aboutsummaryrefslogtreecommitdiff
path: root/mllib/src/main/scala/org/apache/spark/ml/optim/WeightedLeastSquares.scala
blob: 61b364213181040cf45d06eba85ae06e63467e6a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.optim

import org.apache.spark.Logging
import org.apache.spark.ml.feature.Instance
import org.apache.spark.mllib.linalg._
import org.apache.spark.rdd.RDD

/**
 * Model fitted by [[WeightedLeastSquares]].
 * @param coefficients model coefficients
 * @param intercept model intercept
 * @param diagInvAtWA diagonal of matrix (A^T * W * A)^-1
 */
private[ml] class WeightedLeastSquaresModel(
    val coefficients: DenseVector,
    val intercept: Double,
    val diagInvAtWA: DenseVector) extends Serializable {

  def predict(features: Vector): Double = {
    BLAS.dot(coefficients, features) + intercept
  }
}

/**
 * Weighted least squares solver via normal equation.
 * Given weighted observations (w,,i,,, a,,i,,, b,,i,,), we use the following weighted least squares
 * formulation:
 *
 * min,,x,z,, 1/2 sum,,i,, w,,i,, (a,,i,,^T^ x + z - b,,i,,)^2^ / sum,,i,, w_i
 *   + 1/2 lambda / delta sum,,j,, (sigma,,j,, x,,j,,)^2^,
 *
 * where lambda is the regularization parameter, and delta and sigma,,j,, are controlled by
 * [[standardizeLabel]] and [[standardizeFeatures]], respectively.
 *
 * Set [[regParam]] to 0.0 and turn off both [[standardizeFeatures]] and [[standardizeLabel]] to
 * match R's `lm`.
 * Turn on [[standardizeLabel]] to match R's `glmnet`.
 *
 * @param fitIntercept whether to fit intercept. If false, z is 0.0.
 * @param regParam L2 regularization parameter (lambda)
 * @param standardizeFeatures whether to standardize features. If true, sigma_,,j,, is the
 *                            population standard deviation of the j-th column of A. Otherwise,
 *                            sigma,,j,, is 1.0.
 * @param standardizeLabel whether to standardize label. If true, delta is the population standard
 *                         deviation of the label column b. Otherwise, delta is 1.0.
 */
private[ml] class WeightedLeastSquares(
    val fitIntercept: Boolean,
    val regParam: Double,
    val standardizeFeatures: Boolean,
    val standardizeLabel: Boolean) extends Logging with Serializable {
  import WeightedLeastSquares._

  require(regParam >= 0.0, s"regParam cannot be negative: $regParam")
  if (regParam == 0.0) {
    logWarning("regParam is zero, which might cause numerical instability and overfitting.")
  }

  /**
   * Creates a [[WeightedLeastSquaresModel]] from an RDD of [[Instance]]s.
   */
  def fit(instances: RDD[Instance]): WeightedLeastSquaresModel = {
    val summary = instances.treeAggregate(new Aggregator)(_.add(_), _.merge(_))
    summary.validate()
    logInfo(s"Number of instances: ${summary.count}.")
    val k = if (fitIntercept) summary.k + 1 else summary.k
    val triK = summary.triK
    val wSum = summary.wSum
    val bBar = summary.bBar
    val bStd = summary.bStd
    val aBar = summary.aBar
    val aVar = summary.aVar
    val abBar = summary.abBar
    val aaBar = summary.aaBar
    val aaValues = aaBar.values

    if (bStd == 0) {
      if (fitIntercept) {
        logWarning(s"The standard deviation of the label is zero, so the coefficients will be " +
          s"zeros and the intercept will be the mean of the label; as a result, " +
          s"training is not needed.")
        val coefficients = new DenseVector(Array.ofDim(k-1))
        val intercept = bBar
        val diagInvAtWA = new DenseVector(Array(0D))
        return new WeightedLeastSquaresModel(coefficients, intercept, diagInvAtWA)
      } else {
        require(!(regParam > 0.0 && standardizeLabel),
          "The standard deviation of the label is zero. " +
            "Model cannot be regularized with standardization=true")
        logWarning(s"The standard deviation of the label is zero. " +
          "Consider setting fitIntercept=true.")
      }
    }

    // add regularization to diagonals
    var i = 0
    var j = 2
    while (i < triK) {
      var lambda = regParam
      if (standardizeFeatures) {
        lambda *= aVar(j - 2)
      }
      if (standardizeLabel && bStd != 0) {
        lambda /= bStd
      }
      aaValues(i) += lambda
      i += j
      j += 1
    }

    val aa = if (fitIntercept) {
      Array.concat(aaBar.values, aBar.values, Array(1.0))
    } else {
      aaBar.values
    }
    val ab = if (fitIntercept) {
      Array.concat(abBar.values, Array(bBar))
    } else {
      abBar.values
    }

    val x = CholeskyDecomposition.solve(aa, ab)

    val aaInv = CholeskyDecomposition.inverse(aa, k)

