aboutsummaryrefslogtreecommitdiff
path: root/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/BlockMatrix.scala
blob: 693419f827379f3893de75d126abde6527553db2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.mllib.linalg.distributed

import scala.collection.mutable.ArrayBuffer

import breeze.linalg.{DenseMatrix => BDM}

import org.apache.spark.{Logging, Partitioner}
import org.apache.spark.mllib.linalg.{SparseMatrix, DenseMatrix, Matrix}
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel

/**
 * A grid partitioner, which uses a regular grid to partition coordinates.
 *
 * @param rows Number of rows.
 * @param cols Number of columns.
 * @param rowsPerPart Number of rows per partition, which may be less at the bottom edge.
 * @param colsPerPart Number of columns per partition, which may be less at the right edge.
 */
private[mllib] class GridPartitioner(
    val rows: Int,
    val cols: Int,
    val rowsPerPart: Int,
    val colsPerPart: Int) extends Partitioner {

  require(rows > 0)
  require(cols > 0)
  require(rowsPerPart > 0)
  require(colsPerPart > 0)

  private val rowPartitions = math.ceil(rows / rowsPerPart).toInt
  private val colPartitions = math.ceil(cols / colsPerPart).toInt

  override val numPartitions = rowPartitions * colPartitions

  /**
   * Returns the index of the partition the input coordinate belongs to.
   *
   * @param key The coordinate (i, j) or a tuple (i, j, k), where k is the inner index used in
   *            multiplication. k is ignored in computing partitions.
   * @return The index of the partition, which the coordinate belongs to.
   */
  override def getPartition(key: Any): Int = {
    key match {
      case (i: Int, j: Int) =>
        getPartitionId(i, j)
      case (i: Int, j: Int, _: Int) =>
        getPartitionId(i, j)
      case _ =>
        throw new IllegalArgumentException(s"Unrecognized key: $key.")
    }
  }

  /** Partitions sub-matrices as blocks with neighboring sub-matrices. */
  private def getPartitionId(i: Int, j: Int): Int = {
    require(0 <= i && i < rows, s"Row index $i out of range [0, $rows).")
    require(0 <= j && j < cols, s"Column index $j out of range [0, $cols).")
    i / rowsPerPart + j / colsPerPart * rowPartitions
  }

  override def equals(obj: Any): Boolean = {
    obj match {
      case r: GridPartitioner =>
        (this.rows == r.rows) && (this.cols == r.cols) &&
          (this.rowsPerPart == r.rowsPerPart) && (this.colsPerPart == r.colsPerPart)
      case _ =>
        false
    }
  }
}

private[mllib] object GridPartitioner {

  /** Creates a new [[GridPartitioner]] instance. */
  def apply(rows: Int, cols: Int, rowsPerPart: Int, colsPerPart: Int): GridPartitioner = {
    new GridPartitioner(rows, cols, rowsPerPart, colsPerPart)
  }

  /** Creates a new [[GridPartitioner]] instance with the input suggested number of partitions. */
  def apply(rows: Int, cols: Int, suggestedNumPartitions: Int): GridPartitioner = {
    require(suggestedNumPartitions > 0)
    val scale = 1.0 / math.sqrt(suggestedNumPartitions)
    val rowsPerPart = math.round(math.max(scale * rows, 1.0)).toInt
    val colsPerPart = math.round(math.max(scale * cols, 1.0)).toInt
    new GridPartitioner(rows, cols, rowsPerPart, colsPerPart)
  }
}

/**
 * Represents a distributed matrix in blocks of local matrices.
 *
 * @param blocks The RDD of sub-matrix blocks (blockRowIndex, blockColIndex, sub-matrix) that form
 *               this distributed matrix.
 * @param rowsPerBlock Number of rows that make up each block. The blocks forming the final
 *                     rows are not required to have the given number of rows
 * @param colsPerBlock Number of columns that make up each block. The blocks forming the final
 *                     columns are not required to have the given number of columns
 * @param nRows Number of rows of this matrix. If the supplied value is less than or equal to zero,
 *              the number of rows will be calculated when `numRows` is invoked.
 * @param nCols Number of columns of this matrix. If the supplied value is less than or equal to
 *              zero, the number of columns will be calculated when `numCols` is invoked.
 */
class BlockMatrix(
    val blocks: RDD[((Int, Int), Matrix)],
    val rowsPerBlock: Int,
    val colsPerBlock: Int,
    private var nRows: Long,
    private var nCols: Long) extends DistributedMatrix with Logging {

  private type MatrixBlock = ((Int, Int), Matrix) // ((blockRowIndex, blockColIndex), sub-matrix)

