aboutsummaryrefslogtreecommitdiff
path: root/python/pyspark/ml/feature.py
diff options
context:
space:
mode:
authorDB Tsai <dbt@netflix.com>2016-05-17 12:51:07 -0700
committerXiangrui Meng <meng@databricks.com>2016-05-17 12:51:07 -0700
commite2efe0529acd748f26dbaa41331d1733ed256237 (patch)
treefe1a5aeeadfbf220b5dbe1429e0235153db8117b /python/pyspark/ml/feature.py
parent9f176dd3918129a72282a6b7a12e2899cbb6dac9 (diff)
downloadspark-e2efe0529acd748f26dbaa41331d1733ed256237.tar.gz
spark-e2efe0529acd748f26dbaa41331d1733ed256237.tar.bz2
spark-e2efe0529acd748f26dbaa41331d1733ed256237.zip
[SPARK-14615][ML] Use the new ML Vector and Matrix in the ML pipeline based algorithms
## What changes were proposed in this pull request? Once SPARK-14487 and SPARK-14549 are merged, we will migrate to use the new vector and matrix type in the new ml pipeline based apis. ## How was this patch tested? Unit tests Author: DB Tsai <dbt@netflix.com> Author: Liang-Chi Hsieh <simonh@tw.ibm.com> Author: Xiangrui Meng <meng@databricks.com> Closes #12627 from dbtsai/SPARK-14615-NewML.
Diffstat (limited to 'python/pyspark/ml/feature.py')
-rwxr-xr-xpython/pyspark/ml/feature.py26
1 files changed, 13 insertions, 13 deletions
diff --git a/python/pyspark/ml/feature.py b/python/pyspark/ml/feature.py
index 606a6e7c22..983b6a5301 100755
--- a/python/pyspark/ml/feature.py
+++ b/python/pyspark/ml/feature.py
@@ -23,11 +23,11 @@ from py4j.java_collections import JavaArray
from pyspark import since, keyword_only
from pyspark.rdd import ignore_unicode_prefix
+from pyspark.ml.linalg import _convert_to_vector
from pyspark.ml.param.shared import *
from pyspark.ml.util import JavaMLReadable, JavaMLWritable
from pyspark.ml.wrapper import JavaEstimator, JavaModel, JavaTransformer, _jvm
from pyspark.mllib.common import inherit_doc
-from pyspark.mllib.linalg import _convert_to_vector
__all__ = ['Binarizer',
'Bucketizer',
@@ -380,7 +380,7 @@ class DCT(JavaTransformer, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWrit
.. seealso:: `More information on Wikipedia \
<https://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II Wikipedia>`_.
- >>> from pyspark.mllib.linalg import Vectors
+ >>> from pyspark.ml.linalg import Vectors
>>> df1 = sqlContext.createDataFrame([(Vectors.dense([5.0, 8.0, 6.0]),)], ["vec"])
>>> dct = DCT(inverse=False, inputCol="vec", outputCol="resultVec")
>>> df2 = dct.transform(df1)
@@ -447,7 +447,7 @@ class ElementwiseProduct(JavaTransformer, HasInputCol, HasOutputCol, JavaMLReada
with a provided "weight" vector. In other words, it scales each column of the dataset
by a scalar multiplier.
- >>> from pyspark.mllib.linalg import Vectors
+ >>> from pyspark.ml.linalg import Vectors
>>> df = sqlContext.createDataFrame([(Vectors.dense([2.0, 1.0, 3.0]),)], ["values"])
>>> ep = ElementwiseProduct(scalingVec=Vectors.dense([1.0, 2.0, 3.0]),
... inputCol="values", outputCol="eprod")
@@ -582,7 +582,7 @@ class IDF(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritab
Compute the Inverse Document Frequency (IDF) given a collection of documents.
- >>> from pyspark.mllib.linalg import DenseVector
+ >>> from pyspark.ml.linalg import DenseVector
>>> df = sqlContext.createDataFrame([(DenseVector([1.0, 2.0]),),
... (DenseVector([0.0, 1.0]),), (DenseVector([3.0, 0.2]),)], ["tf"])
>>> idf = IDF(minDocFreq=3, inputCol="tf", outputCol="idf")
@@ -670,7 +670,7 @@ class MaxAbsScaler(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, Jav
absolute value in each feature. It does not shift/center the data, and thus does not destroy
any sparsity.
- >>> from pyspark.mllib.linalg import Vectors
+ >>> from pyspark.ml.linalg import Vectors
>>> df = sqlContext.createDataFrame([(Vectors.dense([1.0]),), (Vectors.dense([2.0]),)], ["a"])
>>> maScaler = MaxAbsScaler(inputCol="a", outputCol="scaled")
>>> model = maScaler.fit(df)
@@ -757,7 +757,7 @@ class MinMaxScaler(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, Jav
Note that since zero values will probably be transformed to non-zero values, output of the
transformer will be DenseVector even for sparse input.
