited-memory BFGS. Standard feature scaling and L2 regularization are used by default.
* NOTE: Labels used in Logistic Regression should be {0, 1, ..., k - 1}
* for k classes multi-label classification problem.
+ *
+ * Earlier implementations of LogisticRegressionWithLBFGS applies a regularization
+ * penalty to all elements including the intercept. If this is called with one of
+ * standard updaters (L1Updater, or SquaredL2Updater) this is translated
+ * into a call to ml.LogisticRegression, otherwise this will use the existing mllib
+ * GeneralizedLinearAlgorithm trainer, resulting in a regularization penalty to the
+ * intercept.
*/
@Since("1.1.0")
class LogisticRegressionWithLBFGS
@@ -374,4 +384,72 @@ class LogisticRegressionWithLBFGS
new LogisticRegressionModel(weights, intercept, numFeatures, numOfLinearPredictor + 1)
}
}
+
+ /**
+ * Run Logistic Regression with the configured parameters on an input RDD
+ * of LabeledPoint entries.
+ *
+ * If a known updater is used calls the ml implementation, to avoid
+ * applying a regularization penalty to the intercept, otherwise
+ * defaults to the mllib implementation. If more than two classes
+ * or feature scaling is disabled, always uses mllib implementation.
+ * If using ml implementation, uses ml code to generate initial weights.
+ */
+ override def run(input: RDD[LabeledPoint]): LogisticRegressionModel = {
+ run(input, generateInitialWeights(input), userSuppliedWeights = false)
+ }
+
+ /**
+ * Run Logistic Regression with the configured parameters on an input RDD
+ * of LabeledPoint entries starting from the initial weights provided.
+ *
+ * If a known updater is used calls the ml implementation, to avoid
+ * applying a regularization penalty to the intercept, otherwise
+ * defaults to the mllib implementation. If more than two classes
+ * or feature scaling is disabled, always uses mllib implementation.
+ * Uses user provided weights.
+ */
+ override def run(input: RDD[LabeledPoint], initialWeights: Vector): LogisticRegressionModel = {
+ run(input, initialWeights, userSuppliedWeights = true)
+ }
+
+ private def run(input: RDD[LabeledPoint], initialWeights: Vector, userSuppliedWeights: Boolean):
+ LogisticRegressionModel = {
+ // ml's Logisitic regression only supports binary classifcation currently.
+ if (numOfLinearPredictor == 1) {
+ def runWithMlLogisitcRegression(elasticNetParam: Double) = {
+ // Prepare the ml LogisticRegression based on our settings
+ val lr = new org.apache.spark.ml.classification.LogisticRegression()
+ lr.setRegParam(optimizer.getRegParam())
+ lr.setElasticNetParam(elasticNetParam)
+ lr.setStandardization(useFeatureScaling)
+ if (userSuppliedWeights) {
+ val uid = Identifiable.randomUID("logreg-static")
+ lr.setInitialModel(new org.apache.spark.ml.classification.LogisticRegressionModel(
+ uid, initialWeights, 1.0))
+ }
+ lr.setFitIntercept(addIntercept)
+ lr.setMaxIter(optimizer.getNumIterations())
+ lr.setTol(optimizer.getConvergenceTol())
+ // Convert our input into a DataFrame
+ val sqlContext = new SQLContext(input.context)
+ import sqlContext.implicits._
+ val df = input.toDF()
+ // Determine if we should cache the DF
+ val handlePersistence = input.getStorageLevel == StorageLevel.NONE
+ // Train our model
+ val mlLogisticRegresionModel = lr.train(df, handlePersistence)
+ // convert the model
+ val weights = Vectors.dense(mlLogisticRegresionModel.coefficients.toArray)
+ createModel(weights, mlLogisticRegresionModel.intercept)
+ }
+ optimizer.getUpdater() match {
+ case x: SquaredL2Updater => runWithMlLogisitcRegression(1.0)
+ case x: L1Updater => runWithMlLogisitcRegression(0.0)
+ case _ => super.run(input, initialWeights)
+ }
+ } else {
+ super.run(input, initialWeights)
+ }
+ }
}
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/optimization/LBFGS.scala b/mllib/src/main/scala/org/apache/spark/mllib/optimization/LBFGS.scala
index efedc112d3..a5bd77e6be 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/optimization/LBFGS.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/optimization/LBFGS.scala
@@ -69,6 +69,13 @@ class LBFGS(private var gradient: Gradient, private var updater: Updater)
this
}
+ /*
+ * Get the convergence tolerance of iterations.
