aboutsummaryrefslogtreecommitdiff
path: root/docs/ml-features.md
blob: 63ea3e5db7ac9746cc44169631a17ee06c5d4708 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
---
layout: global
title: Feature Extraction, Transformation, and Selection - SparkML
displayTitle: <a href="ml-guide.html">ML</a> - Features
---

This section covers algorithms for working with features, roughly divided into these groups:

* Extraction: Extracting features from "raw" data
* Transformation: Scaling, converting, or modifying features
* Selection: Selecting a subset from a larger set of features

**Table of Contents**

* This will become a table of contents (this text will be scraped).
{:toc}


# Feature Extractors

## Hashing Term-Frequency (HashingTF)

`HashingTF` is a `Transformer` which takes sets of terms (e.g., `String` terms can be sets of words) and converts those sets into fixed-length feature vectors.
The algorithm combines [Term Frequency (TF)](http://en.wikipedia.org/wiki/Tf%E2%80%93idf) counts with the [hashing trick](http://en.wikipedia.org/wiki/Feature_hashing) for dimensionality reduction.  Please refer to the [MLlib user guide on TF-IDF](mllib-feature-extraction.html#tf-idf) for more details on Term-Frequency.

HashingTF is implemented in
[HashingTF](api/scala/index.html#org.apache.spark.ml.feature.HashingTF).
In the following code segment, we start with a set of sentences.  We split each sentence into words using `Tokenizer`.  For each sentence (bag of words), we hash it into a feature vector.  This feature vector could then be passed to a learning algorithm.

<div class="codetabs">
<div data-lang="scala" markdown="1">
{% highlight scala %}
import org.apache.spark.ml.feature.{HashingTF, Tokenizer}

val sentenceDataFrame = sqlContext.createDataFrame(Seq(
  (0, "Hi I heard about Spark"),
  (0, "I wish Java could use case classes"),
  (1, "Logistic regression models are neat")
)).toDF("label", "sentence")
val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
val wordsDataFrame = tokenizer.transform(sentenceDataFrame)
val hashingTF = new HashingTF().setInputCol("words").setOutputCol("features").setNumFeatures(20)
val featurized = hashingTF.transform(wordsDataFrame)
featurized.select("features", "label").take(3).foreach(println)
{% endhighlight %}
</div>

<div data-lang="java" markdown="1">
{% highlight java %}
import com.google.common.collect.Lists;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.HashingTF;
import org.apache.spark.ml.feature.Tokenizer;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

JavaRDD<Row> jrdd = jsc.parallelize(Lists.newArrayList(
  RowFactory.create(0, "Hi I heard about Spark"),
  RowFactory.create(0, "I wish Java could use case classes"),
  RowFactory.create(1, "Logistic regression models are neat")
));
StructType schema = new StructType(new StructField[]{
  new StructField("label", DataTypes.DoubleType, false, Metadata.empty()),
  new StructField("sentence", DataTypes.StringType, false, Metadata.empty())
});
DataFrame sentenceDataFrame = sqlContext.createDataFrame(jrdd, schema);
Tokenizer tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words");
DataFrame wordsDataFrame = tokenizer.transform(sentenceDataFrame);
int numFeatures = 20;
HashingTF hashingTF = new HashingTF()
  .setInputCol("words")
  .setOutputCol("features")
  .setNumFeatures(numFeatures);
DataFrame featurized = hashingTF.transform(wordsDataFrame);
for (Row r : featurized.select("features", "label").take(3)) {
  Vector features = r.getAs(0);
  Double label = r.getDouble(1);
  System.out.println(features);
}
{% endhighlight %}
</div>

<div data-lang="python" markdown="1">
{% highlight python %}
from pyspark.ml.feature import HashingTF, Tokenizer

sentenceDataFrame = sqlContext.createDataFrame([
  (0, "Hi I heard about Spark"),
  (0, "I wish Java could use case classes"),
  (1, "Logistic regression models are neat")
], ["label", "sentence"])
tokenizer = Tokenizer(inputCol="sentence", outputCol="words")
wordsDataFrame = tokenizer.transform(sentenceDataFrame)
hashingTF = HashingTF(inputCol="words", outputCol="features", numFeatures=20)
featurized = hashingTF.transform(wordsDataFrame)
for features_label in featurized.select("features", "label").take(3):
  print features_label
{% endhighlight %}
</div>
</div>

## Word2Vec

`Word2Vec` is an `Estimator` which takes sequences of words that represents documents and trains a `Word2VecModel`. The model is a `Map(String, Vector)` essentially, which maps each word to an unique fix-sized vector. The `Word2VecModel` transforms each documents into a vector using the average of all words in the document, which aims to other computations of documents such as similarity calculation consequencely. Please refer to the [MLlib user guide on Word2Vec](mllib-feature-extraction.html#Word2Vec) for more details on Word2Vec.

