aboutsummaryrefslogtreecommitdiff
path: root/python/pyspark/mllib/regression.py
blob: 961b5e80b013c189219cc47b3dffda7888439c8d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import numpy as np
from numpy import array

from pyspark import RDD
from pyspark.streaming.dstream import DStream
from pyspark.mllib.common import callMLlibFunc, _py2java, _java2py, inherit_doc
from pyspark.mllib.linalg import SparseVector, Vectors, _convert_to_vector
from pyspark.mllib.util import Saveable, Loader

__all__ = ['LabeledPoint', 'LinearModel',
           'LinearRegressionModel', 'LinearRegressionWithSGD',
           'RidgeRegressionModel', 'RidgeRegressionWithSGD',
           'LassoModel', 'LassoWithSGD', 'IsotonicRegressionModel',
           'IsotonicRegression', 'StreamingLinearAlgorithm',
           'StreamingLinearRegressionWithSGD']


class LabeledPoint(object):

    """
    Class that represents the features and labels of a data point.

    :param label: Label for this data point.
    :param features: Vector of features for this point (NumPy array,
            list, pyspark.mllib.linalg.SparseVector, or scipy.sparse
            column matrix)

    Note: 'label' and 'features' are accessible as class attributes.
    """

    def __init__(self, label, features):
        self.label = float(label)
        self.features = _convert_to_vector(features)

    def __reduce__(self):
        return (LabeledPoint, (self.label, self.features))

    def __str__(self):
        return "(" + ",".join((str(self.label), str(self.features))) + ")"

    def __repr__(self):
        return "LabeledPoint(%s, %s)" % (self.label, self.features)


class LinearModel(object):

    """
    A linear model that has a vector of coefficients and an intercept.

    :param weights: Weights computed for every feature.
    :param intercept: Intercept computed for this model.
    """

    def __init__(self, weights, intercept):
        self._coeff = _convert_to_vector(weights)
        self._intercept = float(intercept)

    @property
    def weights(self):
        return self._coeff

    @property
    def intercept(self):
        return self._intercept

    def __repr__(self):
        return "(weights=%s, intercept=%r)" % (self._coeff, self._intercept)


@inherit_doc
class LinearRegressionModelBase(LinearModel):

    """A linear regression model.

    >>> lrmb = LinearRegressionModelBase(np.array([1.0, 2.0]), 0.1)
    >>> abs(lrmb.predict(np.array([-1.03, 7.777])) - 14.624) < 1e-6
    True
    >>> abs(lrmb.predict(SparseVector(2, {0: -1.03, 1: 7.777})) - 14.624) < 1e-6
    True
    """

    def predict(self, x):
        """
        Predict the value of the dependent variable given a vector or
        an RDD of vectors containing values for the independent variables.
        """
        if isinstance(x, RDD):
            return x.map(self.predict)
        x = _convert_to_vector(x)
        return self.weights.dot(x) + self.intercept


@inherit_doc
class LinearRegressionModel(LinearRegressionModelBase):

    """A linear regression model derived from a least-squares fit.

    >>> from pyspark.mllib.regression import LabeledPoint
    >>> data = [
    ...     LabeledPoint(0.0, [0.0]),
    ...     LabeledPoint(1.0, [1.0]),
    ...     LabeledPoint(3.0, [2.0]),
    ...     LabeledPoint(2.0, [3.0])
    ... ]
    >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10,
    ...     initialWeights=np.array([1.0]))
    >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
    True
    >>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5
    True
    >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
    True
    >>> abs(lrm.predict(sc.parallelize([[1.0]])).collect()[0] - 1) < 0.5
    True
    >>> import os, tempfile
    >>> path = tempfile.mkdtemp()
    >>> lrm.save(sc, path)
    >>> sameModel = LinearRegressionModel.load(sc, path)
    >>> abs(sameModel.predict(np.array([0.0])) - 0) < 0.5
    True
    >>> abs(sameModel.predict(np.array([1.0])) - 1) < 0.5
    True
    >>> abs(sameModel.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
    True
    >>> from shutil import rmtree
    >>> try:
    ...     rmtree(path)
    ... except:
    ...     pass
    >>> data = [
    ...     LabeledPoint(0.0, SparseVector(1, {0: 0.0})),
    ...     LabeledPoint(1.0, SparseVector(1, {0: 1.0})),
    ...     LabeledPoint(3.0, SparseVector(1, {0: 2.0})),
    ...     LabeledPoint(2.0, SparseVector(1, {0: 3.0}))
    ... ]
    >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10,
    ...     initialWeights=array([1.0]))
    >>> abs(lrm.predict(array([0.0])) - 0) < 0.5
    True
    >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
    True
    >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10, step=1.0,
    ...    miniBatchFraction=1.0, initialWeights=array([1.0]), regParam=0.1, regType="l2",
    ...    intercept=True, validateData=True)
    >>> abs(lrm.predict(array([0.0])) - 0) < 0.5
    True
    >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
    True
    """
    def save(self, sc, path):
        java_model = sc._jvm.org.apache.spark.mllib.regression.LinearRegressionModel(
            _py2java(sc, self._coeff), self.intercept)
        java_model.save(sc._jsc.sc(), path)

