aboutsummaryrefslogtreecommitdiff
path: root/core/src/main/scala/org/apache/spark/rdd/RDD.scala
blob: 36ff3bcaaec629979731ba295ff2ee9c51249525 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.rdd

import java.util.Random

import scala.collection.{mutable, Map}
import scala.collection.mutable.ArrayBuffer
import scala.language.implicitConversions
import scala.reflect.{classTag, ClassTag}

import com.clearspring.analytics.stream.cardinality.HyperLogLogPlus
import org.apache.hadoop.io.{BytesWritable, NullWritable, Text}
import org.apache.hadoop.io.compress.CompressionCodec
import org.apache.hadoop.mapred.TextOutputFormat

import org.apache.spark._
import org.apache.spark.Partitioner._
import org.apache.spark.annotation.{DeveloperApi, Since}
import org.apache.spark.api.java.JavaRDD
import org.apache.spark.internal.Logging
import org.apache.spark.partial.BoundedDouble
import org.apache.spark.partial.CountEvaluator
import org.apache.spark.partial.GroupedCountEvaluator
import org.apache.spark.partial.PartialResult
import org.apache.spark.storage.{RDDBlockId, StorageLevel}
import org.apache.spark.util.{BoundedPriorityQueue, Utils}
import org.apache.spark.util.collection.OpenHashMap
import org.apache.spark.util.random.{BernoulliCellSampler, BernoulliSampler, PoissonSampler,
  SamplingUtils}

/**
 * A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. Represents an immutable,
 * partitioned collection of elements that can be operated on in parallel. This class contains the
 * basic operations available on all RDDs, such as `map`, `filter`, and `persist`. In addition,
 * [[org.apache.spark.rdd.PairRDDFunctions]] contains operations available only on RDDs of key-value
 * pairs, such as `groupByKey` and `join`;
 * [[org.apache.spark.rdd.DoubleRDDFunctions]] contains operations available only on RDDs of
 * Doubles; and
 * [[org.apache.spark.rdd.SequenceFileRDDFunctions]] contains operations available on RDDs that
 * can be saved as SequenceFiles.
 * All operations are automatically available on any RDD of the right type (e.g. RDD[(Int, Int)]
 * through implicit.
 *
 * Internally, each RDD is characterized by five main properties:
 *
 *  - A list of partitions
 *  - A function for computing each split
 *  - A list of dependencies on other RDDs
 *  - Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned)
 *  - Optionally, a list of preferred locations to compute each split on (e.g. block locations for
 *    an HDFS file)
 *
 * All of the scheduling and execution in Spark is done based on these methods, allowing each RDD
 * to implement its own way of computing itself. Indeed, users can implement custom RDDs (e.g. for
 * reading data from a new storage system) by overriding these functions. Please refer to the
 * [[http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf Spark paper]] for more details
 * on RDD internals.
 */
abstract class RDD[T: ClassTag](
    @transient private var _sc: SparkContext,
    @transient private var deps: Seq[Dependency[_]]
  ) extends Serializable with Logging {

  if (classOf[RDD[_]].isAssignableFrom(elementClassTag.runtimeClass)) {
    // This is a warning instead of an exception in order to avoid breaking user programs that
    // might have defined nested RDDs without running jobs with them.
    logWarning("Spark does not support nested RDDs (see SPARK-5063)")
  }

  private def sc: SparkContext = {
    if (_sc == null) {
      throw new SparkException(
        "This RDD lacks a SparkContext. It could happen in the following cases: \n(1) RDD " +
        "transformations and actions are NOT invoked by the driver, but inside of other " +
        "transformations; for example, rdd1.map(x => rdd2.values.count() * x) is invalid " +
        "because the values transformation and count action cannot be performed inside of the " +
        "rdd1.map transformation. For more information, see SPARK-5063.\n(2) When a Spark " +
        "Streaming job recovers from checkpoint, this exception will be hit if a reference to " +
        "an RDD not defined by the streaming job is used in DStream operations. For more " +
        "information, See SPARK-13758.")
    }
    _sc
  }

  /** Construct an RDD with just a one-to-one dependency on one parent */
  def this(@transient oneParent: RDD[_]) =
    this(oneParent.context, List(new OneToOneDependency(oneParent)))

  private[spark] def conf = sc.conf
  // =======================================================================
  // Methods that should be implemented by subclasses of RDD
  // =======================================================================

  /**
   * :: DeveloperApi ::
   * Implemented by subclasses to compute a given partition.
   */
  @DeveloperApi
  def compute(split: Partition, context: TaskContext): Iterator[T]

  /**
   * Implemented by subclasses to return the set of partitions in this RDD. This method will only
   * be called once, so it is safe to implement a time-consuming computation in it.
   *
   * The partitions in this array must satisfy the following property:
   *   `rdd.partitions.zipWithIndex.forall { case (partition, index) => partition.index == index }`
   */
  protected def getPartitions: Array[Partition]

  /**
   * Implemented by subclasses to return how this RDD depends on parent RDDs. This method will only
   * be called once, so it is safe to implement a time-consuming computation in it.
   */
  protected def getDependencies: Seq[Dependency[_]] = deps

  /**
   * Optionally overridden by subclasses to specify placement preferences.
   */
  protected def getPreferredLocations(split: Partition): Seq[String] = Nil

  /** Optionally overridden by subclasses to specify how they are partitioned. */
  @transient val partitioner: Option[Partitioner] = None

  // =======================================================================
  // Methods and fields available on all RDDs
  // =======================================================================

  /** The SparkContext that created this RDD. */
  def sparkContext: SparkContext = sc

  /** A unique ID for this RDD (within its SparkContext). */
  val id: Int = sc.newRddId()

  /** A friendly name for this RDD */
  @transient var name: String = null

  /** Assign a name to this RDD */
  def setName(_name: String): this.type = {
    name = _name
    this
  }

  /**
   * Mark this RDD for persisting using the specified level.
   *
   * @param newLevel the target storage level
   * @param allowOverride whether to override any existing level with the new one
   */
  private def persist(newLevel: StorageLevel, allowOverride: Boolean): this.type = {
    // TODO: Handle changes of StorageLevel
    if (storageLevel != StorageLevel.NONE && newLevel != storageLevel && !allowOverride) {
      throw new UnsupportedOperationException(
        "Cannot change storage level of an RDD after it was already assigned a level")
    }
    // If this is the first time this RDD is marked for persisting, register it
    // with the SparkContext for cleanups and accounting. Do this only once.
    if (storageLevel == StorageLevel.NONE) {
      sc.cleaner.foreach(_.registerRDDForCleanup(this))
      sc.persistRDD(this)
    }
    storageLevel = newLevel
    this
  }

  /**
   * Set this RDD's storage level to persist its values across operations after the first time
   * it is computed. This can only be used to assign a new storage level if the RDD does not
   * have a storage level set yet. Local checkpointing is an exception.
   */
  def persist(newLevel: StorageLevel): this.type = {
    if (isLocallyCheckpointed) {
      // This means the user previously called localCheckpoint(), which should have already
      // marked this RDD for persisting. Here we should override the old storage level with
      // one that is explicitly requested by the user (after adapting it to use disk).
      persist(LocalRDDCheckpointData.transformStorageLevel(newLevel), allowOverride = true)
    } else {
      persist(newLevel, allowOverride = false)
    }
  }

  /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
  def persist(): this.type = persist(StorageLevel.MEMORY_ONLY)

  /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
  def cache(): this.type = persist()

  /**
   * Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.
   *
   * @param blocking Whether to block until all blocks are deleted.
   * @return This RDD.
   */
  def unpersist(blocking: Boolean = true): this.type = {
    logInfo("Removing RDD " + id + " from persistence list")
    sc.unpersistRDD(id, blocking)
    storageLevel = StorageLevel.NONE
    this
  }

  /** Get the RDD's current storage level, or StorageLevel.NONE if none is set. */
  def getStorageLevel: StorageLevel = storageLevel

  // Our dependencies and partitions will be gotten by calling subclass's methods below, and will
  // be overwritten when we're checkpointed
  private var dependencies_ : Seq[Dependency[_]] = null
  @transient private var partitions_ : Array[Partition] = null

  /** An Option holding our checkpoint RDD, if we are checkpointed */
  private def checkpointRDD: Option[CheckpointRDD[T]] = checkpointData.flatMap(_.checkpointRDD)

  /**
   * Get the list of dependencies of this RDD, taking into account whether the
   * RDD is checkpointed or not.
   */
  final def dependencies: Seq[Dependency[_]] = {
    checkpointRDD.map(r => List(new OneToOneDependency(r))).getOrElse {
      if (dependencies_ == null) {
        dependencies_ = getDependencies
      }
      dependencies_
    }
  }

  /**
   * Get the array of partitions of this RDD, taking into account whether the
   * RDD is checkpointed or not.
   */
  final def partitions: Array[Partition] = {
    checkpointRDD.map(_.partitions).getOrElse {
      if (partitions_ == null) {
        partitions_ = getPartitions
        partitions_.zipWithIndex.foreach { case (partition, index) =>
          require(partition.index == index,
            s"partitions($index).partition == ${partition.index}, but it should equal $index")
        }
      }
      partitions_
    }
  }

