aboutsummaryrefslogtreecommitdiff
path: root/python/pyspark/mllib.py
blob: 46f368b1ec665ecdb0f8471c4f18eee0f2fa89ff (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from numpy import *
from pyspark import SparkContext

# Double vector format:
#
# [8-byte 1] [8-byte length] [length*8 bytes of data]
#
# Double matrix format:
#
# [8-byte 2] [8-byte rows] [8-byte cols] [rows*cols*8 bytes of data]
#
# This is all in machine-endian.  That means that the Java interpreter and the
# Python interpreter must agree on what endian the machine is.

def _deserialize_byte_array(shape, ba, offset):
    """Wrapper around ndarray aliasing hack.

    >>> x = array([1.0, 2.0, 3.0, 4.0, 5.0])
    >>> array_equal(x, _deserialize_byte_array(x.shape, x.data, 0))
    True
    >>> x = array([1.0, 2.0, 3.0, 4.0]).reshape(2,2)
    >>> array_equal(x, _deserialize_byte_array(x.shape, x.data, 0))
    True
    """
    ar = ndarray(shape=shape, buffer=ba, offset=offset, dtype="float64",
            order='C')
    return ar.copy()

def _serialize_double_vector(v):
    """Serialize a double vector into a mutually understood format."""
    if type(v) != ndarray:
        raise TypeError("_serialize_double_vector called on a %s; "
                "wanted ndarray" % type(v))
    if v.dtype != float64:
        raise TypeError("_serialize_double_vector called on an ndarray of %s; "
                "wanted ndarray of float64" % v.dtype)
    if v.ndim != 1:
        raise TypeError("_serialize_double_vector called on a %ddarray; "
                "wanted a 1darray" % v.ndim)
    length = v.shape[0]
    ba = bytearray(16 + 8*length)
    header = ndarray(shape=[2], buffer=ba, dtype="int64")
    header[0] = 1
    header[1] = length
    copyto(ndarray(shape=[length], buffer=ba, offset=16,
            dtype="float64"), v)
    return ba

def _deserialize_double_vector(ba):
    """Deserialize a double vector from a mutually understood format.

    >>> x = array([1.0, 2.0, 3.0, 4.0, -1.0, 0.0, -0.0])
    >>> array_equal(x, _deserialize_double_vector(_serialize_double_vector(x)))
    True
    """
    if type(ba) != bytearray:
        raise TypeError("_deserialize_double_vector called on a %s; "
                "wanted bytearray" % type(ba))
    if len(ba) < 16:
        raise TypeError("_deserialize_double_vector called on a %d-byte array, "
                "which is too short" % len(ba))
    if (len(ba) & 7) != 0:
        raise TypeError("_deserialize_double_vector called on a %d-byte array, "
                "which is not a multiple of 8" % len(ba))
    header = ndarray(shape=[2], buffer=ba, dtype="int64")
    if header[0] != 1:
        raise TypeError("_deserialize_double_vector called on bytearray "
                        "with wrong magic")
    length = header[1]
    if len(ba) != 8*length + 16:
        raise TypeError("_deserialize_double_vector called on bytearray "
                        "with wrong length")
    return _deserialize_byte_array([length], ba, 16)

def _serialize_double_matrix(m):
    """Serialize a double matrix into a mutually understood format."""
    if (type(m) == ndarray and m.dtype == float64 and m.ndim == 2):
        rows = m.shape[0]
        cols = m.shape[1]
        ba = bytearray(24 + 8 * rows * cols)
        header = ndarray(shape=[3], buffer=ba, dtype="int64")
        header[0] = 2
        header[1] = rows
        header[2] = cols
        copyto(ndarray(shape=[rows, cols], buffer=ba, offset=24,
                       dtype="float64", order='C'), m)
        return ba
    else:
        raise TypeError("_serialize_double_matrix called on a "
                        "non-double-matrix")