Word2Vec is implemented in [Word2Vec](api/scala/index.html#org.apache.spark.ml.feature.Word2Vec). In the following code segment, we start with a set of documents, each of them is represented as a sequence of words. For each document, we transform it into a feature vector. This feature vector could then be passed to a learning algorithm.

<div class="codetabs">
<div data-lang="scala" markdown="1">
{% highlight scala %}
import org.apache.spark.ml.feature.Word2Vec

// Input data: Each row is a bag of words from a sentence or document.
val documentDF = sqlContext.createDataFrame(Seq(
  "Hi I heard about Spark".split(" "),
  "I wish Java could use case classes".split(" "),
  "Logistic regression models are neat".split(" ")
).map(Tuple1.apply)).toDF("text")

// Learn a mapping from words to Vectors.
val word2Vec = new Word2Vec()
  .setInputCol("text")
  .setOutputCol("result")
  .setVectorSize(3)
  .setMinCount(0)
val model = word2Vec.fit(documentDF)
val result = model.transform(documentDF)
result.select("result").take(3).foreach(println)
{% endhighlight %}
</div>

<div data-lang="java" markdown="1">
{% highlight java %}
import com.google.common.collect.Lists;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.*;

JavaSparkContext jsc = ...
SQLContext sqlContext = ...

// Input data: Each row is a bag of words from a sentence or document.
JavaRDD<Row> jrdd = jsc.parallelize(Lists.newArrayList(
  RowFactory.create(Lists.newArrayList("Hi I heard about Spark".split(" "))),
  RowFactory.create(Lists.newArrayList("I wish Java could use case classes".split(" "))),
  RowFactory.create(Lists.newArrayList("Logistic regression models are neat".split(" ")))
));
StructType schema = new StructType(new StructField[]{
  new StructField("text", new ArrayType(DataTypes.StringType, true), false, Metadata.empty())
});
DataFrame documentDF = sqlContext.createDataFrame(jrdd, schema);

// Learn a mapping from words to Vectors.
Word2Vec word2Vec = new Word2Vec()
  .setInputCol("text")
  .setOutputCol("result")
  .setVectorSize(3)
  .setMinCount(0);
Word2VecModel model = word2Vec.fit(documentDF);
DataFrame result = model.transform(documentDF);
for (Row r: result.select("result").take(3)) {
  System.out.println(r);
}
{% endhighlight %}
</div>

<div data-lang="python" markdown="1">
{% highlight python %}
from pyspark.ml.feature import Word2Vec

# Input data: Each row is a bag of words from a sentence or document.
documentDF = sqlContext.createDataFrame([
  ("Hi I heard about Spark".split(" "), ),
  ("I wish Java could use case classes".split(" "), ),
  ("Logistic regression models are neat".split(" "), )
], ["text"])
# Learn a mapping from words to Vectors.
word2Vec = Word2Vec(vectorSize=3, minCount=0, inputCol="text", outputCol="result")
model = word2Vec.fit(documentDF)
result = model.transform(documentDF)
for feature in result.select("result").take(3):
  print(feature)
{% endhighlight %}
</div>
</div>

# Feature Transformers

## Tokenizer

[Tokenization](http://en.wikipedia.org/wiki/Lexical_analysis#Tokenization) is the process of taking text (such as a sentence) and breaking it into individual terms (usually words).  A simple [Tokenizer](api/scala/index.html#org.apache.spark.ml.feature.Tokenizer) class provides this functionality.  The example below shows how to split sentences into sequences of words.

Note: A more advanced tokenizer is provided via [RegexTokenizer](api/scala/index.html#org.apache.spark.ml.feature.RegexTokenizer).