  /**
   * Returns the number of partitions of this RDD.
   */
  @Since("1.6.0")
  final def getNumPartitions: Int = partitions.length

  /**
   * Get the preferred locations of a partition, taking into account whether the
   * RDD is checkpointed.
   */
  final def preferredLocations(split: Partition): Seq[String] = {
    checkpointRDD.map(_.getPreferredLocations(split)).getOrElse {
      getPreferredLocations(split)
    }
  }

  /**
   * Internal method to this RDD; will read from cache if applicable, or otherwise compute it.
   * This should ''not'' be called by users directly, but is available for implementors of custom
   * subclasses of RDD.
   */
  final def iterator(split: Partition, context: TaskContext): Iterator[T] = {
    if (storageLevel != StorageLevel.NONE) {
      getOrCompute(split, context)
    } else {
      computeOrReadCheckpoint(split, context)
    }
  }

  /**
   * Return the ancestors of the given RDD that are related to it only through a sequence of
   * narrow dependencies. This traverses the given RDD's dependency tree using DFS, but maintains
   * no ordering on the RDDs returned.
   */
  private[spark] def getNarrowAncestors: Seq[RDD[_]] = {
    val ancestors = new mutable.HashSet[RDD[_]]

    def visit(rdd: RDD[_]) {
      val narrowDependencies = rdd.dependencies.filter(_.isInstanceOf[NarrowDependency[_]])
      val narrowParents = narrowDependencies.map(_.rdd)
      val narrowParentsNotVisited = narrowParents.filterNot(ancestors.contains)
      narrowParentsNotVisited.foreach { parent =>
        ancestors.add(parent)
        visit(parent)
      }
    }

    visit(this)

    // In case there is a cycle, do not include the root itself
    ancestors.filterNot(_ == this).toSeq
  }

  /**
   * Compute an RDD partition or read it from a checkpoint if the RDD is checkpointing.
   */
  private[spark] def computeOrReadCheckpoint(split: Partition, context: TaskContext): Iterator[T] =
  {
    if (isCheckpointedAndMaterialized) {
      firstParent[T].iterator(split, context)
    } else {
      compute(split, context)
    }
  }

  /**
   * Gets or computes an RDD partition. Used by RDD.iterator() when an RDD is cached.
   */
  private[spark] def getOrCompute(partition: Partition, context: TaskContext): Iterator[T] = {
    val blockId = RDDBlockId(id, partition.index)
    var readCachedBlock = true
    // This method is called on executors, so we need call SparkEnv.get instead of sc.env.
    SparkEnv.get.blockManager.getOrElseUpdate(blockId, storageLevel, elementClassTag, () => {
      readCachedBlock = false
      computeOrReadCheckpoint(partition, context)
    }) match {
      case Left(blockResult) =>
        if (readCachedBlock) {
          val existingMetrics = context.taskMetrics().registerInputMetrics(blockResult.readMethod)
          existingMetrics.incBytesRead(blockResult.bytes)
          new InterruptibleIterator[T](context, blockResult.data.asInstanceOf[Iterator[T]]) {
            override def next(): T = {
              existingMetrics.incRecordsRead(1)
              delegate.next()
            }
          }
        } else {
          new InterruptibleIterator(context, blockResult.data.asInstanceOf[Iterator[T]])
        }
      case Right(iter) =>
        new InterruptibleIterator(context, iter.asInstanceOf[Iterator[T]])
    }
  }

  /**
   * Execute a block of code in a scope such that all new RDDs created in this body will
   * be part of the same scope. For more detail, see {{org.apache.spark.rdd.RDDOperationScope}}.
   *
   * Note: Return statements are NOT allowed in the given body.
   */
  private[spark] def withScope[U](body: => U): U = RDDOperationScope.withScope[U](sc)(body)

  // Transformations (return a new RDD)

  /**
   * Return a new RDD by applying a function to all elements of this RDD.
   */
  def map[U: ClassTag](f: T => U): RDD[U] = withScope {
    val cleanF = sc.clean(f)
    new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF))
  }

  /**
   *  Return a new RDD by first applying a function to all elements of this
   *  RDD, and then flattening the results.
   */
  def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U] = withScope {
    val cleanF = sc.clean(f)
    new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.flatMap(cleanF))
  }

  /**
   * Return a new RDD containing only the elements that satisfy a predicate.
   */
  def filter(f: T => Boolean): RDD[T] = withScope {
    val cleanF = sc.clean(f)
    new MapPartitionsRDD[T, T](
      this,
      (context, pid, iter) => iter.filter(cleanF),
      preservesPartitioning = true)
  }

  /**
   * Return a new RDD containing the distinct elements in this RDD.
   */
  def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
    map(x => (x, null)).reduceByKey((x, y) => x, numPartitions).map(_._1)
  }

  /**
   * Return a new RDD containing the distinct elements in this RDD.
   */
  def distinct(): RDD[T] = withScope {
    distinct(partitions.length)
  }

  /**
   * Return a new RDD that has exactly numPartitions partitions.
   *
   * Can increase or decrease the level of parallelism in this RDD. Internally, this uses
   * a shuffle to redistribute data.
   *
   * If you are decreasing the number of partitions in this RDD, consider using `coalesce`,
   * which can avoid performing a shuffle.
   */
  def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
    coalesce(numPartitions, shuffle = true)
  }

  /**
   * Return a new RDD that is reduced into `numPartitions` partitions.
   *
   * This results in a narrow dependency, e.g. if you go from 1000 partitions
   * to 100 partitions, there will not be a shuffle, instead each of the 100
   * new partitions will claim 10 of the current partitions.
   *
   * However, if you're doing a drastic coalesce, e.g. to numPartitions = 1,
   * this may result in your computation taking place on fewer nodes than
   * you like (e.g. one node in the case of numPartitions = 1). To avoid this,
   * you can pass shuffle = true. This will add a shuffle step, but means the
   * current upstream partitions will be executed in parallel (per whatever
   * the current partitioning is).
   *
   * Note: With shuffle = true, you can actually coalesce to a larger number
   * of partitions. This is useful if you have a small number of partitions,
   * say 100, potentially with a few partitions being abnormally large. Calling
   * coalesce(1000, shuffle = true) will result in 1000 partitions with the
   * data distributed using a hash partitioner.
   */
  def coalesce(numPartitions: Int, shuffle: Boolean = false)(implicit ord: Ordering[T] = null)
      : RDD[T] = withScope {
    if (shuffle) {
      /** Distributes elements evenly across output partitions, starting from a random partition. */
      val distributePartition = (index: Int, items: Iterator[T]) => {
        var position = (new Random(index)).nextInt(numPartitions)
        items.map { t =>
          // Note that the hash code of the key will just be the key itself. The HashPartitioner
          // will mod it with the number of total partitions.
          position = position + 1
          (position, t)
        }
      } : Iterator[(Int, T)]

      // include a shuffle step so that our upstream tasks are still distributed
      new CoalescedRDD(
        new ShuffledRDD[Int, T, T](mapPartitionsWithIndex(distributePartition),
        new HashPartitioner(numPartitions)),
        numPartitions).values
    } else {
      new CoalescedRDD(this, numPartitions)
    }
  }

  /**
   * Return a sampled subset of this RDD.
   *
   * @param withReplacement can elements be sampled multiple times (replaced when sampled out)
   * @param fraction expected size of the sample as a fraction of this RDD's size
   *  without replacement: probability that each element is chosen; fraction must be [0, 1]
   *  with replacement: expected number of times each element is chosen; fraction must be >= 0
   * @param seed seed for the random number generator
   */
  def sample(
      withReplacement: Boolean,
      fraction: Double,
      seed: Long = Utils.random.nextLong): RDD[T] = withScope {
    require(fraction >= 0.0, "Negative fraction value: " + fraction)
    if (withReplacement) {
      new PartitionwiseSampledRDD[T, T](this, new PoissonSampler[T](fraction), true, seed)
    } else {
      new PartitionwiseSampledRDD[T, T](this, new BernoulliSampler[T](fraction), true, seed)
    }
  }

  /**
   * Randomly splits this RDD with the provided weights.
   *
   * @param weights weights for splits, will be normalized if they don't sum to 1
   * @param seed random seed
   *
   * @return split RDDs in an array
   */
  def randomSplit(
      weights: Array[Double],
      seed: Long = Utils.random.nextLong): Array[RDD[T]] = withScope {
    val sum = weights.sum
    val normalizedCumWeights = weights.map(_ / sum).scanLeft(0.0d)(_ + _)
    normalizedCumWeights.sliding(2).map { x =>
      randomSampleWithRange(x(0), x(1), seed)
    }.toArray
  }

