aboutsummaryrefslogtreecommitdiff
path: root/mllib
diff options
context:
space:
mode:
Diffstat (limited to 'mllib')
-rw-r--r--mllib/src/main/scala/org/apache/spark/mllib/recommendation/ALS.scala10
1 files changed, 9 insertions, 1 deletions
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/recommendation/ALS.scala b/mllib/src/main/scala/org/apache/spark/mllib/recommendation/ALS.scala
index 89ee07063d..c5f64b1350 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/recommendation/ALS.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/recommendation/ALS.scala
@@ -18,6 +18,7 @@
package org.apache.spark.mllib.recommendation
import scala.collection.mutable.{ArrayBuffer, BitSet}
+import scala.math.{abs, sqrt}
import scala.util.Random
import scala.util.Sorting
@@ -301,7 +302,14 @@ class ALS private (var numBlocks: Int, var rank: Int, var iterations: Int, var l
* Make a random factor vector with the given random.
*/
private def randomFactor(rank: Int, rand: Random): Array[Double] = {
- Array.fill(rank)(rand.nextDouble)
+ // Choose a unit vector uniformly at random from the unit sphere, but from the
+ // "first quadrant" where all elements are nonnegative. This can be done by choosing
+ // elements distributed as Normal(0,1) and taking the absolute value, and then normalizing.
+ // This appears to create factorizations that have a slightly better reconstruction
+ // (<1%) compared picking elements uniformly at random in [0,1].
+ val factor = Array.fill(rank)(abs(rand.nextGaussian()))
+ val norm = sqrt(factor.map(x => x * x).sum)
+ factor.map(x => x / norm)
}
/**