aboutsummaryrefslogtreecommitdiff
path: root/python/pyspark/mllib/classification.py
blob: e4765173709e8827850e3c4286da7f239424b8ee (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from math import exp

import numpy
from numpy import array

from pyspark import RDD
from pyspark.mllib.common import callMLlibFunc
from pyspark.mllib.linalg import SparseVector, _convert_to_vector
from pyspark.mllib.regression import LabeledPoint, LinearModel, _regression_train_wrapper


__all__ = ['LogisticRegressionModel', 'LogisticRegressionWithSGD', 'LogisticRegressionWithLBFGS',
           'SVMModel', 'SVMWithSGD', 'NaiveBayesModel', 'NaiveBayes']


class LinearBinaryClassificationModel(LinearModel):
    """
    Represents a linear binary classification model that predicts to whether an
    example is positive (1.0) or negative (0.0).
    """
    def __init__(self, weights, intercept):
        super(LinearBinaryClassificationModel, self).__init__(weights, intercept)
        self._threshold = None

    def setThreshold(self, value):
        """
        .. note:: Experimental

        Sets the threshold that separates positive predictions from negative
        predictions. An example with prediction score greater than or equal
        to this threshold is identified as an positive, and negative otherwise.
        """
        self._threshold = value

    def clearThreshold(self):
        """
        .. note:: Experimental

        Clears the threshold so that `predict` will output raw prediction scores.
        """
        self._threshold = None

    def predict(self, test):
        """
        Predict values for a single data point or an RDD of points using
        the model trained.
        """
        raise NotImplementedError


class LogisticRegressionModel(LinearBinaryClassificationModel):

    """A linear binary classification model derived from logistic regression.

    >>> data = [
    ...     LabeledPoint(0.0, [0.0, 1.0]),
    ...     LabeledPoint(1.0, [1.0, 0.0]),
    ... ]
    >>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(data))
    >>> lrm.predict([1.0, 0.0])
    1
    >>> lrm.predict([0.0, 1.0])
    0
    >>> lrm.predict(sc.parallelize([[1.0, 0.0], [0.0, 1.0]])).collect()
    [1, 0]
    >>> lrm.clearThreshold()
    >>> lrm.predict([0.0, 1.0])
    0.123...

    >>> sparse_data = [
    ...     LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
    ...     LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
    ...     LabeledPoint(0.0, SparseVector(2, {0: 1.0})),
    ...     LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
    ... ]
    >>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(sparse_data))
    >>> lrm.predict(array([0.0, 1.0]))
    1
    >>> lrm.predict(array([1.0, 0.0]))
    0
    >>> lrm.predict(SparseVector(2, {1: 1.0}))
    1
    >>> lrm.predict(SparseVector(2, {0: 1.0}))
    0
    """
    def __init__(self, weights, intercept):
        super(LogisticRegressionModel, self).__init__(weights, intercept)
        self._threshold = 0.5

    def predict(self, x):
        """
        Predict values for a single data point or an RDD of points using
        the model trained.
        """
        if isinstance(x, RDD):
            return x.map(lambda v: self.predict(v))

        x = _convert_to_vector(x)
        margin = self.weights.dot(x) + self._intercept
        if margin > 0:
            prob = 1 / (1 + exp(-margin))
        else:
            exp_margin = exp(margin)
            prob = exp_margin / (1 + exp_margin)
        if self._threshold is None:
            return prob
        else:
            return 1 if prob > self._threshold else 0


class LogisticRegressionWithSGD(object):

    @classmethod
    def train(cls, data, iterations=100, step=1.0, miniBatchFraction=1.0,
              initialWeights=None, regParam=0.01, regType="l2", intercept=False):
        """
        Train a logistic regression model on the given data.

        :param data:              The training data, an RDD of LabeledPoint.
        :param iterations:        The number of iterations (default: 100).
        :param step:              The step parameter used in SGD
                                  (default: 1.0).
        :param miniBatchFraction: Fraction of data to be used for each SGD
                                  iteration.
        :param initialWeights:    The initial weights (default: None).
        :param regParam:          The regularizer parameter (default: 0.01).
        :param regType:           The type of regularizer used for training
                                  our model.