  /**
   * Internal method exposed for Random Splits in DataFrames. Samples an RDD given a probability
   * range.
   * @param lb lower bound to use for the Bernoulli sampler
   * @param ub upper bound to use for the Bernoulli sampler
   * @param seed the seed for the Random number generator
   * @return A random sub-sample of the RDD without replacement.
   */
  private[spark] def randomSampleWithRange(lb: Double, ub: Double, seed: Long): RDD[T] = {
    this.mapPartitionsWithIndex( { (index, partition) =>
      val sampler = new BernoulliCellSampler[T](lb, ub)
      sampler.setSeed(seed + index)
      sampler.sample(partition)
    }, preservesPartitioning = true)
  }

  /**
   * Return a fixed-size sampled subset of this RDD in an array
   *
   * @note this method should only be used if the resulting array is expected to be small, as
   * all the data is loaded into the driver's memory.
   *
   * @param withReplacement whether sampling is done with replacement
   * @param num size of the returned sample
   * @param seed seed for the random number generator
   * @return sample of specified size in an array
   */
  def takeSample(
      withReplacement: Boolean,
      num: Int,
      seed: Long = Utils.random.nextLong): Array[T] = withScope {
    val numStDev = 10.0

    require(num >= 0, "Negative number of elements requested")
    require(num <= (Int.MaxValue - (numStDev * math.sqrt(Int.MaxValue)).toInt),
      "Cannot support a sample size > Int.MaxValue - " +
      s"$numStDev * math.sqrt(Int.MaxValue)")

    if (num == 0) {
      new Array[T](0)
    } else {
      val initialCount = this.count()
      if (initialCount == 0) {
        new Array[T](0)
      } else {
        val rand = new Random(seed)
        if (!withReplacement && num >= initialCount) {
          Utils.randomizeInPlace(this.collect(), rand)
        } else {
          val fraction = SamplingUtils.computeFractionForSampleSize(num, initialCount,
            withReplacement)
          var samples = this.sample(withReplacement, fraction, rand.nextInt()).collect()

          // If the first sample didn't turn out large enough, keep trying to take samples;
          // this shouldn't happen often because we use a big multiplier for the initial size
          var numIters = 0
          while (samples.length < num) {
            logWarning(s"Needed to re-sample due to insufficient sample size. Repeat #$numIters")
            samples = this.sample(withReplacement, fraction, rand.nextInt()).collect()
            numIters += 1
          }
          Utils.randomizeInPlace(samples, rand).take(num)
        }
      }
    }
  }

  /**
   * Return the union of this RDD and another one. Any identical elements will appear multiple
   * times (use `.distinct()` to eliminate them).
   */
  def union(other: RDD[T]): RDD[T] = withScope {
    sc.union(this, other)
  }

  /**
   * Return the union of this RDD and another one. Any identical elements will appear multiple
   * times (use `.distinct()` to eliminate them).
   */
  def ++(other: RDD[T]): RDD[T] = withScope {
    this.union(other)
  }

  /**
   * Return this RDD sorted by the given key function.
   */
  def sortBy[K](
      f: (T) => K,
      ascending: Boolean = true,
      numPartitions: Int = this.partitions.length)
      (implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T] = withScope {
    this.keyBy[K](f)
        .sortByKey(ascending, numPartitions)
        .values
  }

  /**
   * Return the intersection of this RDD and another one. The output will not contain any duplicate
   * elements, even if the input RDDs did.
   *
   * Note that this method performs a shuffle internally.
   */
  def intersection(other: RDD[T]): RDD[T] = withScope {
    this.map(v => (v, null)).cogroup(other.map(v => (v, null)))
        .filter { case (_, (leftGroup, rightGroup)) => leftGroup.nonEmpty && rightGroup.nonEmpty }
        .keys
  }

  /**
   * Return the intersection of this RDD and another one. The output will not contain any duplicate
   * elements, even if the input RDDs did.
   *
   * Note that this method performs a shuffle internally.
   *
   * @param partitioner Partitioner to use for the resulting RDD
   */
  def intersection(
      other: RDD[T],
      partitioner: Partitioner)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
    this.map(v => (v, null)).cogroup(other.map(v => (v, null)), partitioner)
        .filter { case (_, (leftGroup, rightGroup)) => leftGroup.nonEmpty && rightGroup.nonEmpty }
        .keys
  }

  /**
   * Return the intersection of this RDD and another one. The output will not contain any duplicate
   * elements, even if the input RDDs did.  Performs a hash partition across the cluster
   *
   * Note that this method performs a shuffle internally.
   *
   * @param numPartitions How many partitions to use in the resulting RDD
   */
  def intersection(other: RDD[T], numPartitions: Int): RDD[T] = withScope {
    intersection(other, new HashPartitioner(numPartitions))
  }

  /**
   * Return an RDD created by coalescing all elements within each partition into an array.
   */
  def glom(): RDD[Array[T]] = withScope {
    new MapPartitionsRDD[Array[T], T](this, (context, pid, iter) => Iterator(iter.toArray))
  }

  /**
   * Return the Cartesian product of this RDD and another one, that is, the RDD of all pairs of
   * elements (a, b) where a is in `this` and b is in `other`.
   */
  def cartesian[U: ClassTag](other: RDD[U]): RDD[(T, U)] = withScope {
    new CartesianRDD(sc, this, other)
  }

  /**
   * Return an RDD of grouped items. Each group consists of a key and a sequence of elements
   * mapping to that key. The ordering of elements within each group is not guaranteed, and
   * may even differ each time the resulting RDD is evaluated.
   *
   * Note: This operation may be very expensive. If you are grouping in order to perform an
   * aggregation (such as a sum or average) over each key, using [[PairRDDFunctions.aggregateByKey]]
   * or [[PairRDDFunctions.reduceByKey]] will provide much better performance.
   */
  def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])] = withScope {
    groupBy[K](f, defaultPartitioner(this))
  }

  /**
   * Return an RDD of grouped elements. Each group consists of a key and a sequence of elements
   * mapping to that key. The ordering of elements within each group is not guaranteed, and
   * may even differ each time the resulting RDD is evaluated.
   *
   * Note: This operation may be very expensive. If you are grouping in order to perform an
   * aggregation (such as a sum or average) over each key, using [[PairRDDFunctions.aggregateByKey]]
   * or [[PairRDDFunctions.reduceByKey]] will provide much better performance.
   */
  def groupBy[K](
      f: T => K,
      numPartitions: Int)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])] = withScope {
    groupBy(f, new HashPartitioner(numPartitions))
  }

  /**
   * Return an RDD of grouped items. Each group consists of a key and a sequence of elements
   * mapping to that key. The ordering of elements within each group is not guaranteed, and
   * may even differ each time the resulting RDD is evaluated.
   *
   * Note: This operation may be very expensive. If you are grouping in order to perform an
   * aggregation (such as a sum or average) over each key, using [[PairRDDFunctions.aggregateByKey]]
   * or [[PairRDDFunctions.reduceByKey]] will provide much better performance.
   */
  def groupBy[K](f: T => K, p: Partitioner)(implicit kt: ClassTag[K], ord: Ordering[K] = null)
      : RDD[(K, Iterable[T])] = withScope {
    val cleanF = sc.clean(f)
    this.map(t => (cleanF(t), t)).groupByKey(p)
  }

  /**
   * Return an RDD created by piping elements to a forked external process.
   */
  def pipe(command: String): RDD[String] = withScope {
    new PipedRDD(this, command)
  }

  /**
   * Return an RDD created by piping elements to a forked external process.
   */
  def pipe(command: String, env: Map[String, String]): RDD[String] = withScope {
    new PipedRDD(this, command, env)
  }

  /**
   * Return an RDD created by piping elements to a forked external process.
   * The print behavior can be customized by providing two functions.
   *
   * @param command command to run in forked process.
   * @param env environment variables to set.
   * @param printPipeContext Before piping elements, this function is called as an opportunity
   *                         to pipe context data. Print line function (like out.println) will be
   *                         passed as printPipeContext's parameter.
   * @param printRDDElement Use this function to customize how to pipe elements. This function
   *                        will be called with each RDD element as the 1st parameter, and the
   *                        print line function (like out.println()) as the 2nd parameter.
   *                        An example of pipe the RDD data of groupBy() in a streaming way,
   *                        instead of constructing a huge String to concat all the elements:
   *                        def printRDDElement(record:(String, Seq[String]), f:String=&gt;Unit) =
   *                          for (e &lt;- record._2) {f(e)}
   * @param separateWorkingDir Use separate working directories for each task.
   * @return the result RDD
   */
  def pipe(
      command: Seq[String],
      env: Map[String, String] = Map(),
      printPipeContext: (String => Unit) => Unit = null,
      printRDDElement: (T, String => Unit) => Unit = null,
      separateWorkingDir: Boolean = false): RDD[String] = withScope {
    new PipedRDD(this, command, env,
      if (printPipeContext ne null) sc.clean(printPipeContext) else null,
      if (printRDDElement ne null) sc.clean(printRDDElement) else null,
      separateWorkingDir)
  }