    @classmethod
    def load(cls, sc, path):
        java_model = sc._jvm.org.apache.spark.mllib.regression.LinearRegressionModel.load(
            sc._jsc.sc(), path)
        weights = _java2py(sc, java_model.weights())
        intercept = java_model.intercept()
        model = LinearRegressionModel(weights, intercept)
        return model


# train_func should take two parameters, namely data and initial_weights, and
# return the result of a call to the appropriate JVM stub.
# _regression_train_wrapper is responsible for setup and error checking.
def _regression_train_wrapper(train_func, modelClass, data, initial_weights):
    from pyspark.mllib.classification import LogisticRegressionModel
    first = data.first()
    if not isinstance(first, LabeledPoint):
        raise TypeError("data should be an RDD of LabeledPoint, but got %s" % type(first))
    if initial_weights is None:
        initial_weights = [0.0] * len(data.first().features)
    if (modelClass == LogisticRegressionModel):
        weights, intercept, numFeatures, numClasses = train_func(
            data, _convert_to_vector(initial_weights))
        return modelClass(weights, intercept, numFeatures, numClasses)
    else:
        weights, intercept = train_func(data, _convert_to_vector(initial_weights))
        return modelClass(weights, intercept)


class LinearRegressionWithSGD(object):

    @classmethod
    def train(cls, data, iterations=100, step=1.0, miniBatchFraction=1.0,
              initialWeights=None, regParam=0.0, regType=None, intercept=False,
              validateData=True, convergenceTol=0.001):
        """
        Train a linear regression model using Stochastic Gradient
        Descent (SGD).
        This solves the least squares regression formulation

            f(weights) = 1/(2n) ||A weights - y||^2,

        which is the mean squared error.
        Here the data matrix has n rows, and the input RDD holds the
        set of rows of A, each with its corresponding right hand side
        label y. See also the documentation for the precise formulation.

        :param data:              The training data, an RDD of
                                  LabeledPoint.
        :param iterations:        The number of iterations
                                  (default: 100).
        :param step:              The step parameter used in SGD
                                  (default: 1.0).
        :param miniBatchFraction: Fraction of data to be used for each
                                  SGD iteration (default: 1.0).
        :param initialWeights:    The initial weights (default: None).
        :param regParam:          The regularizer parameter
                                  (default: 0.0).
        :param regType:           The type of regularizer used for
                                  training our model.

                                  :Allowed values:
                                     - "l1" for using L1 regularization (lasso),
                                     - "l2" for using L2 regularization (ridge),
                                     - None for no regularization

                                     (default: None)

        :param intercept:         Boolean parameter which indicates the
                                  use or not of the augmented representation
                                  for training data (i.e. whether bias
                                  features are activated or not,
                                  default: False).
        :param validateData:      Boolean parameter which indicates if
                                  the algorithm should validate data
                                  before training. (default: True)
        :param convergenceTol:    A condition which decides iteration termination.
                                  (default: 0.001)
        """
        def train(rdd, i):
            return callMLlibFunc("trainLinearRegressionModelWithSGD", rdd, int(iterations),
                                 float(step), float(miniBatchFraction), i, float(regParam),
                                 regType, bool(intercept), bool(validateData),
                                 float(convergenceTol))

        return _regression_train_wrapper(train, LinearRegressionModel, data, initialWeights)


@inherit_doc
class LassoModel(LinearRegressionModelBase):

    """A linear regression model derived from a least-squares fit with
    an l_1 penalty term.