  /**
   * Alternate constructor for BlockMatrix without the input of the number of rows and columns.
   *
   * @param rdd The RDD of SubMatrices (local matrices) that form this matrix
   * @param rowsPerBlock Number of rows that make up each block. The blocks forming the final
   *                     rows are not required to have the given number of rows
   * @param colsPerBlock Number of columns that make up each block. The blocks forming the final
   *                     columns are not required to have the given number of columns
   */
  def this(
      rdd: RDD[((Int, Int), Matrix)],
      rowsPerBlock: Int,
      colsPerBlock: Int) = {
    this(rdd, rowsPerBlock, colsPerBlock, 0L, 0L)
  }

  override def numRows(): Long = {
    if (nRows <= 0L) estimateDim()
    nRows
  }

  override def numCols(): Long = {
    if (nCols <= 0L) estimateDim()
    nCols
  }

  val numRowBlocks = math.ceil(numRows() * 1.0 / rowsPerBlock).toInt
  val numColBlocks = math.ceil(numCols() * 1.0 / colsPerBlock).toInt

  private[mllib] var partitioner: GridPartitioner =
    GridPartitioner(numRowBlocks, numColBlocks, suggestedNumPartitions = blocks.partitions.size)

  /** Estimates the dimensions of the matrix. */
  private def estimateDim(): Unit = {
    val (rows, cols) = blocks.map { case ((blockRowIndex, blockColIndex), mat) =>
      (blockRowIndex.toLong * rowsPerBlock + mat.numRows,
        blockColIndex.toLong * colsPerBlock + mat.numCols)
    }.reduce { (x0, x1) =>
      (math.max(x0._1, x1._1), math.max(x0._2, x1._2))
    }
    if (nRows <= 0L) nRows = rows
    assert(rows <= nRows, s"The number of rows $rows is more than claimed $nRows.")
    if (nCols <= 0L) nCols = cols
    assert(cols <= nCols, s"The number of columns $cols is more than claimed $nCols.")
  }

  /** Caches the underlying RDD. */
  def cache(): this.type = {
    blocks.cache()
    this
  }

  /** Persists the underlying RDD with the specified storage level. */
  def persist(storageLevel: StorageLevel): this.type = {
    blocks.persist(storageLevel)
    this
  }

  /** Converts to CoordinateMatrix. */
  def toCoordinateMatrix(): CoordinateMatrix = {
    val entryRDD = blocks.flatMap { case ((blockRowIndex, blockColIndex), mat) =>
      val rowStart = blockRowIndex.toLong * rowsPerBlock
      val colStart = blockColIndex.toLong * colsPerBlock
      val entryValues = new ArrayBuffer[MatrixEntry]()
      mat.foreachActive { (i, j, v) =>
        if (v != 0.0) entryValues.append(new MatrixEntry(rowStart + i, colStart + j, v))
      }
      entryValues
    }
    new CoordinateMatrix(entryRDD, numRows(), numCols())
  }

  /** Converts to IndexedRowMatrix. The number of columns must be within the integer range. */
  def toIndexedRowMatrix(): IndexedRowMatrix = {
    require(numCols() < Int.MaxValue, "The number of columns must be within the integer range. " +
      s"numCols: ${numCols()}")
    // TODO: This implementation may be optimized
    toCoordinateMatrix().toIndexedRowMatrix()
  }

  /** Collect the distributed matrix on the driver as a `DenseMatrix`. */
  def toLocalMatrix(): Matrix = {
    require(numRows() < Int.MaxValue, "The number of rows of this matrix should be less than " +
      s"Int.MaxValue. Currently numRows: ${numRows()}")
    require(numCols() < Int.MaxValue, "The number of columns of this matrix should be less than " +
      s"Int.MaxValue. Currently numCols: ${numCols()}")
    require(numRows() * numCols() < Int.MaxValue, "The length of the values array must be " +
      s"less than Int.MaxValue. Currently numRows * numCols: ${numRows() * numCols()}")
    val m = numRows().toInt
    val n = numCols().toInt
    val mem = m * n / 125000
    if (mem > 500) logWarning(s"Storing this matrix will require $mem MB of memory!")

    val localBlocks = blocks.collect()
    val values = new Array[Double](m * n)
    localBlocks.foreach { case ((blockRowIndex, blockColIndex), submat) =>
      val rowOffset = blockRowIndex * rowsPerBlock
      val colOffset = blockColIndex * colsPerBlock
      submat.foreachActive { (i, j, v) =>
        val indexOffset = (j + colOffset) * m + rowOffset + i
        values(indexOffset) = v
      }
    }
    new DenseMatrix(m, n, values)
  }

  /** Transpose this `BlockMatrix`. Returns a new `BlockMatrix` instance sharing the
    * same underlying data. Is a lazy operation. */
  def transpose: BlockMatrix = {
    val transposedBlocks = blocks.map { case ((blockRowIndex, blockColIndex), mat) =>
      ((blockColIndex, blockRowIndex), mat.transpose)
    }
    new BlockMatrix(transposedBlocks, colsPerBlock, rowsPerBlock, nCols, nRows)
  }

  /** Collects data and assembles a local dense breeze matrix (for test only). */
  private[mllib] def toBreeze(): BDM[Double] = {
    val localMat = toLocalMatrix()
    new BDM[Double](localMat.numRows, localMat.numCols, localMat.toArray)
  }
}