  /**
   * Return a new RDD by applying a function to each partition of this RDD.
   *
   * `preservesPartitioning` indicates whether the input function preserves the partitioner, which
   * should be `false` unless this is a pair RDD and the input function doesn't modify the keys.
   */
  def mapPartitions[U: ClassTag](
      f: Iterator[T] => Iterator[U],
      preservesPartitioning: Boolean = false): RDD[U] = withScope {
    val cleanedF = sc.clean(f)
    new MapPartitionsRDD(
      this,
      (context: TaskContext, index: Int, iter: Iterator[T]) => cleanedF(iter),
      preservesPartitioning)
  }

  /**
   * [performance] Spark's internal mapPartitions method which skips closure cleaning. It is a
   * performance API to be used carefully only if we are sure that the RDD elements are
   * serializable and don't require closure cleaning.
   *
   * @param preservesPartitioning indicates whether the input function preserves the partitioner,
   * which should be `false` unless this is a pair RDD and the input function doesn't modify
   * the keys.
   */
  private[spark] def mapPartitionsInternal[U: ClassTag](
      f: Iterator[T] => Iterator[U],
      preservesPartitioning: Boolean = false): RDD[U] = withScope {
    new MapPartitionsRDD(
      this,
      (context: TaskContext, index: Int, iter: Iterator[T]) => f(iter),
      preservesPartitioning)
  }

  /**
   * Return a new RDD by applying a function to each partition of this RDD, while tracking the index
   * of the original partition.
   *
   * `preservesPartitioning` indicates whether the input function preserves the partitioner, which
   * should be `false` unless this is a pair RDD and the input function doesn't modify the keys.
   */
  def mapPartitionsWithIndex[U: ClassTag](
      f: (Int, Iterator[T]) => Iterator[U],
      preservesPartitioning: Boolean = false): RDD[U] = withScope {
    val cleanedF = sc.clean(f)
    new MapPartitionsRDD(
      this,
      (context: TaskContext, index: Int, iter: Iterator[T]) => cleanedF(index, iter),
      preservesPartitioning)
  }

  /**
   * Zips this RDD with another one, returning key-value pairs with the first element in each RDD,
   * second element in each RDD, etc. Assumes that the two RDDs have the *same number of
   * partitions* and the *same number of elements in each partition* (e.g. one was made through
   * a map on the other).
   */
  def zip[U: ClassTag](other: RDD[U]): RDD[(T, U)] = withScope {
    zipPartitions(other, preservesPartitioning = false) { (thisIter, otherIter) =>
      new Iterator[(T, U)] {
        def hasNext: Boolean = (thisIter.hasNext, otherIter.hasNext) match {
          case (true, true) => true
          case (false, false) => false
          case _ => throw new SparkException("Can only zip RDDs with " +
            "same number of elements in each partition")
        }
        def next(): (T, U) = (thisIter.next(), otherIter.next())
      }
    }
  }

  /**
   * Zip this RDD's partitions with one (or more) RDD(s) and return a new RDD by
   * applying a function to the zipped partitions. Assumes that all the RDDs have the
   * *same number of partitions*, but does *not* require them to have the same number
   * of elements in each partition.
   */
  def zipPartitions[B: ClassTag, V: ClassTag]
      (rdd2: RDD[B], preservesPartitioning: Boolean)
      (f: (Iterator[T], Iterator[B]) => Iterator[V]): RDD[V] = withScope {
    new ZippedPartitionsRDD2(sc, sc.clean(f), this, rdd2, preservesPartitioning)
  }

  def zipPartitions[B: ClassTag, V: ClassTag]
      (rdd2: RDD[B])
      (f: (Iterator[T], Iterator[B]) => Iterator[V]): RDD[V] = withScope {
    zipPartitions(rdd2, preservesPartitioning = false)(f)
  }

  def zipPartitions[B: ClassTag, C: ClassTag, V: ClassTag]
      (rdd2: RDD[B], rdd3: RDD[C], preservesPartitioning: Boolean)
      (f: (Iterator[T], Iterator[B], Iterator[C]) => Iterator[V]): RDD[V] = withScope {
    new ZippedPartitionsRDD3(sc, sc.clean(f), this, rdd2, rdd3, preservesPartitioning)
  }

  def zipPartitions[B: ClassTag, C: ClassTag, V: ClassTag]
      (rdd2: RDD[B], rdd3: RDD[C])
      (f: (Iterator[T], Iterator[B], Iterator[C]) => Iterator[V]): RDD[V] = withScope {
    zipPartitions(rdd2, rdd3, preservesPartitioning = false)(f)
  }

  def zipPartitions[B: ClassTag, C: ClassTag, D: ClassTag, V: ClassTag]
      (rdd2: RDD[B], rdd3: RDD[C], rdd4: RDD[D], preservesPartitioning: Boolean)
      (f: (Iterator[T], Iterator[B], Iterator[C], Iterator[D]) => Iterator[V]): RDD[V] = withScope {
    new ZippedPartitionsRDD4(sc, sc.clean(f), this, rdd2, rdd3, rdd4, preservesPartitioning)
  }

  def zipPartitions[B: ClassTag, C: ClassTag, D: ClassTag, V: ClassTag]
      (rdd2: RDD[B], rdd3: RDD[C], rdd4: RDD[D])
      (f: (Iterator[T], Iterator[B], Iterator[C], Iterator[D]) => Iterator[V]): RDD[V] = withScope {
    zipPartitions(rdd2, rdd3, rdd4, preservesPartitioning = false)(f)
  }


  // Actions (launch a job to return a value to the user program)

  /**
   * Applies a function f to all elements of this RDD.
   */
  def foreach(f: T => Unit): Unit = withScope {
    val cleanF = sc.clean(f)
    sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
  }

  /**
   * Applies a function f to each partition of this RDD.
   */
  def foreachPartition(f: Iterator[T] => Unit): Unit = withScope {
    val cleanF = sc.clean(f)
    sc.runJob(this, (iter: Iterator[T]) => cleanF(iter))
  }

  /**
   * Return an array that contains all of the elements in this RDD.
   *
   * @note this method should only be used if the resulting array is expected to be small, as
   * all the data is loaded into the driver's memory.
   */
  def collect(): Array[T] = withScope {
    val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray)
    Array.concat(results: _*)
  }

  /**
   * Return an iterator that contains all of the elements in this RDD.
   *
   * The iterator will consume as much memory as the largest partition in this RDD.
   *
   * Note: this results in multiple Spark jobs, and if the input RDD is the result
   * of a wide transformation (e.g. join with different partitioners), to avoid
   * recomputing the input RDD should be cached first.
   */
  def toLocalIterator: Iterator[T] = withScope {
    def collectPartition(p: Int): Array[T] = {
      sc.runJob(this, (iter: Iterator[T]) => iter.toArray, Seq(p)).head
    }
    (0 until partitions.length).iterator.flatMap(i => collectPartition(i))
  }

  /**
   * Return an RDD that contains all matching values by applying `f`.
   */
  def collect[U: ClassTag](f: PartialFunction[T, U]): RDD[U] = withScope {
    val cleanF = sc.clean(f)
    filter(cleanF.isDefinedAt).map(cleanF)
  }

  /**
   * Return an RDD with the elements from `this` that are not in `other`.
   *
   * Uses `this` partitioner/partition size, because even if `other` is huge, the resulting
   * RDD will be &lt;= us.
   */
  def subtract(other: RDD[T]): RDD[T] = withScope {
    subtract(other, partitioner.getOrElse(new HashPartitioner(partitions.length)))
  }

  /**
   * Return an RDD with the elements from `this` that are not in `other`.
   */
  def subtract(other: RDD[T], numPartitions: Int): RDD[T] = withScope {
    subtract(other, new HashPartitioner(numPartitions))
  }

  /**
   * Return an RDD with the elements from `this` that are not in `other`.
   */
  def subtract(
      other: RDD[T],
      p: Partitioner)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
    if (partitioner == Some(p)) {
      // Our partitioner knows how to handle T (which, since we have a partitioner, is
      // really (K, V)) so make a new Partitioner that will de-tuple our fake tuples
      val p2 = new Partitioner() {
        override def numPartitions: Int = p.numPartitions
        override def getPartition(k: Any): Int = p.getPartition(k.asInstanceOf[(Any, _)]._1)
      }
      // Unfortunately, since we're making a new p2, we'll get ShuffleDependencies
      // anyway, and when calling .keys, will not have a partitioner set, even though
      // the SubtractedRDD will, thanks to p2's de-tupled partitioning, already be
      // partitioned by the right/real keys (e.g. p).
      this.map(x => (x, null)).subtractByKey(other.map((_, null)), p2).keys
    } else {
      this.map(x => (x, null)).subtractByKey(other.map((_, null)), p).keys
    }
  }

