aboutsummaryrefslogtreecommitdiff
path: root/mllib/src/test/scala/org/apache/spark/ml/recommendation/ALSSuite.scala
blob: 2c3fb84160dcbe5aa28af8b97369252169f98aeb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.recommendation

import java.util.Random

import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer
import scala.language.existentials

import com.github.fommil.netlib.BLAS.{getInstance => blas}

import org.apache.spark.util.Utils
import org.apache.spark.{Logging, SparkException, SparkFunSuite}
import org.apache.spark.ml.recommendation.ALS._
import org.apache.spark.ml.util.{DefaultReadWriteTest, MLTestingUtils}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.util.MLlibTestSparkContext
import org.apache.spark.mllib.util.TestingUtils._
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row}


class ALSSuite
  extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest with Logging {

  override def beforeAll(): Unit = {
    super.beforeAll()
    sc.setCheckpointDir(tempDir.getAbsolutePath)
  }

  override def afterAll(): Unit = {
    super.afterAll()
  }

  test("LocalIndexEncoder") {
    val random = new Random
    for (numBlocks <- Seq(1, 2, 5, 10, 20, 50, 100)) {
      val encoder = new LocalIndexEncoder(numBlocks)
      val maxLocalIndex = Int.MaxValue / numBlocks
      val tests = Seq.fill(5)((random.nextInt(numBlocks), random.nextInt(maxLocalIndex))) ++
        Seq((0, 0), (numBlocks - 1, maxLocalIndex))
      tests.foreach { case (blockId, localIndex) =>
        val err = s"Failed with numBlocks=$numBlocks, blockId=$blockId, and localIndex=$localIndex."
        val encoded = encoder.encode(blockId, localIndex)
        assert(encoder.blockId(encoded) === blockId, err)
        assert(encoder.localIndex(encoded) === localIndex, err)
      }
    }
  }

  test("normal equation construction") {
    val k = 2
    val ne0 = new NormalEquation(k)
      .add(Array(1.0f, 2.0f), 3.0)
      .add(Array(4.0f, 5.0f), 6.0, 2.0) // weighted
    assert(ne0.k === k)
    assert(ne0.triK === k * (k + 1) / 2)
    // NumPy code that computes the expected values:
    // A = np.matrix("1 2; 4 5")
    // b = np.matrix("3; 6")
    // C = np.matrix(np.diag([1, 2]))
    // ata = A.transpose() * C * A
    // atb = A.transpose() * C * b
    assert(Vectors.dense(ne0.ata) ~== Vectors.dense(33.0, 42.0, 54.0) relTol 1e-8)
    assert(Vectors.dense(ne0.atb) ~== Vectors.dense(51.0, 66.0) relTol 1e-8)

    val ne1 = new NormalEquation(2)
      .add(Array(7.0f, 8.0f), 9.0)
    ne0.merge(ne1)
    // NumPy code that computes the expected values:
    // A = np.matrix("1 2; 4 5; 7 8")
    // b = np.matrix("3; 6; 9")
    // C = np.matrix(np.diag([1, 2, 1]))
    // ata = A.transpose() * C * A
    // atb = A.transpose() * C * b
    assert(Vectors.dense(ne0.ata) ~== Vectors.dense(82.0, 98.0, 118.0) relTol 1e-8)
    assert(Vectors.dense(ne0.atb) ~== Vectors.dense(114.0, 138.0) relTol 1e-8)

    intercept[IllegalArgumentException] {
      ne0.add(Array(1.0f), 2.0)
    }
    intercept[IllegalArgumentException] {
      ne0.add(Array(1.0f, 2.0f, 3.0f), 4.0)
    }
    intercept[IllegalArgumentException] {
      ne0.add(Array(1.0f, 2.0f), 0.0, -1.0)
    }
    intercept[IllegalArgumentException] {
      val ne2 = new NormalEquation(3)
      ne0.merge(ne2)
    }

    ne0.reset()
    assert(ne0.ata.forall(_ == 0.0))
    assert(ne0.atb.forall(_ == 0.0))
  }

  test("CholeskySolver") {
    val k = 2
    val ne0 = new NormalEquation(k)
      .add(Array(1.0f, 2.0f), 4.0)
      .add(Array(1.0f, 3.0f), 9.0)
      .add(Array(1.0f, 4.0f), 16.0)
    val ne1 = new NormalEquation(k)
      .merge(ne0)