    // aaInv is a packed upper triangular matrix, here we get all elements on diagonal
    val diagInvAtWA = new DenseVector((1 to k).map { i =>
      aaInv(i + (i - 1) * i / 2 - 1) / wSum }.toArray)

    val (coefficients, intercept) = if (fitIntercept) {
      (new DenseVector(x.slice(0, x.length - 1)), x.last)
    } else {
      (new DenseVector(x), 0.0)
    }

    new WeightedLeastSquaresModel(coefficients, intercept, diagInvAtWA)
  }
}

private[ml] object WeightedLeastSquares {

  /**
   * Aggregator to provide necessary summary statistics for solving [[WeightedLeastSquares]].
   */
  // TODO: consolidate aggregates for summary statistics
  private class Aggregator extends Serializable {
    var initialized: Boolean = false
    var k: Int = _
    var count: Long = _
    var triK: Int = _
    var wSum: Double = _
    private var wwSum: Double = _
    private var bSum: Double = _
    private var bbSum: Double = _
    private var aSum: DenseVector = _
    private var abSum: DenseVector = _
    private var aaSum: DenseVector = _

    private def init(k: Int): Unit = {
      require(k <= 4096, "In order to take the normal equation approach efficiently, " +
        s"we set the max number of features to 4096 but got $k.")
      this.k = k
      triK = k * (k + 1) / 2
      count = 0L
      wSum = 0.0
      wwSum = 0.0
      bSum = 0.0
      bbSum = 0.0
      aSum = new DenseVector(Array.ofDim(k))
      abSum = new DenseVector(Array.ofDim(k))
      aaSum = new DenseVector(Array.ofDim(triK))
      initialized = true
    }

    /**
     * Adds an instance.
     */
    def add(instance: Instance): this.type = {
      val Instance(l, w, f) = instance
      val ak = f.size
      if (!initialized) {
        init(ak)
      }
      assert(ak == k, s"Dimension mismatch. Expect vectors of size $k but got $ak.")
      count += 1L
      wSum += w
      wwSum += w * w
      bSum += w * l
      bbSum += w * l * l
      BLAS.axpy(w, f, aSum)
      BLAS.axpy(w * l, f, abSum)
      BLAS.spr(w, f, aaSum)
      this
    }

    /**
     * Merges another [[Aggregator]].
     */
    def merge(other: Aggregator): this.type = {
      if (!other.initialized) {
        this
      } else {
        if (!initialized) {
          init(other.k)
        }
        assert(k == other.k, s"dimension mismatch: this.k = $k but other.k = ${other.k}")
        count += other.count
        wSum += other.wSum
        wwSum += other.wwSum
        bSum += other.bSum
        bbSum += other.bbSum
        BLAS.axpy(1.0, other.aSum, aSum)
        BLAS.axpy(1.0, other.abSum, abSum)
        BLAS.axpy(1.0, other.aaSum, aaSum)
        this
      }
    }

    /**
     * Validates that we have seen observations.
     */
    def validate(): Unit = {
      assert(initialized, "Training dataset is empty.")
      assert(wSum > 0.0, "Sum of weights cannot be zero.")
    }

    /**
     * Weighted mean of features.
     */
    def aBar: DenseVector = {
      val output = aSum.copy
      BLAS.scal(1.0 / wSum, output)
      output
    }

    /**
     * Weighted mean of labels.
     */
    def bBar: Double = bSum / wSum

    /**
     * Weighted population standard deviation of labels.
     */
    def bStd: Double = math.sqrt(bbSum / wSum - bBar * bBar)

    /**
     * Weighted mean of (label * features).
     */
    def abBar: DenseVector = {
      val output = abSum.copy
      BLAS.scal(1.0 / wSum, output)
      output
    }

    /**
     * Weighted mean of (features * features^T^).
     */
    def aaBar: DenseVector = {
      val output = aaSum.copy
      BLAS.scal(1.0 / wSum, output)
      output
    }

    /**
     * Weighted population variance of features.
     */
    def aVar: DenseVector = {
      val variance = Array.ofDim[Double](k)
      var i = 0
      var j = 2
      val aaValues = aaSum.values
      while (i < triK) {
        val l = j - 2
        val aw = aSum(l) / wSum
        variance(l) = aaValues(i) / wSum - aw * aw
        i += j
        j += 1
      }
      new DenseVector(variance)
    }
  }
}