                                  :Allowed values:
                                     - "l1" for using L1 regularization
                                     - "l2" for using L2 regularization
                                     - None for no regularization

                                     (default: "l2")

        :param intercept:         Boolean parameter which indicates the use
                                  or not of the augmented representation for
                                  training data (i.e. whether bias features
                                  are activated or not).
        """
        def train(rdd, i):
            return callMLlibFunc("trainLogisticRegressionModelWithSGD", rdd, int(iterations),
                                 float(step), float(miniBatchFraction), i, float(regParam), regType,
                                 bool(intercept))

        return _regression_train_wrapper(train, LogisticRegressionModel, data, initialWeights)


class LogisticRegressionWithLBFGS(object):

    @classmethod
    def train(cls, data, iterations=100, initialWeights=None, regParam=0.01, regType="l2",
              intercept=False, corrections=10, tolerance=1e-4):
        """
        Train a logistic regression model on the given data.

        :param data:           The training data, an RDD of LabeledPoint.
        :param iterations:     The number of iterations (default: 100).
        :param initialWeights: The initial weights (default: None).
        :param regParam:       The regularizer parameter (default: 0.01).
        :param regType:        The type of regularizer used for training
                               our model.

                               :Allowed values:
                                 - "l1" for using L1 regularization
                                 - "l2" for using L2 regularization
                                 - None for no regularization

                                 (default: "l2")

        :param intercept:      Boolean parameter which indicates the use
                               or not of the augmented representation for
                               training data (i.e. whether bias features
                               are activated or not).
        :param corrections:    The number of corrections used in the LBFGS
                               update (default: 10).
        :param tolerance:      The convergence tolerance of iterations for
                               L-BFGS (default: 1e-4).

        >>> data = [
        ...     LabeledPoint(0.0, [0.0, 1.0]),
        ...     LabeledPoint(1.0, [1.0, 0.0]),
        ... ]
        >>> lrm = LogisticRegressionWithLBFGS.train(sc.parallelize(data))
        >>> lrm.predict([1.0, 0.0])
        1
        >>> lrm.predict([0.0, 1.0])
        0
        """
        def train(rdd, i):
            return callMLlibFunc("trainLogisticRegressionModelWithLBFGS", rdd, int(iterations), i,
                                 float(regParam), regType, bool(intercept), int(corrections),
                                 float(tolerance))

        return _regression_train_wrapper(train, LogisticRegressionModel, data, initialWeights)


class SVMModel(LinearBinaryClassificationModel):

    """A support vector machine.

    >>> data = [
    ...     LabeledPoint(0.0, [0.0]),
    ...     LabeledPoint(1.0, [1.0]),
    ...     LabeledPoint(1.0, [2.0]),
    ...     LabeledPoint(1.0, [3.0])
    ... ]
    >>> svm = SVMWithSGD.train(sc.parallelize(data))
    >>> svm.predict([1.0])
    1
    >>> svm.predict(sc.parallelize([[1.0]])).collect()
    [1]
    >>> svm.clearThreshold()
    >>> svm.predict(array([1.0]))
    1.25...

    >>> sparse_data = [
    ...     LabeledPoint(0.0, SparseVector(2, {0: -1.0})),
    ...     LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
    ...     LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
    ...     LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
    ... ]
    >>> svm = SVMWithSGD.train(sc.parallelize(sparse_data))
    >>> svm.predict(SparseVector(2, {1: 1.0}))
    1
    >>> svm.predict(SparseVector(2, {0: -1.0}))
    0
    """
    def __init__(self, weights, intercept):
        super(SVMModel, self).__init__(weights, intercept)
        self._threshold = 0.0

    def predict(self, x):
        """
        Predict values for a single data point or an RDD of points using
        the model trained.
        """
        if isinstance(x, RDD):
            return x.map(lambda v: self.predict(v))

        x = _convert_to_vector(x)
        margin = self.weights.dot(x) + self.intercept
        if self._threshold is None:
            return margin
        else:
            return 1 if margin > self._threshold else 0


class SVMWithSGD(object):

    @classmethod
    def train(cls, data, iterations=100, step=1.0, regParam=0.01,
              miniBatchFraction=1.0, initialWeights=None, regType="l2", intercept=False):
        """
        Train a support vector machine on the given data.