    val chol = new CholeskySolver
    val x0 = chol.solve(ne0, 0.0).map(_.toDouble)
    // NumPy code that computes the expected solution:
    // A = np.matrix("1 2; 1 3; 1 4")
    // b = b = np.matrix("3; 6")
    // x0 = np.linalg.lstsq(A, b)[0]
    assert(Vectors.dense(x0) ~== Vectors.dense(-8.333333, 6.0) relTol 1e-6)

    assert(ne0.ata.forall(_ == 0.0))
    assert(ne0.atb.forall(_ == 0.0))

    val x1 = chol.solve(ne1, 1.5).map(_.toDouble)
    // NumPy code that computes the expected solution, where lambda is scaled by n:
    // x0 = np.linalg.solve(A.transpose() * A + 1.5 * np.eye(2), A.transpose() * b)
    assert(Vectors.dense(x1) ~== Vectors.dense(-0.1155556, 3.28) relTol 1e-6)
  }

  test("RatingBlockBuilder") {
    val emptyBuilder = new RatingBlockBuilder[Int]()
    assert(emptyBuilder.size === 0)
    val emptyBlock = emptyBuilder.build()
    assert(emptyBlock.srcIds.isEmpty)
    assert(emptyBlock.dstIds.isEmpty)
    assert(emptyBlock.ratings.isEmpty)

    val builder0 = new RatingBlockBuilder()
      .add(Rating(0, 1, 2.0f))
      .add(Rating(3, 4, 5.0f))
    assert(builder0.size === 2)
    val builder1 = new RatingBlockBuilder()
      .add(Rating(6, 7, 8.0f))
      .merge(builder0.build())
    assert(builder1.size === 3)
    val block = builder1.build()
    val ratings = Seq.tabulate(block.size) { i =>
      (block.srcIds(i), block.dstIds(i), block.ratings(i))
    }.toSet
    assert(ratings === Set((0, 1, 2.0f), (3, 4, 5.0f), (6, 7, 8.0f)))
  }

  test("UncompressedInBlock") {
    val encoder = new LocalIndexEncoder(10)
    val uncompressed = new UncompressedInBlockBuilder[Int](encoder)
      .add(0, Array(1, 0, 2), Array(0, 1, 4), Array(1.0f, 2.0f, 3.0f))
      .add(1, Array(3, 0), Array(2, 5), Array(4.0f, 5.0f))
      .build()
    assert(uncompressed.length === 5)
    val records = Seq.tabulate(uncompressed.length) { i =>
      val dstEncodedIndex = uncompressed.dstEncodedIndices(i)
      val dstBlockId = encoder.blockId(dstEncodedIndex)
      val dstLocalIndex = encoder.localIndex(dstEncodedIndex)
      (uncompressed.srcIds(i), dstBlockId, dstLocalIndex, uncompressed.ratings(i))
    }.toSet
    val expected =
      Set((1, 0, 0, 1.0f), (0, 0, 1, 2.0f), (2, 0, 4, 3.0f), (3, 1, 2, 4.0f), (0, 1, 5, 5.0f))
    assert(records === expected)

    val compressed = uncompressed.compress()
    assert(compressed.size === 5)
    assert(compressed.srcIds.toSeq === Seq(0, 1, 2, 3))
    assert(compressed.dstPtrs.toSeq === Seq(0, 2, 3, 4, 5))
    var decompressed = ArrayBuffer.empty[(Int, Int, Int, Float)]
    var i = 0
    while (i < compressed.srcIds.length) {
      var j = compressed.dstPtrs(i)
      while (j < compressed.dstPtrs(i + 1)) {
        val dstEncodedIndex = compressed.dstEncodedIndices(j)
        val dstBlockId = encoder.blockId(dstEncodedIndex)
        val dstLocalIndex = encoder.localIndex(dstEncodedIndex)
        decompressed += ((compressed.srcIds(i), dstBlockId, dstLocalIndex, compressed.ratings(j)))
        j += 1
      }
      i += 1
    }
    assert(decompressed.toSet === expected)
  }