def _deserialize_double_matrix(ba):
    """Deserialize a double matrix from a mutually understood format."""
    if type(ba) != bytearray:
        raise TypeError("_deserialize_double_matrix called on a %s; "
                "wanted bytearray" % type(ba))
    if len(ba) < 24:
        raise TypeError("_deserialize_double_matrix called on a %d-byte array, "
                "which is too short" % len(ba))
    if (len(ba) & 7) != 0:
        raise TypeError("_deserialize_double_matrix called on a %d-byte array, "
                "which is not a multiple of 8" % len(ba))
    header = ndarray(shape=[3], buffer=ba, dtype="int64")
    if (header[0] != 2):
        raise TypeError("_deserialize_double_matrix called on bytearray "
                        "with wrong magic")
    rows = header[1]
    cols = header[2]
    if (len(ba) != 8*rows*cols + 24):
        raise TypeError("_deserialize_double_matrix called on bytearray "
                        "with wrong length")
    return _deserialize_byte_array([rows, cols], ba, 24)

def _linear_predictor_typecheck(x, coeffs):
    """Check that x is a one-dimensional vector of the right shape.
    This is a temporary hackaround until I actually implement bulk predict."""
    if type(x) == ndarray:
        if x.ndim == 1:
            if x.shape == coeffs.shape:
                pass
            else:
                raise RuntimeError("Got array of %d elements; wanted %d"
                        % shape(x)[0] % shape(coeffs)[0])
        else:
            raise RuntimeError("Bulk predict not yet supported.")
    elif (type(x) == RDD):
        raise RuntimeError("Bulk predict not yet supported.")
    else:
        raise TypeError("Argument of type " + type(x) + " unsupported")

class LinearModel(object):
    """Something that has a vector of coefficients and an intercept."""
    def __init__(self, coeff, intercept):
        self._coeff = coeff
        self._intercept = intercept

class LinearRegressionModelBase(LinearModel):
    """A linear regression model.

    >>> lrmb = LinearRegressionModelBase(array([1.0, 2.0]), 0.1)
    >>> abs(lrmb.predict(array([-1.03, 7.777])) - 14.624) < 1e-6
    True
    """
    def predict(self, x):
        """Predict the value of the dependent variable given a vector x"""
        """containing values for the independent variables."""
        _linear_predictor_typecheck(x, self._coeff)
        return dot(self._coeff, x) + self._intercept

def _get_unmangled_rdd(data, serializer):
    dataBytes = data.map(serializer)
    dataBytes._bypass_serializer = True
    dataBytes.cache()
    return dataBytes

# Map a pickled Python RDD of numpy double vectors to a Java RDD of
# _serialized_double_vectors
def _get_unmangled_double_vector_rdd(data):
    return _get_unmangled_rdd(data, _serialize_double_vector)

# If we weren't given initial weights, take a zero vector of the appropriate
# length.
def _get_initial_weights(initial_weights, data):
    if initial_weights is None:
        initial_weights = data.first()
        if type(initial_weights) != ndarray:
            raise TypeError("At least one data element has type "
                    + type(initial_weights) + " which is not ndarray")
        if initial_weights.ndim != 1:
            raise TypeError("At least one data element has "
                    + initial_weights.ndim + " dimensions, which is not 1")
        initial_weights = zeros([initial_weights.shape[0] - 1])
    return initial_weights

# train_func should take two parameters, namely data and initial_weights, and
# return the result of a call to the appropriate JVM stub.
# _regression_train_wrapper is responsible for setup and error checking.
def _regression_train_wrapper(sc, train_func, klass, data, initial_weights):
    initial_weights = _get_initial_weights(initial_weights, data)
    dataBytes = _get_unmangled_double_vector_rdd(data)
    ans = train_func(dataBytes, _serialize_double_vector(initial_weights))
    if len(ans) != 2:
        raise RuntimeError("JVM call result had unexpected length")
    elif type(ans[0]) != bytearray:
        raise RuntimeError("JVM call result had first element of type "
                + type(ans[0]) + " which is not bytearray")
    elif type(ans[1]) != float:
        raise RuntimeError("JVM call result had second element of type "
                + type(ans[0]) + " which is not float")
    return klass(_deserialize_double_vector(ans[0]), ans[1])

class LinearRegressionModel(LinearRegressionModelBase):
    """A linear regression model derived from a least-squares fit.