  /**
   * Reduces the elements of this RDD using the specified commutative and
   * associative binary operator.
   */
  def reduce(f: (T, T) => T): T = withScope {
    val cleanF = sc.clean(f)
    val reducePartition: Iterator[T] => Option[T] = iter => {
      if (iter.hasNext) {
        Some(iter.reduceLeft(cleanF))
      } else {
        None
      }
    }
    var jobResult: Option[T] = None
    val mergeResult = (index: Int, taskResult: Option[T]) => {
      if (taskResult.isDefined) {
        jobResult = jobResult match {
          case Some(value) => Some(f(value, taskResult.get))
          case None => taskResult
        }
      }
    }
    sc.runJob(this, reducePartition, mergeResult)
    // Get the final result out of our Option, or throw an exception if the RDD was empty
    jobResult.getOrElse(throw new UnsupportedOperationException("empty collection"))
  }

  /**
   * Reduces the elements of this RDD in a multi-level tree pattern.
   *
   * @param depth suggested depth of the tree (default: 2)
   * @see [[org.apache.spark.rdd.RDD#reduce]]
   */
  def treeReduce(f: (T, T) => T, depth: Int = 2): T = withScope {
    require(depth >= 1, s"Depth must be greater than or equal to 1 but got $depth.")
    val cleanF = context.clean(f)
    val reducePartition: Iterator[T] => Option[T] = iter => {
      if (iter.hasNext) {
        Some(iter.reduceLeft(cleanF))
      } else {
        None
      }
    }
    val partiallyReduced = mapPartitions(it => Iterator(reducePartition(it)))
    val op: (Option[T], Option[T]) => Option[T] = (c, x) => {
      if (c.isDefined && x.isDefined) {
        Some(cleanF(c.get, x.get))
      } else if (c.isDefined) {
        c
      } else if (x.isDefined) {
        x
      } else {
        None
      }
    }
    partiallyReduced.treeAggregate(Option.empty[T])(op, op, depth)
      .getOrElse(throw new UnsupportedOperationException("empty collection"))
  }

  /**
   * Aggregate the elements of each partition, and then the results for all the partitions, using a
   * given associative function and a neutral "zero value". The function
   * op(t1, t2) is allowed to modify t1 and return it as its result value to avoid object
   * allocation; however, it should not modify t2.
   *
   * This behaves somewhat differently from fold operations implemented for non-distributed
   * collections in functional languages like Scala. This fold operation may be applied to
   * partitions individually, and then fold those results into the final result, rather than
   * apply the fold to each element sequentially in some defined ordering. For functions
   * that are not commutative, the result may differ from that of a fold applied to a
   * non-distributed collection.
   *
   * @param zeroValue the initial value for the accumulated result of each partition for the `op`
   *                  operator, and also the initial value for the combine results from different
   *                  partitions for the `op` operator - this will typically be the neutral
   *                  element (e.g. `Nil` for list concatenation or `0` for summation)
   * @param op an operator used to both accumulate results within a partition and combine results
   *                  from different partitions
   */
  def fold(zeroValue: T)(op: (T, T) => T): T = withScope {
    // Clone the zero value since we will also be serializing it as part of tasks
    var jobResult = Utils.clone(zeroValue, sc.env.closureSerializer.newInstance())
    val cleanOp = sc.clean(op)
    val foldPartition = (iter: Iterator[T]) => iter.fold(zeroValue)(cleanOp)
    val mergeResult = (index: Int, taskResult: T) => jobResult = op(jobResult, taskResult)
    sc.runJob(this, foldPartition, mergeResult)
    jobResult
  }

  /**
   * Aggregate the elements of each partition, and then the results for all the partitions, using
   * given combine functions and a neutral "zero value". This function can return a different result
   * type, U, than the type of this RDD, T. Thus, we need one operation for merging a T into an U
   * and one operation for merging two U's, as in scala.TraversableOnce. Both of these functions are
   * allowed to modify and return their first argument instead of creating a new U to avoid memory
   * allocation.
   *
   * @param zeroValue the initial value for the accumulated result of each partition for the
   *                  `seqOp` operator, and also the initial value for the combine results from
   *                  different partitions for the `combOp` operator - this will typically be the
   *                  neutral element (e.g. `Nil` for list concatenation or `0` for summation)
   * @param seqOp an operator used to accumulate results within a partition
   * @param combOp an associative operator used to combine results from different partitions
   */
  def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U = withScope {
    // Clone the zero value since we will also be serializing it as part of tasks
    var jobResult = Utils.clone(zeroValue, sc.env.serializer.newInstance())
    val cleanSeqOp = sc.clean(seqOp)
    val cleanCombOp = sc.clean(combOp)
    val aggregatePartition = (it: Iterator[T]) => it.aggregate(zeroValue)(cleanSeqOp, cleanCombOp)
    val mergeResult = (index: Int, taskResult: U) => jobResult = combOp(jobResult, taskResult)
    sc.runJob(this, aggregatePartition, mergeResult)
    jobResult
  }

  /**
   * Aggregates the elements of this RDD in a multi-level tree pattern.
   *
   * @param depth suggested depth of the tree (default: 2)
   * @see [[org.apache.spark.rdd.RDD#aggregate]]
   */
  def treeAggregate[U: ClassTag](zeroValue: U)(
      seqOp: (U, T) => U,
      combOp: (U, U) => U,
      depth: Int = 2): U = withScope {
    require(depth >= 1, s"Depth must be greater than or equal to 1 but got $depth.")
    if (partitions.length == 0) {
      Utils.clone(zeroValue, context.env.closureSerializer.newInstance())
    } else {
      val cleanSeqOp = context.clean(seqOp)
      val cleanCombOp = context.clean(combOp)
      val aggregatePartition =
        (it: Iterator[T]) => it.aggregate(zeroValue)(cleanSeqOp, cleanCombOp)
      var partiallyAggregated = mapPartitions(it => Iterator(aggregatePartition(it)))
      var numPartitions = partiallyAggregated.partitions.length
      val scale = math.max(math.ceil(math.pow(numPartitions, 1.0 / depth)).toInt, 2)
      // If creating an extra level doesn't help reduce
      // the wall-clock time, we stop tree aggregation.

      // Don't trigger TreeAggregation when it doesn't save wall-clock time
      while (numPartitions > scale + math.ceil(numPartitions.toDouble / scale)) {
        numPartitions /= scale
        val curNumPartitions = numPartitions
        partiallyAggregated = partiallyAggregated.mapPartitionsWithIndex {
          (i, iter) => iter.map((i % curNumPartitions, _))
        }.reduceByKey(new HashPartitioner(curNumPartitions), cleanCombOp).values
      }
      partiallyAggregated.reduce(cleanCombOp)
    }
  }

  /**
   * Return the number of elements in the RDD.
   */
  def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum

  /**
   * Approximate version of count() that returns a potentially incomplete result
   * within a timeout, even if not all tasks have finished.
   */
  def countApprox(
      timeout: Long,
      confidence: Double = 0.95): PartialResult[BoundedDouble] = withScope {
    val countElements: (TaskContext, Iterator[T]) => Long = { (ctx, iter) =>
      var result = 0L
      while (iter.hasNext) {
        result += 1L
        iter.next()
      }
      result
    }
    val evaluator = new CountEvaluator(partitions.length, confidence)
    sc.runApproximateJob(this, countElements, evaluator, timeout)
  }

  /**
   * Return the count of each unique value in this RDD as a local map of (value, count) pairs.
   *
   * Note that this method should only be used if the resulting map is expected to be small, as
   * the whole thing is loaded into the driver's memory.
   * To handle very large results, consider using rdd.map(x =&gt; (x, 1L)).reduceByKey(_ + _), which
   * returns an RDD[T, Long] instead of a map.
   */
  def countByValue()(implicit ord: Ordering[T] = null): Map[T, Long] = withScope {
    map(value => (value, null)).countByKey()
  }

  /**
   * Approximate version of countByValue().
   */
  def countByValueApprox(timeout: Long, confidence: Double = 0.95)
      (implicit ord: Ordering[T] = null)
      : PartialResult[Map[T, BoundedDouble]] = withScope {
    if (elementClassTag.runtimeClass.isArray) {
      throw new SparkException("countByValueApprox() does not support arrays")
    }
    val countPartition: (TaskContext, Iterator[T]) => OpenHashMap[T, Long] = { (ctx, iter) =>
      val map = new OpenHashMap[T, Long]
      iter.foreach {
        t => map.changeValue(t, 1L, _ + 1L)
      }
      map
    }
    val evaluator = new GroupedCountEvaluator[T](partitions.length, confidence)
    sc.runApproximateJob(this, countPartition, evaluator, timeout)
  }