  /**
   * Generates an explicit feedback dataset for testing ALS.
   * @param numUsers number of users
   * @param numItems number of items
   * @param rank rank
   * @param noiseStd the standard deviation of additive Gaussian noise on training data
   * @param seed random seed
   * @return (training, test)
   */
  def genExplicitTestData(
      numUsers: Int,
      numItems: Int,
      rank: Int,
      noiseStd: Double = 0.0,
      seed: Long = 11L): (RDD[Rating[Int]], RDD[Rating[Int]]) = {
    val trainingFraction = 0.6
    val testFraction = 0.3
    val totalFraction = trainingFraction + testFraction
    val random = new Random(seed)
    val userFactors = genFactors(numUsers, rank, random)
    val itemFactors = genFactors(numItems, rank, random)
    val training = ArrayBuffer.empty[Rating[Int]]
    val test = ArrayBuffer.empty[Rating[Int]]
    for ((userId, userFactor) <- userFactors; (itemId, itemFactor) <- itemFactors) {
      val x = random.nextDouble()
      if (x < totalFraction) {
        val rating = blas.sdot(rank, userFactor, 1, itemFactor, 1)
        if (x < trainingFraction) {
          val noise = noiseStd * random.nextGaussian()
          training += Rating(userId, itemId, rating + noise.toFloat)
        } else {
          test += Rating(userId, itemId, rating)
        }
      }
    }
    logInfo(s"Generated an explicit feedback dataset with ${training.size} ratings for training " +
      s"and ${test.size} for test.")
    (sc.parallelize(training, 2), sc.parallelize(test, 2))
  }

  /**
   * Generates an implicit feedback dataset for testing ALS.
   * @param numUsers number of users
   * @param numItems number of items
   * @param rank rank
   * @param noiseStd the standard deviation of additive Gaussian noise on training data
   * @param seed random seed
   * @return (training, test)
   */
  def genImplicitTestData(
      numUsers: Int,
      numItems: Int,
      rank: Int,
      noiseStd: Double = 0.0,
      seed: Long = 11L): (RDD[Rating[Int]], RDD[Rating[Int]]) = {
    // The assumption of the implicit feedback model is that unobserved ratings are more likely to
    // be negatives.
    val positiveFraction = 0.8
    val negativeFraction = 1.0 - positiveFraction
    val trainingFraction = 0.6
    val testFraction = 0.3
    val totalFraction = trainingFraction + testFraction
    val random = new Random(seed)
    val userFactors = genFactors(numUsers, rank, random)
    val itemFactors = genFactors(numItems, rank, random)
    val training = ArrayBuffer.empty[Rating[Int]]
    val test = ArrayBuffer.empty[Rating[Int]]
    for ((userId, userFactor) <- userFactors; (itemId, itemFactor) <- itemFactors) {
      val rating = blas.sdot(rank, userFactor, 1, itemFactor, 1)
      val threshold = if (rating > 0) positiveFraction else negativeFraction
      val observed = random.nextDouble() < threshold
      if (observed) {
        val x = random.nextDouble()
        if (x < totalFraction) {
          if (x < trainingFraction) {
            val noise = noiseStd * random.nextGaussian()
            training += Rating(userId, itemId, rating + noise.toFloat)
          } else {
            test += Rating(userId, itemId, rating)
          }
        }
      }
    }
    logInfo(s"Generated an implicit feedback dataset with ${training.size} ratings for training " +
      s"and ${test.size} for test.")
    (sc.parallelize(training, 2), sc.parallelize(test, 2))
  }

  /**
   * Generates random user/item factors, with i.i.d. values drawn from U(a, b).
   * @param size number of users/items
   * @param rank number of features
   * @param random random number generator
   * @param a min value of the support (default: -1)
   * @param b max value of the support (default: 1)
   * @return a sequence of (ID, factors) pairs
   */
  private def genFactors(
      size: Int,
      rank: Int,
      random: Random,
      a: Float = -1.0f,
      b: Float = 1.0f): Seq[(Int, Array[Float])] = {
    require(size > 0 && size < Int.MaxValue / 3)
    require(b > a)
    val ids = mutable.Set.empty[Int]
    while (ids.size < size) {
      ids += random.nextInt()
    }
    val width = b - a
    ids.toSeq.sorted.map(id => (id, Array.fill(rank)(a + random.nextFloat() * width)))
  }

