aboutsummaryrefslogtreecommitdiff
path: root/docs
diff options
context:
space:
mode:
Diffstat (limited to 'docs')
-rw-r--r--docs/_config.yml2
-rw-r--r--docs/mllib-guide.md19
-rw-r--r--docs/python-programming-guide.md8
3 files changed, 22 insertions, 7 deletions
diff --git a/docs/_config.yml b/docs/_config.yml
index 11d18f0ac2..ce0fdf5fb4 100644
--- a/docs/_config.yml
+++ b/docs/_config.yml
@@ -5,6 +5,6 @@ markdown: kramdown
# of Spark, Scala, and Mesos.
SPARK_VERSION: 0.9.0-incubating-SNAPSHOT
SPARK_VERSION_SHORT: 0.9.0
-SCALA_VERSION: 2.10
+SCALA_VERSION: "2.10"
MESOS_VERSION: 0.13.0
SPARK_ISSUE_TRACKER_URL: https://spark-project.atlassian.net
diff --git a/docs/mllib-guide.md b/docs/mllib-guide.md
index 45ee166688..1a5c640d10 100644
--- a/docs/mllib-guide.md
+++ b/docs/mllib-guide.md
@@ -21,6 +21,8 @@ depends on native Fortran routines. You may need to install the
if it is not already present on your nodes. MLlib will throw a linking error if it cannot
detect these libraries automatically.
+To use MLlib in Python, you will also need [NumPy](http://www.numpy.org) version 1.7 or newer.
+
# Binary Classification
Binary classification is a supervised learning problem in which we want to
@@ -316,6 +318,13 @@ other signals), you can use the trainImplicit method to get better results.
val model = ALS.trainImplicit(ratings, 1, 20, 0.01)
{% endhighlight %}
+# Using MLLib in Java
+
+All of MLlib's methods use Java-friendly types, so you can import and call them there the same
+way you do in Scala. The only caveat is that the methods take Scala RDD objects, while the
+Spark Java API uses a separate `JavaRDD` class. You can convert a Java RDD to a Scala one by
+calling `.rdd()` on your `JavaRDD` object.
+
# Using MLLib in Python
Following examples can be tested in the PySpark shell.
@@ -330,7 +339,7 @@ from numpy import array
# Load and parse the data
data = sc.textFile("mllib/data/sample_svm_data.txt")
parsedData = data.map(lambda line: array([float(x) for x in line.split(' ')]))
-model = LogisticRegressionWithSGD.train(sc, parsedData)
+model = LogisticRegressionWithSGD.train(parsedData)
# Build the model
labelsAndPreds = parsedData.map(lambda point: (int(point.item(0)),
@@ -356,7 +365,7 @@ data = sc.textFile("mllib/data/ridge-data/lpsa.data")
parsedData = data.map(lambda line: array([float(x) for x in line.replace(',', ' ').split(' ')]))
# Build the model
-model = LinearRegressionWithSGD.train(sc, parsedData)
+model = LinearRegressionWithSGD.train(parsedData)
# Evaluate the model on training data
valuesAndPreds = parsedData.map(lambda point: (point.item(0),
@@ -382,7 +391,7 @@ data = sc.textFile("kmeans_data.txt")
parsedData = data.map(lambda line: array([float(x) for x in line.split(' ')]))
# Build the model (cluster the data)
-clusters = KMeans.train(sc, parsedData, 2, maxIterations=10,
+clusters = KMeans.train(parsedData, 2, maxIterations=10,
runs=30, initialization_mode="random")
# Evaluate clustering by computing Within Set Sum of Squared Errors
@@ -411,7 +420,7 @@ data = sc.textFile("mllib/data/als/test.data")
ratings = data.map(lambda line: array([float(x) for x in line.split(',')]))
# Build the recommendation model using Alternating Least Squares
-model = ALS.train(sc, ratings, 1, 20)
+model = ALS.train(ratings, 1, 20)
# Evaluate the model on training data
testdata = ratings.map(lambda p: (int(p[0]), int(p[1])))
@@ -426,5 +435,5 @@ signals), you can use the trainImplicit method to get better results.
{% highlight python %}
# Build the recommendation model using Alternating Least Squares based on implicit ratings
-model = ALS.trainImplicit(sc, ratings, 1, 20)
+model = ALS.trainImplicit(ratings, 1, 20)
{% endhighlight %}
diff --git a/docs/python-programming-guide.md b/docs/python-programming-guide.md
index c4236f8312..b07899c2e1 100644
--- a/docs/python-programming-guide.md
+++ b/docs/python-programming-guide.md
@@ -52,7 +52,7 @@ In addition, PySpark fully supports interactive use---simply run `./bin/pyspark`
# Installing and Configuring PySpark
-PySpark requires Python 2.6 or higher.
+PySpark requires Python 2.7 or higher.
PySpark applications are executed using a standard CPython interpreter in order to support Python modules that use C extensions.
We have not tested PySpark with Python 3 or with alternative Python interpreters, such as [PyPy](http://pypy.org/) or [Jython](http://www.jython.org/).
@@ -149,6 +149,12 @@ sc = SparkContext(conf = conf)
[API documentation](api/pyspark/index.html) for PySpark is available as Epydoc.
Many of the methods also contain [doctests](http://docs.python.org/2/library/doctest.html) that provide additional usage examples.
+# Libraries
+
+[MLlib](mllib-guide.html) is also available in PySpark. To use it, you'll need
+[NumPy](http://www.numpy.org) version 1.7 or newer. The [MLlib guide](mllib-guide.html) contains
+some example applications.
+
# Where to Go from Here
PySpark also includes several sample programs in the [`python/examples` folder](https://github.com/apache/incubator-spark/tree/master/python/examples).