  /**
   * Return approximate number of distinct elements in the RDD.
   *
   * The algorithm used is based on streamlib's implementation of "HyperLogLog in Practice:
   * Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available
   * <a href="http://dx.doi.org/10.1145/2452376.2452456">here</a>.
   *
   * The relative accuracy is approximately `1.054 / sqrt(2^p)`. Setting a nonzero `sp &gt; p`
   * would trigger sparse representation of registers, which may reduce the memory consumption
   * and increase accuracy when the cardinality is small.
   *
   * @param p The precision value for the normal set.
   *          `p` must be a value between 4 and `sp` if `sp` is not zero (32 max).
   * @param sp The precision value for the sparse set, between 0 and 32.
   *           If `sp` equals 0, the sparse representation is skipped.
   */
  def countApproxDistinct(p: Int, sp: Int): Long = withScope {
    require(p >= 4, s"p ($p) must be >= 4")
    require(sp <= 32, s"sp ($sp) must be <= 32")
    require(sp == 0 || p <= sp, s"p ($p) cannot be greater than sp ($sp)")
    val zeroCounter = new HyperLogLogPlus(p, sp)
    aggregate(zeroCounter)(
      (hll: HyperLogLogPlus, v: T) => {
        hll.offer(v)
        hll
      },
      (h1: HyperLogLogPlus, h2: HyperLogLogPlus) => {
        h1.addAll(h2)
        h1
      }).cardinality()
  }

  /**
   * Return approximate number of distinct elements in the RDD.
   *
   * The algorithm used is based on streamlib's implementation of "HyperLogLog in Practice:
   * Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available
   * <a href="http://dx.doi.org/10.1145/2452376.2452456">here</a>.
   *
   * @param relativeSD Relative accuracy. Smaller values create counters that require more space.
   *                   It must be greater than 0.000017.
   */
  def countApproxDistinct(relativeSD: Double = 0.05): Long = withScope {
    require(relativeSD > 0.000017, s"accuracy ($relativeSD) must be greater than 0.000017")
    val p = math.ceil(2.0 * math.log(1.054 / relativeSD) / math.log(2)).toInt
    countApproxDistinct(if (p < 4) 4 else p, 0)
  }

  /**
   * Zips this RDD with its element indices. The ordering is first based on the partition index
   * and then the ordering of items within each partition. So the first item in the first
   * partition gets index 0, and the last item in the last partition receives the largest index.
   *
   * This is similar to Scala's zipWithIndex but it uses Long instead of Int as the index type.
   * This method needs to trigger a spark job when this RDD contains more than one partitions.
   *
   * Note that some RDDs, such as those returned by groupBy(), do not guarantee order of
   * elements in a partition. The index assigned to each element is therefore not guaranteed,
   * and may even change if the RDD is reevaluated. If a fixed ordering is required to guarantee
   * the same index assignments, you should sort the RDD with sortByKey() or save it to a file.
   */
  def zipWithIndex(): RDD[(T, Long)] = withScope {
    new ZippedWithIndexRDD(this)
  }

  /**
   * Zips this RDD with generated unique Long ids. Items in the kth partition will get ids k, n+k,
   * 2*n+k, ..., where n is the number of partitions. So there may exist gaps, but this method
   * won't trigger a spark job, which is different from [[org.apache.spark.rdd.RDD#zipWithIndex]].
   *
   * Note that some RDDs, such as those returned by groupBy(), do not guarantee order of
   * elements in a partition. The unique ID assigned to each element is therefore not guaranteed,
   * and may even change if the RDD is reevaluated. If a fixed ordering is required to guarantee
   * the same index assignments, you should sort the RDD with sortByKey() or save it to a file.
   */
  def zipWithUniqueId(): RDD[(T, Long)] = withScope {
    val n = this.partitions.length.toLong
    this.mapPartitionsWithIndex { case (k, iter) =>
      iter.zipWithIndex.map { case (item, i) =>
        (item, i * n + k)
      }
    }
  }

  /**
   * Take the first num elements of the RDD. It works by first scanning one partition, and use the
   * results from that partition to estimate the number of additional partitions needed to satisfy
   * the limit.
   *
   * @note this method should only be used if the resulting array is expected to be small, as
   * all the data is loaded into the driver's memory.
   *
   * @note due to complications in the internal implementation, this method will raise
   * an exception if called on an RDD of `Nothing` or `Null`.
   */
  def take(num: Int): Array[T] = withScope {
    if (num == 0) {
      new Array[T](0)
    } else {
      val buf = new ArrayBuffer[T]
      val totalParts = this.partitions.length
      var partsScanned = 0
      while (buf.size < num && partsScanned < totalParts) {
        // The number of partitions to try in this iteration. It is ok for this number to be
        // greater than totalParts because we actually cap it at totalParts in runJob.
        var numPartsToTry = 1L
        if (partsScanned > 0) {
          // If we didn't find any rows after the previous iteration, quadruple and retry.
          // Otherwise, interpolate the number of partitions we need to try, but overestimate
          // it by 50%. We also cap the estimation in the end.
          if (buf.size == 0) {
            numPartsToTry = partsScanned * 4
          } else {
            // the left side of max is >=1 whenever partsScanned >= 2
            numPartsToTry = Math.max((1.5 * num * partsScanned / buf.size).toInt - partsScanned, 1)
            numPartsToTry = Math.min(numPartsToTry, partsScanned * 4)
          }
        }

        val left = num - buf.size
        val p = partsScanned.until(math.min(partsScanned + numPartsToTry, totalParts).toInt)
        val res = sc.runJob(this, (it: Iterator[T]) => it.take(left).toArray, p)

        res.foreach(buf ++= _.take(num - buf.size))
        partsScanned += p.size
      }

      buf.toArray
    }
  }

  /**
   * Return the first element in this RDD.
   */
  def first(): T = withScope {
    take(1) match {
      case Array(t) => t
      case _ => throw new UnsupportedOperationException("empty collection")
    }
  }

  /**
   * Returns the top k (largest) elements from this RDD as defined by the specified
   * implicit Ordering[T] and maintains the ordering. This does the opposite of
   * [[takeOrdered]]. For example:
   * {{{
   *   sc.parallelize(Seq(10, 4, 2, 12, 3)).top(1)
   *   // returns Array(12)
   *
   *   sc.parallelize(Seq(2, 3, 4, 5, 6)).top(2)
   *   // returns Array(6, 5)
   * }}}
   *
   * @note this method should only be used if the resulting array is expected to be small, as
   * all the data is loaded into the driver's memory.
   *
   * @param num k, the number of top elements to return
   * @param ord the implicit ordering for T
   * @return an array of top elements
   */
  def top(num: Int)(implicit ord: Ordering[T]): Array[T] = withScope {
    takeOrdered(num)(ord.reverse)
  }

  /**
   * Returns the first k (smallest) elements from this RDD as defined by the specified
   * implicit Ordering[T] and maintains the ordering. This does the opposite of [[top]].
   * For example:
   * {{{
   *   sc.parallelize(Seq(10, 4, 2, 12, 3)).takeOrdered(1)
   *   // returns Array(2)
   *
   *   sc.parallelize(Seq(2, 3, 4, 5, 6)).takeOrdered(2)
   *   // returns Array(2, 3)
   * }}}
   *
   * @note this method should only be used if the resulting array is expected to be small, as
   * all the data is loaded into the driver's memory.
   *
   * @param num k, the number of elements to return
   * @param ord the implicit ordering for T
   * @return an array of top elements
   */
  def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T] = withScope {
    if (num == 0) {
      Array.empty
    } else {
      val mapRDDs = mapPartitions { items =>
        // Priority keeps the largest elements, so let's reverse the ordering.
        val queue = new BoundedPriorityQueue[T](num)(ord.reverse)
        queue ++= util.collection.Utils.takeOrdered(items, num)(ord)
        Iterator.single(queue)
      }
      if (mapRDDs.partitions.length == 0) {
        Array.empty
      } else {
        mapRDDs.reduce { (queue1, queue2) =>
          queue1 ++= queue2
          queue1
        }.toArray.sorted(ord)
      }
    }
  }

  /**
   * Returns the max of this RDD as defined by the implicit Ordering[T].
   * @return the maximum element of the RDD
   * */
  def max()(implicit ord: Ordering[T]): T = withScope {
    this.reduce(ord.max)
  }

  /**
   * Returns the min of this RDD as defined by the implicit Ordering[T].
   * @return the minimum element of the RDD
   * */
  def min()(implicit ord: Ordering[T]): T = withScope {
    this.reduce(ord.min)
  }

  /**
   * @note due to complications in the internal implementation, this method will raise an
   * exception if called on an RDD of `Nothing` or `Null`. This may be come up in practice
   * because, for example, the type of `parallelize(Seq())` is `RDD[Nothing]`.
   * (`parallelize(Seq())` should be avoided anyway in favor of `parallelize(Seq[T]())`.)
   * @return true if and only if the RDD contains no elements at all. Note that an RDD
   *         may be empty even when it has at least 1 partition.
   */
  def isEmpty(): Boolean = withScope {
    partitions.length == 0 || take(1).length == 0
  }