- >>> from pyspark.mllib.linalg import Vectors
+ >>> from pyspark.ml.linalg import Vectors
>>> df = sqlContext.createDataFrame([(Vectors.dense([0.0]),), (Vectors.dense([2.0]),)], ["a"])
>>> mmScaler = MinMaxScaler(inputCol="a", outputCol="scaled")
>>> model = mmScaler.fit(df)
@@ -961,7 +961,7 @@ class Normalizer(JavaTransformer, HasInputCol, HasOutputCol, JavaMLReadable, Jav
Normalize a vector to have unit norm using the given p-norm.
- >>> from pyspark.mllib.linalg import Vectors
+ >>> from pyspark.ml.linalg import Vectors
>>> svec = Vectors.sparse(4, {1: 4.0, 3: 3.0})
>>> df = sqlContext.createDataFrame([(Vectors.dense([3.0, -4.0]), svec)], ["dense", "sparse"])
>>> normalizer = Normalizer(p=2.0, inputCol="dense", outputCol="features")
@@ -1114,7 +1114,7 @@ class PolynomialExpansion(JavaTransformer, HasInputCol, HasOutputCol, JavaMLRead
multiplication distributes over addition". Take a 2-variable feature vector as an example:
`(x, y)`, if we want to expand it with degree 2, then we get `(x, x * x, y, x * y, y * y)`.
- >>> from pyspark.mllib.linalg import Vectors
+ >>> from pyspark.ml.linalg import Vectors
>>> df = sqlContext.createDataFrame([(Vectors.dense([0.5, 2.0]),)], ["dense"])
>>> px = PolynomialExpansion(degree=2, inputCol="dense", outputCol="expanded")
>>> px.transform(df).head().expanded
@@ -1459,7 +1459,7 @@ class StandardScaler(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, J
Standardizes features by removing the mean and scaling to unit variance using column summary
statistics on the samples in the training set.
- >>> from pyspark.mllib.linalg import Vectors
+ >>> from pyspark.ml.linalg import Vectors
>>> df = sqlContext.createDataFrame([(Vectors.dense([0.0]),), (Vectors.dense([2.0]),)], ["a"])
>>> standardScaler = StandardScaler(inputCol="a", outputCol="scaled")
>>> model = standardScaler.fit(df)
@@ -1942,7 +1942,7 @@ class VectorIndexer(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, Ja
- Add warning if a categorical feature has only 1 category.
- Add option for allowing unknown categories.
- >>> from pyspark.mllib.linalg import Vectors
+ >>> from pyspark.ml.linalg import Vectors
>>> df = sqlContext.createDataFrame([(Vectors.dense([-1.0, 0.0]),),
... (Vectors.dense([0.0, 1.0]),), (Vectors.dense([0.0, 2.0]),)], ["a"])
>>> indexer = VectorIndexer(maxCategories=2, inputCol="a", outputCol="indexed")
@@ -2062,7 +2062,7 @@ class VectorSlicer(JavaTransformer, HasInputCol, HasOutputCol, JavaMLReadable, J
The output vector will order features with the selected indices first (in the order given),
followed by the selected names (in the order given).
- >>> from pyspark.mllib.linalg import Vectors
+ >>> from pyspark.ml.linalg import Vectors
>>> df = sqlContext.createDataFrame([
... (Vectors.dense([-2.0, 2.3, 0.0, 0.0, 1.0]),),
... (Vectors.dense([0.0, 0.0, 0.0, 0.0, 0.0]),),
@@ -2329,7 +2329,7 @@ class PCA(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritab
PCA trains a model to project vectors to a low-dimensional space using PCA.
- >>> from pyspark.mllib.linalg import Vectors
+ >>> from pyspark.ml.linalg import Vectors
>>> data = [(Vectors.sparse(5, [(1, 1.0), (3, 7.0)]),),
... (Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),),
... (Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)]
@@ -2547,7 +2547,7 @@ class ChiSqSelector(JavaEstimator, HasFeaturesCol, HasOutputCol, HasLabelCol, Ja
Chi-Squared feature selection, which selects categorical features to use for predicting a
categorical label.
- >>> from pyspark.mllib.linalg import Vectors
+ >>> from pyspark.ml.linalg import Vectors
>>> df = sqlContext.createDataFrame(
... [(Vectors.dense([0.0, 0.0, 18.0, 1.0]), 1.0),
... (Vectors.dense([0.0, 1.0, 12.0, 0.0]), 0.0),