+ */
+ private[mllib] def getConvergenceTol(): Double = {
+ this.convergenceTol
+ }
+
/**
* Set the maximal number of iterations for L-BFGS. Default 100.
* @deprecated use [[LBFGS#setNumIterations]] instead
@@ -87,6 +94,13 @@ class LBFGS(private var gradient: Gradient, private var updater: Updater)
}
/**
+ * Get the maximum number of iterations for L-BFGS. Defaults to 100.
+ */
+ private[mllib] def getNumIterations(): Int = {
+ this.maxNumIterations
+ }
+
+ /**
* Set the regularization parameter. Default 0.0.
*/
def setRegParam(regParam: Double): this.type = {
@@ -95,6 +109,13 @@ class LBFGS(private var gradient: Gradient, private var updater: Updater)
}
/**
+ * Get the regularization parameter.
+ */
+ private[mllib] def getRegParam(): Double = {
+ this.regParam
+ }
+
+ /**
* Set the gradient function (of the loss function of one single data example)
* to be used for L-BFGS.
*/
@@ -113,6 +134,13 @@ class LBFGS(private var gradient: Gradient, private var updater: Updater)
this
}
+ /**
+ * Returns the updater, limited to internal use.
+ */
+ private[mllib] def getUpdater(): Updater = {
+ updater
+ }
+
override def optimize(data: RDD[(Double, Vector)], initialWeights: Vector): Vector = {
val (weights, _) = LBFGS.runLBFGS(
data,
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/regression/GeneralizedLinearAlgorithm.scala b/mllib/src/main/scala/org/apache/spark/mllib/regression/GeneralizedLinearAlgorithm.scala
index e60edc675c..73da899a0e 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/regression/GeneralizedLinearAlgorithm.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/regression/GeneralizedLinearAlgorithm.scala
@@ -140,7 +140,7 @@ abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel]
* translated back to resulting model weights, so it's transparent to users.
* Note: This technique is used in both libsvm and glmnet packages. Default false.
*/
- private var useFeatureScaling = false
+ private[mllib] var useFeatureScaling = false
/**
* The dimension of training features.
@@ -196,12 +196,9 @@ abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel]
}
/**
- * Run the algorithm with the configured parameters on an input
- * RDD of LabeledPoint entries.
- *
+ * Generate the initial weights when the user does not supply them
*/
- @Since("0.8.0")
- def run(input: RDD[LabeledPoint]): M = {
+ protected def generateInitialWeights(input: RDD[LabeledPoint]): Vector = {
if (numFeatures < 0) {
numFeatures = input.map(_.features.size).first()
}
@@ -217,16 +214,23 @@ abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel]
* TODO: See if we can deprecate `intercept` in `GeneralizedLinearModel`, and always
* have the intercept as part of weights to have consistent design.
*/
- val initialWeights = {
- if (numOfLinearPredictor == 1) {
- Vectors.zeros(numFeatures)
- } else if (addIntercept) {
- Vectors.zeros((numFeatures + 1) * numOfLinearPredictor)
- } else {
- Vectors.zeros(numFeatures * numOfLinearPredictor)
- }
+ if (numOfLinearPredictor == 1) {
+ Vectors.zeros(numFeatures)
+ } else if (addIntercept) {
+ Vectors.zeros((numFeatures + 1) * numOfLinearPredictor)
+ } else {
+ Vectors.zeros(numFeatures * numOfLinearPredictor)
}
- run(input, initialWeights)
+ }
+
+ /**
+ * Run the algorithm with the configured parameters on an input
+ * RDD of LabeledPoint entries.