  /**
   * Save this RDD as a text file, using string representations of elements.
   */
  def saveAsTextFile(path: String): Unit = withScope {
    // https://issues.apache.org/jira/browse/SPARK-2075
    //
    // NullWritable is a `Comparable` in Hadoop 1.+, so the compiler cannot find an implicit
    // Ordering for it and will use the default `null`. However, it's a `Comparable[NullWritable]`
    // in Hadoop 2.+, so the compiler will call the implicit `Ordering.ordered` method to create an
    // Ordering for `NullWritable`. That's why the compiler will generate different anonymous
    // classes for `saveAsTextFile` in Hadoop 1.+ and Hadoop 2.+.
    //
    // Therefore, here we provide an explicit Ordering `null` to make sure the compiler generate
    // same bytecodes for `saveAsTextFile`.
    val nullWritableClassTag = implicitly[ClassTag[NullWritable]]
    val textClassTag = implicitly[ClassTag[Text]]
    val r = this.mapPartitions { iter =>
      val text = new Text()
      iter.map { x =>
        text.set(x.toString)
        (NullWritable.get(), text)
      }
    }
    RDD.rddToPairRDDFunctions(r)(nullWritableClassTag, textClassTag, null)
      .saveAsHadoopFile[TextOutputFormat[NullWritable, Text]](path)
  }

  /**
   * Save this RDD as a compressed text file, using string representations of elements.
   */
  def saveAsTextFile(path: String, codec: Class[_ <: CompressionCodec]): Unit = withScope {
    // https://issues.apache.org/jira/browse/SPARK-2075
    val nullWritableClassTag = implicitly[ClassTag[NullWritable]]
    val textClassTag = implicitly[ClassTag[Text]]
    val r = this.mapPartitions { iter =>
      val text = new Text()
      iter.map { x =>
        text.set(x.toString)
        (NullWritable.get(), text)
      }
    }
    RDD.rddToPairRDDFunctions(r)(nullWritableClassTag, textClassTag, null)
      .saveAsHadoopFile[TextOutputFormat[NullWritable, Text]](path, codec)
  }

  /**
   * Save this RDD as a SequenceFile of serialized objects.
   */
  def saveAsObjectFile(path: String): Unit = withScope {
    this.mapPartitions(iter => iter.grouped(10).map(_.toArray))
      .map(x => (NullWritable.get(), new BytesWritable(Utils.serialize(x))))
      .saveAsSequenceFile(path)
  }

  /**
   * Creates tuples of the elements in this RDD by applying `f`.
   */
  def keyBy[K](f: T => K): RDD[(K, T)] = withScope {
    val cleanedF = sc.clean(f)
    map(x => (cleanedF(x), x))
  }

  /** A private method for tests, to look at the contents of each partition */
  private[spark] def collectPartitions(): Array[Array[T]] = withScope {
    sc.runJob(this, (iter: Iterator[T]) => iter.toArray)
  }

  /**
   * Mark this RDD for checkpointing. It will be saved to a file inside the checkpoint
   * directory set with `SparkContext#setCheckpointDir` and all references to its parent
   * RDDs will be removed. This function must be called before any job has been
   * executed on this RDD. It is strongly recommended that this RDD is persisted in
   * memory, otherwise saving it on a file will require recomputation.
   */
  def checkpoint(): Unit = RDDCheckpointData.synchronized {
    // NOTE: we use a global lock here due to complexities downstream with ensuring
    // children RDD partitions point to the correct parent partitions. In the future
    // we should revisit this consideration.
    if (context.checkpointDir.isEmpty) {
      throw new SparkException("Checkpoint directory has not been set in the SparkContext")
    } else if (checkpointData.isEmpty) {
      checkpointData = Some(new ReliableRDDCheckpointData(this))
    }
  }

  /**
   * Mark this RDD for local checkpointing using Spark's existing caching layer.
   *
   * This method is for users who wish to truncate RDD lineages while skipping the expensive
   * step of replicating the materialized data in a reliable distributed file system. This is
   * useful for RDDs with long lineages that need to be truncated periodically (e.g. GraphX).
   *
   * Local checkpointing sacrifices fault-tolerance for performance. In particular, checkpointed
   * data is written to ephemeral local storage in the executors instead of to a reliable,
   * fault-tolerant storage. The effect is that if an executor fails during the computation,
   * the checkpointed data may no longer be accessible, causing an irrecoverable job failure.
   *
   * This is NOT safe to use with dynamic allocation, which removes executors along
   * with their cached blocks. If you must use both features, you are advised to set
   * `spark.dynamicAllocation.cachedExecutorIdleTimeout` to a high value.
   *
   * The checkpoint directory set through `SparkContext#setCheckpointDir` is not used.
   */
  def localCheckpoint(): this.type = RDDCheckpointData.synchronized {
    if (conf.getBoolean("spark.dynamicAllocation.enabled", false) &&
        conf.contains("spark.dynamicAllocation.cachedExecutorIdleTimeout")) {
      logWarning("Local checkpointing is NOT safe to use with dynamic allocation, " +
        "which removes executors along with their cached blocks. If you must use both " +
        "features, you are advised to set `spark.dynamicAllocation.cachedExecutorIdleTimeout` " +
        "to a high value. E.g. If you plan to use the RDD for 1 hour, set the timeout to " +
        "at least 1 hour.")
    }

    // Note: At this point we do not actually know whether the user will call persist() on
    // this RDD later, so we must explicitly call it here ourselves to ensure the cached
    // blocks are registered for cleanup later in the SparkContext.
    //
    // If, however, the user has already called persist() on this RDD, then we must adapt
    // the storage level he/she specified to one that is appropriate for local checkpointing
    // (i.e. uses disk) to guarantee correctness.

    if (storageLevel == StorageLevel.NONE) {
      persist(LocalRDDCheckpointData.DEFAULT_STORAGE_LEVEL)
    } else {
      persist(LocalRDDCheckpointData.transformStorageLevel(storageLevel), allowOverride = true)
    }

    // If this RDD is already checkpointed and materialized, its lineage is already truncated.
    // We must not override our `checkpointData` in this case because it is needed to recover
    // the checkpointed data. If it is overridden, next time materializing on this RDD will
    // cause error.
    if (isCheckpointedAndMaterialized) {
      logWarning("Not marking RDD for local checkpoint because it was already " +
        "checkpointed and materialized")
    } else {
      // Lineage is not truncated yet, so just override any existing checkpoint data with ours
      checkpointData match {
        case Some(_: ReliableRDDCheckpointData[_]) => logWarning(
          "RDD was already marked for reliable checkpointing: overriding with local checkpoint.")
        case _ =>
      }
      checkpointData = Some(new LocalRDDCheckpointData(this))
    }
    this
  }

  /**
   * Return whether this RDD is checkpointed and materialized, either reliably or locally.
   */
  def isCheckpointed: Boolean = checkpointData.exists(_.isCheckpointed)

  /**
   * Return whether this RDD is checkpointed and materialized, either reliably or locally.
   * This is introduced as an alias for `isCheckpointed` to clarify the semantics of the
   * return value. Exposed for testing.
   */
  private[spark] def isCheckpointedAndMaterialized: Boolean = isCheckpointed

  /**
   * Return whether this RDD is marked for local checkpointing.
   * Exposed for testing.
   */
  private[rdd] def isLocallyCheckpointed: Boolean = {
    checkpointData match {
      case Some(_: LocalRDDCheckpointData[T]) => true
      case _ => false
    }
  }

  /**
   * Gets the name of the directory to which this RDD was checkpointed.
   * This is not defined if the RDD is checkpointed locally.
   */
  def getCheckpointFile: Option[String] = {
    checkpointData match {
      case Some(reliable: ReliableRDDCheckpointData[T]) => reliable.getCheckpointDir
      case _ => None
    }
  }

  // =======================================================================
  // Other internal methods and fields
  // =======================================================================

  private var storageLevel: StorageLevel = StorageLevel.NONE

  /** User code that created this RDD (e.g. `textFile`, `parallelize`). */
  @transient private[spark] val creationSite = sc.getCallSite()

  /**
   * The scope associated with the operation that created this RDD.
   *
   * This is more flexible than the call site and can be defined hierarchically. For more
   * detail, see the documentation of {{RDDOperationScope}}. This scope is not defined if the
   * user instantiates this RDD himself without using any Spark operations.
   */
  @transient private[spark] val scope: Option[RDDOperationScope] = {
    Option(sc.getLocalProperty(SparkContext.RDD_SCOPE_KEY)).map(RDDOperationScope.fromJson)
  }

  private[spark] def getCreationSite: String = Option(creationSite).map(_.shortForm).getOrElse("")

  private[spark] def elementClassTag: ClassTag[T] = classTag[T]

  private[spark] var checkpointData: Option[RDDCheckpointData[T]] = None

  // Whether to checkpoint all ancestor RDDs that are marked for checkpointing. By default,
  // we stop as soon as we find the first such RDD, an optimization that allows us to write
  // less data but is not safe for all workloads. E.g. in streaming we may checkpoint both
  // an RDD and its parent in every batch, in which case the parent may never be checkpointed
  // and its lineage never truncated, leading to OOMs in the long run (SPARK-6847).
  private val checkpointAllMarkedAncestors =
    Option(sc.getLocalProperty(RDD.CHECKPOINT_ALL_MARKED_ANCESTORS))
      .map(_.toBoolean).getOrElse(false)

  /** Returns the first parent RDD */
  protected[spark] def firstParent[U: ClassTag]: RDD[U] = {
    dependencies.head.rdd.asInstanceOf[RDD[U]]
  }