        :param data:              The training data, an RDD of LabeledPoint.
        :param iterations:        The number of iterations (default: 100).
        :param step:              The step parameter used in SGD
                                  (default: 1.0).
        :param regParam:          The regularizer parameter (default: 0.01).
        :param miniBatchFraction: Fraction of data to be used for each SGD
                                  iteration.
        :param initialWeights:    The initial weights (default: None).
        :param regType:           The type of regularizer used for training
                                  our model.

                                  :Allowed values:
                                     - "l1" for using L1 regularization
                                     - "l2" for using L2 regularization
                                     - None for no regularization

                                     (default: "l2")

        :param intercept:         Boolean parameter which indicates the use
                                  or not of the augmented representation for
                                  training data (i.e. whether bias features
                                  are activated or not).
        """
        def train(rdd, i):
            return callMLlibFunc("trainSVMModelWithSGD", rdd, int(iterations), float(step),
                                 float(regParam), float(miniBatchFraction), i, regType,
                                 bool(intercept))

        return _regression_train_wrapper(train, SVMModel, data, initialWeights)


class NaiveBayesModel(object):

    """
    Model for Naive Bayes classifiers.

    Contains two parameters:
    - pi: vector of logs of class priors (dimension C)
    - theta: matrix of logs of class conditional probabilities (CxD)

    >>> data = [
    ...     LabeledPoint(0.0, [0.0, 0.0]),
    ...     LabeledPoint(0.0, [0.0, 1.0]),
    ...     LabeledPoint(1.0, [1.0, 0.0]),
    ... ]
    >>> model = NaiveBayes.train(sc.parallelize(data))
    >>> model.predict(array([0.0, 1.0]))
    0.0
    >>> model.predict(array([1.0, 0.0]))
    1.0
    >>> model.predict(sc.parallelize([[1.0, 0.0]])).collect()
    [1.0]
    >>> sparse_data = [
    ...     LabeledPoint(0.0, SparseVector(2, {1: 0.0})),
    ...     LabeledPoint(0.0, SparseVector(2, {1: 1.0})),
    ...     LabeledPoint(1.0, SparseVector(2, {0: 1.0}))
    ... ]
    >>> model = NaiveBayes.train(sc.parallelize(sparse_data))
    >>> model.predict(SparseVector(2, {1: 1.0}))
    0.0
    >>> model.predict(SparseVector(2, {0: 1.0}))
    1.0
    """

    def __init__(self, labels, pi, theta):
        self.labels = labels
        self.pi = pi
        self.theta = theta

    def predict(self, x):
        """Return the most likely class for a data vector or an RDD of vectors"""
        if isinstance(x, RDD):
            return x.map(lambda v: self.predict(v))
        x = _convert_to_vector(x)
        return self.labels[numpy.argmax(self.pi + x.dot(self.theta.transpose()))]


class NaiveBayes(object):

    @classmethod
    def train(cls, data, lambda_=1.0):
        """
        Train a Naive Bayes model given an RDD of (label, features) vectors.

        This is the Multinomial NB (U{http://tinyurl.com/lsdw6p}) which can
        handle all kinds of discrete data.  For example, by converting
        documents into TF-IDF vectors, it can be used for document
        classification.  By making every vector a 0-1 vector, it can also be
        used as Bernoulli NB (U{http://tinyurl.com/p7c96j6}).

        :param data: RDD of LabeledPoint.
        :param lambda_: The smoothing parameter
        """
        first = data.first()
        if not isinstance(first, LabeledPoint):
            raise ValueError("`data` should be an RDD of LabeledPoint")
        labels, pi, theta = callMLlibFunc("trainNaiveBayes", data, lambda_)
        return NaiveBayesModel(labels.toArray(), pi.toArray(), numpy.array(theta))


def _test():
    import doctest
    from pyspark import SparkContext
    import pyspark.mllib.classification
    globs = pyspark.mllib.classification.__dict__.copy()
    globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
    (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
    globs['sc'].stop()
    if failure_count:
        exit(-1)

if __name__ == "__main__":
    _test()