+ *
+ */
+ @Since("0.8.0")
+ def run(input: RDD[LabeledPoint]): M = {
+ run(input, generateInitialWeights(input))
}
/**
diff --git a/mllib/src/test/scala/org/apache/spark/ml/classification/OneVsRestSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/classification/OneVsRestSuite.scala
index d7983f92a3..445e50d867 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/classification/OneVsRestSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/classification/OneVsRestSuite.scala
@@ -168,7 +168,7 @@ private class MockLogisticRegression(uid: String) extends LogisticRegression(uid
setMaxIter(1)
- override protected def train(dataset: DataFrame): LogisticRegressionModel = {
+ override protected[spark] def train(dataset: DataFrame): LogisticRegressionModel = {
val labelSchema = dataset.schema($(labelCol))
// check for label attribute propagation.
assert(MetadataUtils.getNumClasses(labelSchema).forall(_ == 2))
diff --git a/mllib/src/test/scala/org/apache/spark/mllib/classification/LogisticRegressionSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/classification/LogisticRegressionSuite.scala
index 8d14bb6572..8fef1316cd 100644
--- a/mllib/src/test/scala/org/apache/spark/mllib/classification/LogisticRegressionSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/mllib/classification/LogisticRegressionSuite.scala
@@ -25,6 +25,7 @@ import org.scalatest.Matchers
import org.apache.spark.SparkFunSuite
import org.apache.spark.mllib.linalg.{Vector, Vectors}
+import org.apache.spark.mllib.optimization._
import org.apache.spark.mllib.regression._
import org.apache.spark.mllib.util.{LocalClusterSparkContext, MLlibTestSparkContext}
import org.apache.spark.mllib.util.TestingUtils._
@@ -215,6 +216,11 @@ class LogisticRegressionSuite extends SparkFunSuite with MLlibTestSparkContext w
// Test if we can correctly learn A, B where Y = logistic(A + B*X)
test("logistic regression with LBFGS") {
+ val updaters: List[Updater] = List(new SquaredL2Updater(), new L1Updater())
+ updaters.foreach(testLBFGS)
+ }
+
+ private def testLBFGS(myUpdater: Updater): Unit = {
val nPoints = 10000
val A = 2.0
val B = -1.5
@@ -223,7 +229,15 @@ class LogisticRegressionSuite extends SparkFunSuite with MLlibTestSparkContext w
val testRDD = sc.parallelize(testData, 2)
testRDD.cache()
- val lr = new LogisticRegressionWithLBFGS().setIntercept(true)
+
+ // Override the updater
+ class LogisticRegressionWithLBFGSCustomUpdater
+ extends LogisticRegressionWithLBFGS {
+ override val optimizer =
+ new LBFGS(new LogisticGradient, myUpdater)
+ }
+
+ val lr = new LogisticRegressionWithLBFGSCustomUpdater().setIntercept(true)
val model = lr.run(testRDD)
@@ -396,10 +410,11 @@ class LogisticRegressionSuite extends SparkFunSuite with MLlibTestSparkContext w
assert(modelA1.weights(0) ~== modelA3.weights(0) * 1.0E6 absTol 0.01)
// Training data with different scales without feature standardization
- // will not yield the same result in the scaled space due to poor
- // convergence rate.
- assert(modelB1.weights(0) !~== modelB2.weights(0) * 1.0E3 absTol 0.1)
- assert(modelB1.weights(0) !~== modelB3.weights(0) * 1.0E6 absTol 0.1)
+ // should still converge quickly since the model still uses standardization but
+ // simply modifies the regularization function. See regParamL1Fun and related
+ // inside of LogisticRegression
+ assert(modelB1.weights(0) ~== modelB2.weights(0) * 1.0E3 absTol 0.1)
+ assert(modelB1.weights(0) ~== modelB3.weights(0) * 1.0E6 absTol 0.1)
}
test("multinomial logistic regression with LBFGS") {