<div class="codetabs">
<div data-lang="scala" markdown="1">
{% highlight scala %}
import org.apache.spark.ml.feature.Tokenizer

val sentenceDataFrame = sqlContext.createDataFrame(Seq(
  (0, "Hi I heard about Spark"),
  (0, "I wish Java could use case classes"),
  (1, "Logistic regression models are neat")
)).toDF("label", "sentence")
val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
val wordsDataFrame = tokenizer.transform(sentenceDataFrame)
wordsDataFrame.select("words", "label").take(3).foreach(println)
{% endhighlight %}
</div>

<div data-lang="java" markdown="1">
{% highlight java %}
import com.google.common.collect.Lists;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.Tokenizer;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

JavaRDD<Row> jrdd = jsc.parallelize(Lists.newArrayList(
  RowFactory.create(0, "Hi I heard about Spark"),
  RowFactory.create(0, "I wish Java could use case classes"),
  RowFactory.create(1, "Logistic regression models are neat")
));
StructType schema = new StructType(new StructField[]{
  new StructField("label", DataTypes.DoubleType, false, Metadata.empty()),
  new StructField("sentence", DataTypes.StringType, false, Metadata.empty())
});
DataFrame sentenceDataFrame = sqlContext.createDataFrame(jrdd, schema);
Tokenizer tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words");
DataFrame wordsDataFrame = tokenizer.transform(sentenceDataFrame);
for (Row r : wordsDataFrame.select("words", "label").take(3)) {
  java.util.List<String> words = r.getList(0);
  for (String word : words) System.out.print(word + " ");
  System.out.println();
}
{% endhighlight %}
</div>

<div data-lang="python" markdown="1">
{% highlight python %}
from pyspark.ml.feature import Tokenizer

sentenceDataFrame = sqlContext.createDataFrame([
  (0, "Hi I heard about Spark"),
  (0, "I wish Java could use case classes"),
  (1, "Logistic regression models are neat")
], ["label", "sentence"])
tokenizer = Tokenizer(inputCol="sentence", outputCol="words")
wordsDataFrame = tokenizer.transform(sentenceDataFrame)
for words_label in wordsDataFrame.select("words", "label").take(3):
  print words_label
{% endhighlight %}
</div>
</div>

## Binarizer

Binarization is the process of thresholding numerical features to binary features. As some probabilistic estimators make assumption that the input data is distributed according to [Bernoulli distribution](http://en.wikipedia.org/wiki/Bernoulli_distribution), a binarizer is useful for pre-processing the input data with continuous numerical features.

A simple [Binarizer](api/scala/index.html#org.apache.spark.ml.feature.Binarizer) class provides this functionality. Besides the common parameters of `inputCol` and `outputCol`, `Binarizer` has the parameter `threshold` used for binarizing continuous numerical features. The features greater than the threshold, will be binarized to 1.0. The features equal to or less than the threshold, will be binarized to 0.0. The example below shows how to binarize numerical features.

<div class="codetabs">
<div data-lang="scala" markdown="1">
{% highlight scala %}
import org.apache.spark.ml.feature.Binarizer
import org.apache.spark.sql.DataFrame

val data = Array(
  (0, 0.1),
  (1, 0.8),
  (2, 0.2)
)
val dataFrame: DataFrame = sqlContext.createDataFrame(data).toDF("label", "feature")

val binarizer: Binarizer = new Binarizer()
  .setInputCol("feature")
  .setOutputCol("binarized_feature")
  .setThreshold(0.5)

val binarizedDataFrame = binarizer.transform(dataFrame)
val binarizedFeatures = binarizedDataFrame.select("binarized_feature")
binarizedFeatures.collect().foreach(println)
{% endhighlight %}
</div>

<div data-lang="java" markdown="1">
{% highlight java %}
import com.google.common.collect.Lists;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.Binarizer;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