    >>> data = array([0.0, 0.0, 1.0, 1.0, 3.0, 2.0, 2.0, 3.0]).reshape(4,2)
    >>> lrm = LinearRegressionModel.train(sc, sc.parallelize(data), initial_weights=array([1.0]))
    """
    @classmethod
    def train(cls, sc, data, iterations=100, step=1.0,
              mini_batch_fraction=1.0, initial_weights=None):
        """Train a linear regression model on the given data."""
        return _regression_train_wrapper(sc, lambda d, i:
                sc._jvm.PythonMLLibAPI().trainLinearRegressionModel(
                        d._jrdd, iterations, step, mini_batch_fraction, i),
                LinearRegressionModel, data, initial_weights)

class LassoModel(LinearRegressionModelBase):
    """A linear regression model derived from a least-squares fit with an
    l_1 penalty term.

    >>> data = array([0.0, 0.0, 1.0, 1.0, 3.0, 2.0, 2.0, 3.0]).reshape(4,2)
    >>> lrm = LassoModel.train(sc, sc.parallelize(data), initial_weights=array([1.0]))
    """
    @classmethod
    def train(cls, sc, data, iterations=100, step=1.0, reg_param=1.0,
              mini_batch_fraction=1.0, initial_weights=None):
        """Train a Lasso regression model on the given data."""
        return _regression_train_wrapper(sc, lambda d, i:
                sc._jvm.PythonMLLibAPI().trainLassoModel(d._jrdd,
                        iterations, step, reg_param, mini_batch_fraction, i),
                LassoModel, data, initial_weights)

class RidgeRegressionModel(LinearRegressionModelBase):
    """A linear regression model derived from a least-squares fit with an
    l_2 penalty term.

    >>> data = array([0.0, 0.0, 1.0, 1.0, 3.0, 2.0, 2.0, 3.0]).reshape(4,2)
    >>> lrm = RidgeRegressionModel.train(sc, sc.parallelize(data), initial_weights=array([1.0]))
    """
    @classmethod
    def train(cls, sc, data, iterations=100, step=1.0, reg_param=1.0,
              mini_batch_fraction=1.0, initial_weights=None):
        """Train a ridge regression model on the given data."""
        return _regression_train_wrapper(sc, lambda d, i:
                sc._jvm.PythonMLLibAPI().trainRidgeModel(d._jrdd,
                        iterations, step, reg_param, mini_batch_fraction, i),
                RidgeRegressionModel, data, initial_weights)

class LogisticRegressionModel(LinearModel):
    """A linear binary classification model derived from logistic regression.

    >>> data = array([0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 1.0, 3.0]).reshape(4,2)
    >>> lrm = LogisticRegressionModel.train(sc, sc.parallelize(data))
    """
    def predict(self, x):
        _linear_predictor_typecheck(x, _coeff)
        margin = dot(x, _coeff) + intercept
        prob = 1/(1 + exp(-margin))
        return 1 if prob > 0.5 else 0

    @classmethod
    def train(cls, sc, data, iterations=100, step=1.0,
              mini_batch_fraction=1.0, initial_weights=None):
        """Train a logistic regression model on the given data."""
        return _regression_train_wrapper(sc, lambda d, i:
                sc._jvm.PythonMLLibAPI().trainLogisticRegressionModel(d._jrdd,
                        iterations, step, mini_batch_fraction, i),
                LogisticRegressionModel, data, initial_weights)

class SVMModel(LinearModel):
    """A support vector machine.

    >>> data = array([0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 1.0, 3.0]).reshape(4,2)
    >>> svm = SVMModel.train(sc, sc.parallelize(data))
    """
    def predict(self, x):
        _linear_predictor_typecheck(x, _coeff)
        margin = dot(x, _coeff) + intercept
        return 1 if margin >= 0 else 0
    @classmethod
    def train(cls, sc, data, iterations=100, step=1.0, reg_param=1.0,
              mini_batch_fraction=1.0, initial_weights=None):
        """Train a support vector machine on the given data."""
        return _regression_train_wrapper(sc, lambda d, i:
                sc._jvm.PythonMLLibAPI().trainSVMModel(d._jrdd,
                        iterations, step, reg_param, mini_batch_fraction, i),
                SVMModel, data, initial_weights)

class KMeansModel(object):
    """A clustering model derived from the k-means method.