  /**
   * Test ALS using the given training/test splits and parameters.
   * @param training training dataset
   * @param test test dataset
   * @param rank rank of the matrix factorization
   * @param maxIter max number of iterations
   * @param regParam regularization constant
   * @param implicitPrefs whether to use implicit preference
   * @param numUserBlocks number of user blocks
   * @param numItemBlocks number of item blocks
   * @param targetRMSE target test RMSE
   */
  def testALS(
      training: RDD[Rating[Int]],
      test: RDD[Rating[Int]],
      rank: Int,
      maxIter: Int,
      regParam: Double,
      implicitPrefs: Boolean = false,
      numUserBlocks: Int = 2,
      numItemBlocks: Int = 3,
      targetRMSE: Double = 0.05): Unit = {
    val sqlContext = this.sqlContext
    import sqlContext.implicits._
    val als = new ALS()
      .setRank(rank)
      .setRegParam(regParam)
      .setImplicitPrefs(implicitPrefs)
      .setNumUserBlocks(numUserBlocks)
      .setNumItemBlocks(numItemBlocks)
      .setSeed(0)
    val alpha = als.getAlpha
    val model = als.fit(training.toDF())
    val predictions = model.transform(test.toDF())
      .select("rating", "prediction")
      .map { case Row(rating: Float, prediction: Float) =>
        (rating.toDouble, prediction.toDouble)
      }
    val rmse =
      if (implicitPrefs) {
        // TODO: Use a better (rank-based?) evaluation metric for implicit feedback.
        // We limit the ratings and the predictions to interval [0, 1] and compute the weighted RMSE
        // with the confidence scores as weights.
        val (totalWeight, weightedSumSq) = predictions.map { case (rating, prediction) =>
          val confidence = 1.0 + alpha * math.abs(rating)
          val rating01 = math.max(math.min(rating, 1.0), 0.0)
          val prediction01 = math.max(math.min(prediction, 1.0), 0.0)
          val err = prediction01 - rating01
          (confidence, confidence * err * err)
        }.reduce { case ((c0, e0), (c1, e1)) =>
          (c0 + c1, e0 + e1)
        }
        math.sqrt(weightedSumSq / totalWeight)
      } else {
        val mse = predictions.map { case (rating, prediction) =>
          val err = rating - prediction
          err * err
        }.mean()
        math.sqrt(mse)
      }
    logInfo(s"Test RMSE is $rmse.")
    assert(rmse < targetRMSE)

    // copied model must have the same parent.
    MLTestingUtils.checkCopy(model)
  }

  test("exact rank-1 matrix") {
    val (training, test) = genExplicitTestData(numUsers = 20, numItems = 40, rank = 1)
    testALS(training, test, maxIter = 1, rank = 1, regParam = 1e-5, targetRMSE = 0.001)
    testALS(training, test, maxIter = 1, rank = 2, regParam = 1e-5, targetRMSE = 0.001)
  }

  test("approximate rank-1 matrix") {
    val (training, test) =
      genExplicitTestData(numUsers = 20, numItems = 40, rank = 1, noiseStd = 0.01)
    testALS(training, test, maxIter = 2, rank = 1, regParam = 0.01, targetRMSE = 0.02)
    testALS(training, test, maxIter = 2, rank = 2, regParam = 0.01, targetRMSE = 0.02)
  }

  test("approximate rank-2 matrix") {
    val (training, test) =
      genExplicitTestData(numUsers = 20, numItems = 40, rank = 2, noiseStd = 0.01)
    testALS(training, test, maxIter = 4, rank = 2, regParam = 0.01, targetRMSE = 0.03)
    testALS(training, test, maxIter = 4, rank = 3, regParam = 0.01, targetRMSE = 0.03)
  }

  test("different block settings") {
    val (training, test) =
      genExplicitTestData(numUsers = 20, numItems = 40, rank = 2, noiseStd = 0.01)
    for ((numUserBlocks, numItemBlocks) <- Seq((1, 1), (1, 2), (2, 1), (2, 2))) {
      testALS(training, test, maxIter = 4, rank = 3, regParam = 0.01, targetRMSE = 0.03,
        numUserBlocks = numUserBlocks, numItemBlocks = numItemBlocks)
    }
  }

  test("more blocks than ratings") {
    val (training, test) =
      genExplicitTestData(numUsers = 4, numItems = 4, rank = 1)
    testALS(training, test, maxIter = 2, rank = 1, regParam = 1e-4, targetRMSE = 0.002,
     numItemBlocks = 5, numUserBlocks = 5)
  }

  test("implicit feedback") {
    val (training, test) =
      genImplicitTestData(numUsers = 20, numItems = 40, rank = 2, noiseStd = 0.01)
    testALS(training, test, maxIter = 4, rank = 2, regParam = 0.01, implicitPrefs = true,
      targetRMSE = 0.3)
  }

  test("using generic ID types") {
    val (ratings, _) = genImplicitTestData(numUsers = 20, numItems = 40, rank = 2, noiseStd = 0.01)

    val longRatings = ratings.map(r => Rating(r.user.toLong, r.item.toLong, r.rating))
    val (longUserFactors, _) = ALS.train(longRatings, rank = 2, maxIter = 4, seed = 0)
    assert(longUserFactors.first()._1.getClass === classOf[Long])

    val strRatings = ratings.map(r => Rating(r.user.toString, r.item.toString, r.rating))
    val (strUserFactors, _) = ALS.train(strRatings, rank = 2, maxIter = 4, seed = 0)
    assert(strUserFactors.first()._1.getClass === classOf[String])
  }