  /** Returns the jth parent RDD: e.g. rdd.parent[T](0) is equivalent to rdd.firstParent[T] */
  protected[spark] def parent[U: ClassTag](j: Int) = {
    dependencies(j).rdd.asInstanceOf[RDD[U]]
  }

  /** The [[org.apache.spark.SparkContext]] that this RDD was created on. */
  def context: SparkContext = sc

  /**
   * Private API for changing an RDD's ClassTag.
   * Used for internal Java-Scala API compatibility.
   */
  private[spark] def retag(cls: Class[T]): RDD[T] = {
    val classTag: ClassTag[T] = ClassTag.apply(cls)
    this.retag(classTag)
  }

  /**
   * Private API for changing an RDD's ClassTag.
   * Used for internal Java-Scala API compatibility.
   */
  private[spark] def retag(implicit classTag: ClassTag[T]): RDD[T] = {
    this.mapPartitions(identity, preservesPartitioning = true)(classTag)
  }

  // Avoid handling doCheckpoint multiple times to prevent excessive recursion
  @transient private var doCheckpointCalled = false

  /**
   * Performs the checkpointing of this RDD by saving this. It is called after a job using this RDD
   * has completed (therefore the RDD has been materialized and potentially stored in memory).
   * doCheckpoint() is called recursively on the parent RDDs.
   */
  private[spark] def doCheckpoint(): Unit = {
    RDDOperationScope.withScope(sc, "checkpoint", allowNesting = false, ignoreParent = true) {
      if (!doCheckpointCalled) {
        doCheckpointCalled = true
        if (checkpointData.isDefined) {
          if (checkpointAllMarkedAncestors) {
            // TODO We can collect all the RDDs that needs to be checkpointed, and then checkpoint
            // them in parallel.
            // Checkpoint parents first because our lineage will be truncated after we
            // checkpoint ourselves
            dependencies.foreach(_.rdd.doCheckpoint())
          }
          checkpointData.get.checkpoint()
        } else {
          dependencies.foreach(_.rdd.doCheckpoint())
        }
      }
    }
  }

  /**
   * Changes the dependencies of this RDD from its original parents to a new RDD (`newRDD`)
   * created from the checkpoint file, and forget its old dependencies and partitions.
   */
  private[spark] def markCheckpointed(): Unit = {
    clearDependencies()
    partitions_ = null
    deps = null    // Forget the constructor argument for dependencies too
  }

  /**
   * Clears the dependencies of this RDD. This method must ensure that all references
   * to the original parent RDDs is removed to enable the parent RDDs to be garbage
   * collected. Subclasses of RDD may override this method for implementing their own cleaning
   * logic. See [[org.apache.spark.rdd.UnionRDD]] for an example.
   */
  protected def clearDependencies() {
    dependencies_ = null
  }

  /** A description of this RDD and its recursive dependencies for debugging. */
  def toDebugString: String = {
    // Get a debug description of an rdd without its children
    def debugSelf(rdd: RDD[_]): Seq[String] = {
      import Utils.bytesToString

      val persistence = if (storageLevel != StorageLevel.NONE) storageLevel.description else ""
      val storageInfo = rdd.context.getRDDStorageInfo(_.id == rdd.id).map(info =>
        "    CachedPartitions: %d; MemorySize: %s; ExternalBlockStoreSize: %s; DiskSize: %s".format(
          info.numCachedPartitions, bytesToString(info.memSize),
          bytesToString(info.externalBlockStoreSize), bytesToString(info.diskSize)))

      s"$rdd [$persistence]" +: storageInfo
    }

    // Apply a different rule to the last child
    def debugChildren(rdd: RDD[_], prefix: String): Seq[String] = {
      val len = rdd.dependencies.length
      len match {
        case 0 => Seq.empty
        case 1 =>
          val d = rdd.dependencies.head
          debugString(d.rdd, prefix, d.isInstanceOf[ShuffleDependency[_, _, _]], true)
        case _ =>
          val frontDeps = rdd.dependencies.take(len - 1)
          val frontDepStrings = frontDeps.flatMap(
            d => debugString(d.rdd, prefix, d.isInstanceOf[ShuffleDependency[_, _, _]]))

          val lastDep = rdd.dependencies.last
          val lastDepStrings =
            debugString(lastDep.rdd, prefix, lastDep.isInstanceOf[ShuffleDependency[_, _, _]], true)

          (frontDepStrings ++ lastDepStrings)
      }
    }
    // The first RDD in the dependency stack has no parents, so no need for a +-
    def firstDebugString(rdd: RDD[_]): Seq[String] = {
      val partitionStr = "(" + rdd.partitions.length + ")"
      val leftOffset = (partitionStr.length - 1) / 2
      val nextPrefix = (" " * leftOffset) + "|" + (" " * (partitionStr.length - leftOffset))

      debugSelf(rdd).zipWithIndex.map{
        case (desc: String, 0) => s"$partitionStr $desc"
        case (desc: String, _) => s"$nextPrefix $desc"
      } ++ debugChildren(rdd, nextPrefix)
    }
    def shuffleDebugString(rdd: RDD[_], prefix: String = "", isLastChild: Boolean): Seq[String] = {
      val partitionStr = "(" + rdd.partitions.length + ")"
      val leftOffset = (partitionStr.length - 1) / 2
      val thisPrefix = prefix.replaceAll("\\|\\s+$", "")
      val nextPrefix = (
        thisPrefix
        + (if (isLastChild) "  " else "| ")
        + (" " * leftOffset) + "|" + (" " * (partitionStr.length - leftOffset)))

      debugSelf(rdd).zipWithIndex.map{
        case (desc: String, 0) => s"$thisPrefix+-$partitionStr $desc"
        case (desc: String, _) => s"$nextPrefix$desc"
      } ++ debugChildren(rdd, nextPrefix)
    }
    def debugString(
        rdd: RDD[_],
        prefix: String = "",
        isShuffle: Boolean = true,
        isLastChild: Boolean = false): Seq[String] = {
      if (isShuffle) {
        shuffleDebugString(rdd, prefix, isLastChild)
      } else {
        debugSelf(rdd).map(prefix + _) ++ debugChildren(rdd, prefix)
      }
    }
    firstDebugString(this).mkString("\n")
  }

  override def toString: String = "%s%s[%d] at %s".format(
    Option(name).map(_ + " ").getOrElse(""), getClass.getSimpleName, id, getCreationSite)

  def toJavaRDD() : JavaRDD[T] = {
    new JavaRDD(this)(elementClassTag)
  }
}


/**
 * Defines implicit functions that provide extra functionalities on RDDs of specific types.
 *
 * For example, [[RDD.rddToPairRDDFunctions]] converts an RDD into a [[PairRDDFunctions]] for
 * key-value-pair RDDs, and enabling extra functionalities such as [[PairRDDFunctions.reduceByKey]].
 */
object RDD {

  private[spark] val CHECKPOINT_ALL_MARKED_ANCESTORS =
    "spark.checkpoint.checkpointAllMarkedAncestors"

  // The following implicit functions were in SparkContext before 1.3 and users had to
  // `import SparkContext._` to enable them. Now we move them here to make the compiler find
  // them automatically. However, we still keep the old functions in SparkContext for backward
  // compatibility and forward to the following functions directly.

  implicit def rddToPairRDDFunctions[K, V](rdd: RDD[(K, V)])
    (implicit kt: ClassTag[K], vt: ClassTag[V], ord: Ordering[K] = null): PairRDDFunctions[K, V] = {
    new PairRDDFunctions(rdd)
  }

  implicit def rddToAsyncRDDActions[T: ClassTag](rdd: RDD[T]): AsyncRDDActions[T] = {
    new AsyncRDDActions(rdd)
  }

  implicit def rddToSequenceFileRDDFunctions[K, V](rdd: RDD[(K, V)])
      (implicit kt: ClassTag[K], vt: ClassTag[V],
                keyWritableFactory: WritableFactory[K],
                valueWritableFactory: WritableFactory[V])
    : SequenceFileRDDFunctions[K, V] = {
    implicit val keyConverter = keyWritableFactory.convert
    implicit val valueConverter = valueWritableFactory.convert
    new SequenceFileRDDFunctions(rdd,
      keyWritableFactory.writableClass(kt), valueWritableFactory.writableClass(vt))
  }

  implicit def rddToOrderedRDDFunctions[K : Ordering : ClassTag, V: ClassTag](rdd: RDD[(K, V)])
    : OrderedRDDFunctions[K, V, (K, V)] = {
    new OrderedRDDFunctions[K, V, (K, V)](rdd)
  }

  implicit def doubleRDDToDoubleRDDFunctions(rdd: RDD[Double]): DoubleRDDFunctions = {
    new DoubleRDDFunctions(rdd)
  }

  implicit def numericRDDToDoubleRDDFunctions[T](rdd: RDD[T])(implicit num: Numeric[T])
    : DoubleRDDFunctions = {
    new DoubleRDDFunctions(rdd.map(x => num.toDouble(x)))
  }
}