JavaRDD<Row> jrdd = jsc.parallelize(Lists.newArrayList(
  RowFactory.create(0, 0.1),
  RowFactory.create(1, 0.8),
  RowFactory.create(2, 0.2)
));
StructType schema = new StructType(new StructField[]{
  new StructField("label", DataTypes.DoubleType, false, Metadata.empty()),
  new StructField("feature", DataTypes.DoubleType, false, Metadata.empty())
});
DataFrame continuousDataFrame = jsql.createDataFrame(jrdd, schema);
Binarizer binarizer = new Binarizer()
  .setInputCol("feature")
  .setOutputCol("binarized_feature")
  .setThreshold(0.5);
DataFrame binarizedDataFrame = binarizer.transform(continuousDataFrame);
DataFrame binarizedFeatures = binarizedDataFrame.select("binarized_feature");
for (Row r : binarizedFeatures.collect()) {
  Double binarized_value = r.getDouble(0);
  System.out.println(binarized_value);
}
{% endhighlight %}
</div>

<div data-lang="python" markdown="1">
{% highlight python %}
from pyspark.ml.feature import Binarizer

continuousDataFrame = sqlContext.createDataFrame([
  (0, 0.1),
  (1, 0.8),
  (2, 0.2)
], ["label", "feature"])
binarizer = Binarizer(threshold=0.5, inputCol="feature", outputCol="binarized_feature")
binarizedDataFrame = binarizer.transform(continuousDataFrame)
binarizedFeatures = binarizedDataFrame.select("binarized_feature")
for binarized_feature, in binarizedFeatures.collect():
  print binarized_feature
{% endhighlight %}
</div>
</div>

## PolynomialExpansion

[Polynomial expansion](http://en.wikipedia.org/wiki/Polynomial_expansion) is the process of expanding your features into a polynomial space, which is formulated by an n-degree combination of original dimensions. A [PolynomialExpansion](api/scala/index.html#org.apache.spark.ml.feature.PolynomialExpansion) class provides this functionality.  The example below shows how to expand your features into a 3-degree polynomial space.

<div class="codetabs">
<div data-lang="scala" markdown="1">
{% highlight scala %}
import org.apache.spark.ml.feature.PolynomialExpansion
import org.apache.spark.mllib.linalg.Vectors

val data = Array(
  Vectors.dense(-2.0, 2.3),
  Vectors.dense(0.0, 0.0),
  Vectors.dense(0.6, -1.1)
)
val df = sqlContext.createDataFrame(data.map(Tuple1.apply)).toDF("features")
val polynomialExpansion = new PolynomialExpansion()
  .setInputCol("features")
  .setOutputCol("polyFeatures")
  .setDegree(3)
val polyDF = polynomialExpansion.transform(df)
polyDF.select("polyFeatures").take(3).foreach(println)
{% endhighlight %}
</div>

<div data-lang="java" markdown="1">
{% highlight java %}
import com.google.common.collect.Lists;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.VectorUDT;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

JavaSparkContext jsc = ...
SQLContext jsql = ...
PolynomialExpansion polyExpansion = new PolynomialExpansion()
  .setInputCol("features")
  .setOutputCol("polyFeatures")
  .setDegree(3);
JavaRDD<Row> data = jsc.parallelize(Lists.newArrayList(
  RowFactory.create(Vectors.dense(-2.0, 2.3)),
  RowFactory.create(Vectors.dense(0.0, 0.0)),
  RowFactory.create(Vectors.dense(0.6, -1.1))
));
StructType schema = new StructType(new StructField[] {
  new StructField("features", new VectorUDT(), false, Metadata.empty()),
});
DataFrame df = jsql.createDataFrame(data, schema);
DataFrame polyDF = polyExpansion.transform(df);
Row[] row = polyDF.select("polyFeatures").take(3);
for (Row r : row) {
  System.out.println(r.get(0));
}
{% endhighlight %}
</div>

<div data-lang="python" markdown="1">
{% highlight python %}
from pyspark.ml.feature import PolynomialExpansion
from pyspark.mllib.linalg import Vectors

df = sqlContext.createDataFrame(
  [(Vectors.dense([-2.0, 2.3]), ),
  (Vectors.dense([0.0, 0.0]), ),
  (Vectors.dense([0.6, -1.1]), )],
  ["features"])
px = PolynomialExpansion(degree=2, inputCol="features", outputCol="polyFeatures")
polyDF = px.transform(df)
for expanded in polyDF.select("polyFeatures").take(3):
  print(expanded)
{% endhighlight %}
</div>
</div>

# Feature Selectors