  test("nonnegative constraint") {
    val (ratings, _) = genImplicitTestData(numUsers = 20, numItems = 40, rank = 2, noiseStd = 0.01)
    val (userFactors, itemFactors) =
      ALS.train(ratings, rank = 2, maxIter = 4, nonnegative = true, seed = 0)
    def isNonnegative(factors: RDD[(Int, Array[Float])]): Boolean = {
      factors.values.map { _.forall(_ >= 0.0) }.reduce(_ && _)
    }
    assert(isNonnegative(userFactors))
    assert(isNonnegative(itemFactors))
    // TODO: Validate the solution.
  }

  test("als partitioner is a projection") {
    for (p <- Seq(1, 10, 100, 1000)) {
      val part = new ALSPartitioner(p)
      var k = 0
      while (k < p) {
        assert(k === part.getPartition(k))
        assert(k === part.getPartition(k.toLong))
        k += 1
      }
    }
  }

  test("partitioner in returned factors") {
    val (ratings, _) = genImplicitTestData(numUsers = 20, numItems = 40, rank = 2, noiseStd = 0.01)
    val (userFactors, itemFactors) = ALS.train(
      ratings, rank = 2, maxIter = 4, numUserBlocks = 3, numItemBlocks = 4, seed = 0)
    for ((tpe, factors) <- Seq(("User", userFactors), ("Item", itemFactors))) {
      assert(userFactors.partitioner.isDefined, s"$tpe factors should have partitioner.")
      val part = userFactors.partitioner.get
      userFactors.mapPartitionsWithIndex { (idx, items) =>
        items.foreach { case (id, _) =>
          if (part.getPartition(id) != idx) {
            throw new SparkException(s"$tpe with ID $id should not be in partition $idx.")
          }
        }
        Iterator.empty
      }.count()
    }
  }

  test("als with large number of iterations") {
    val (ratings, _) = genExplicitTestData(numUsers = 4, numItems = 4, rank = 1)
    ALS.train(ratings, rank = 1, maxIter = 50, numUserBlocks = 2, numItemBlocks = 2, seed = 0)
    ALS.train(ratings, rank = 1, maxIter = 50, numUserBlocks = 2, numItemBlocks = 2,
      implicitPrefs = true, seed = 0)
  }

  test("read/write") {
    import ALSSuite._
    val (ratings, _) = genExplicitTestData(numUsers = 4, numItems = 4, rank = 1)
    val als = new ALS()
    allEstimatorParamSettings.foreach { case (p, v) =>
      als.set(als.getParam(p), v)
    }
    val sqlContext = this.sqlContext
    import sqlContext.implicits._
    val model = als.fit(ratings.toDF())

    // Test Estimator save/load
    val als2 = testDefaultReadWrite(als)
    allEstimatorParamSettings.foreach { case (p, v) =>
      val param = als.getParam(p)
      assert(als.get(param).get === als2.get(param).get)
    }

    // Test Model save/load
    val model2 = testDefaultReadWrite(model)
    allModelParamSettings.foreach { case (p, v) =>
      val param = model.getParam(p)
      assert(model.get(param).get === model2.get(param).get)
    }
    assert(model.rank === model2.rank)
    def getFactors(df: DataFrame): Set[(Int, Array[Float])] = {
      df.select("id", "features").collect().map { case r =>
        (r.getInt(0), r.getAs[Array[Float]](1))
      }.toSet
    }
    assert(getFactors(model.userFactors) === getFactors(model2.userFactors))
    assert(getFactors(model.itemFactors) === getFactors(model2.itemFactors))
  }
}

object ALSSuite {

  /**
   * Mapping from all Params to valid settings which differ from the defaults.
   * This is useful for tests which need to exercise all Params, such as save/load.
   * This excludes input columns to simplify some tests.
   */
  val allModelParamSettings: Map[String, Any] = Map(
    "predictionCol" -> "myPredictionCol"
  )

  /**
   * Mapping from all Params to valid settings which differ from the defaults.
   * This is useful for tests which need to exercise all Params, such as save/load.
   * This excludes input columns to simplify some tests.
   */
  val allEstimatorParamSettings: Map[String, Any] = allModelParamSettings ++ Map(
    "maxIter" -> 1,
    "rank" -> 1,
    "regParam" -> 0.01,
    "numUserBlocks" -> 2,
    "numItemBlocks" -> 2,
    "implicitPrefs" -> true,
    "alpha" -> 0.9,
    "nonnegative" -> true,
    "checkpointInterval" -> 20
  )
}