    >>> data = array([0.0,0.0, 1.0,1.0, 9.0,8.0, 8.0,9.0]).reshape(4,2)
    >>> clusters = KMeansModel.train(sc, sc.parallelize(data), 2, maxIterations=10, runs=30, initialization_mode="random")
    >>> clusters.predict(array([0.0, 0.0])) == clusters.predict(array([1.0, 1.0]))
    True
    >>> clusters.predict(array([8.0, 9.0])) == clusters.predict(array([9.0, 8.0]))
    True
    >>> clusters = KMeansModel.train(sc, sc.parallelize(data), 2)
    """
    def __init__(self, centers_):
        self.centers = centers_

    def predict(self, x):
        """Find the cluster to which x belongs in this model."""
        best = 0
        best_distance = 1e75
        for i in range(0, self.centers.shape[0]):
            diff = x - self.centers[i]
            distance = sqrt(dot(diff, diff))
            if distance < best_distance:
                best = i
                best_distance = distance
        return best

    @classmethod
    def train(cls, sc, data, k, maxIterations=100, runs=1,
            initialization_mode="k-means||"):
        """Train a k-means clustering model."""
        dataBytes = _get_unmangled_double_vector_rdd(data)
        ans = sc._jvm.PythonMLLibAPI().trainKMeansModel(dataBytes._jrdd,
                k, maxIterations, runs, initialization_mode)
        if len(ans) != 1:
            raise RuntimeError("JVM call result had unexpected length")
        elif type(ans[0]) != bytearray:
            raise RuntimeError("JVM call result had first element of type "
                    + type(ans[0]) + " which is not bytearray")
        return KMeansModel(_deserialize_double_matrix(ans[0]))

def _serialize_rating(r):
    ba = bytearray(16)
    intpart = ndarray(shape=[2], buffer=ba, dtype=int32)
    doublepart = ndarray(shape=[1], buffer=ba, dtype=float64, offset=8)
    intpart[0], intpart[1], doublepart[0] = r
    return ba

class ALSModel(object):
    """A matrix factorisation model trained by regularized alternating
    least-squares.

    >>> r1 = (1, 1, 1.0)
    >>> r2 = (1, 2, 2.0)
    >>> r3 = (2, 1, 2.0)
    >>> ratings = sc.parallelize([r1, r2, r3])
    >>> model = ALSModel.trainImplicit(sc, ratings, 1)
    >>> model.predict(2,2) is not None
    True
    """

    def __init__(self, sc, java_model):
        self._context = sc
        self._java_model = java_model

    def __del__(self):
        self._context._gateway.detach(self._java_model)

    def predict(self, user, product):
        return self._java_model.predict(user, product)

    @classmethod
    def train(cls, sc, ratings, rank, iterations=5, lambda_=0.01, blocks=-1):
        ratingBytes = _get_unmangled_rdd(ratings, _serialize_rating)
        mod = sc._jvm.PythonMLLibAPI().trainALSModel(ratingBytes._jrdd,
                rank, iterations, lambda_, blocks)
        return ALSModel(sc, mod)

    @classmethod
    def trainImplicit(cls, sc, ratings, rank, iterations=5, lambda_=0.01, blocks=-1, alpha=0.01):
        ratingBytes = _get_unmangled_rdd(ratings, _serialize_rating)
        mod = sc._jvm.PythonMLLibAPI().trainImplicitALSModel(ratingBytes._jrdd,
                rank, iterations, lambda_, blocks, alpha)
        return ALSModel(sc, mod)

def _test():
    import doctest
    globs = globals().copy()
    globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
    (failure_count, test_count) = doctest.testmod(globs=globs,
            optionflags=doctest.ELLIPSIS)
    globs['sc'].stop()
    if failure_count:
        exit(-1)

if __name__ == "__main__":
    _test()