    >>> from pyspark.mllib.regression import LabeledPoint
    >>> data = [
    ...     LabeledPoint(0.0, [0.0]),
    ...     LabeledPoint(1.0, [1.0]),
    ...     LabeledPoint(3.0, [2.0]),
    ...     LabeledPoint(2.0, [3.0])
    ... ]
    >>> lrm = LassoWithSGD.train(sc.parallelize(data), iterations=10, initialWeights=array([1.0]))
    >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
    True
    >>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5
    True
    >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
    True
    >>> abs(lrm.predict(sc.parallelize([[1.0]])).collect()[0] - 1) < 0.5
    True
    >>> import os, tempfile
    >>> path = tempfile.mkdtemp()
    >>> lrm.save(sc, path)
    >>> sameModel = LassoModel.load(sc, path)
    >>> abs(sameModel.predict(np.array([0.0])) - 0) < 0.5
    True
    >>> abs(sameModel.predict(np.array([1.0])) - 1) < 0.5
    True
    >>> abs(sameModel.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
    True
    >>> from shutil import rmtree
    >>> try:
    ...    rmtree(path)
    ... except:
    ...    pass
    >>> data = [
    ...     LabeledPoint(0.0, SparseVector(1, {0: 0.0})),
    ...     LabeledPoint(1.0, SparseVector(1, {0: 1.0})),
    ...     LabeledPoint(3.0, SparseVector(1, {0: 2.0})),
    ...     LabeledPoint(2.0, SparseVector(1, {0: 3.0}))
    ... ]
    >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10,
    ...     initialWeights=array([1.0]))
    >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
    True
    >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
    True
    >>> lrm = LassoWithSGD.train(sc.parallelize(data), iterations=10, step=1.0,
    ...     regParam=0.01, miniBatchFraction=1.0, initialWeights=array([1.0]), intercept=True,
    ...     validateData=True)
    >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
    True
    >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
    True
    """
    def save(self, sc, path):
        java_model = sc._jvm.org.apache.spark.mllib.regression.LassoModel(
            _py2java(sc, self._coeff), self.intercept)
        java_model.save(sc._jsc.sc(), path)

    @classmethod
    def load(cls, sc, path):
        java_model = sc._jvm.org.apache.spark.mllib.regression.LassoModel.load(
            sc._jsc.sc(), path)
        weights = _java2py(sc, java_model.weights())
        intercept = java_model.intercept()
        model = LassoModel(weights, intercept)
        return model


class LassoWithSGD(object):

    @classmethod
    def train(cls, data, iterations=100, step=1.0, regParam=0.01,
              miniBatchFraction=1.0, initialWeights=None, intercept=False,
              validateData=True, convergenceTol=0.001):
        """
        Train a regression model with L1-regularization using
        Stochastic Gradient Descent.
        This solves the l1-regularized least squares regression
        formulation

            f(weights) = 1/(2n) ||A weights - y||^2  + regParam ||weights||_1.

        Here the data matrix has n rows, and the input RDD holds the
        set of rows of A, each with its corresponding right hand side
        label y. See also the documentation for the precise formulation.

        :param data:              The training data, an RDD of
                                  LabeledPoint.
        :param iterations:        The number of iterations
                                  (default: 100).
        :param step:              The step parameter used in SGD
                                  (default: 1.0).
        :param regParam:          The regularizer parameter
                                  (default: 0.01).
        :param miniBatchFraction: Fraction of data to be used for each
                                  SGD iteration (default: 1.0).
        :param initialWeights:    The initial weights (default: None).
        :param intercept:         Boolean parameter which indicates the
                                  use or not of the augmented representation
                                  for training data (i.e. whether bias
                                  features are activated or not,
                                  default: False).
        :param validateData:      Boolean parameter which indicates if
                                  the algorithm should validate data
                                  before training. (default: True)
        :param convergenceTol:    A condition which decides iteration termination.
                                  (default: 0.001)
        """
        def train(rdd, i):
            return callMLlibFunc("trainLassoModelWithSGD", rdd, int(iterations), float(step),
                                 float(regParam), float(miniBatchFraction), i, bool(intercept),
                                 bool(validateData), float(convergenceTol))

        return _regression_train_wrapper(train, LassoModel, data, initialWeights)


@inherit_doc
class RidgeRegressionModel(LinearRegressionModelBase):

    """A linear regression model derived from a least-squares fit with
    an l_2 penalty term.

    >>> from pyspark.mllib.regression import LabeledPoint
    >>> data = [
    ...     LabeledPoint(0.0, [0.0]),
    ...     LabeledPoint(1.0, [1.0]),
    ...     LabeledPoint(3.0, [2.0]),
    ...     LabeledPoint(2.0, [3.0])
    ... ]
    >>> lrm = RidgeRegressionWithSGD.train(sc.parallelize(data), iterations=10,
    ...     initialWeights=array([1.0]))
    >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
    True
    >>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5
    True
    >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
    True
    >>> abs(lrm.predict(sc.parallelize([[1.0]])).collect()[0] - 1) < 0.5
    True
    >>> import os, tempfile
    >>> path = tempfile.mkdtemp()
    >>> lrm.save(sc, path)
    >>> sameModel = RidgeRegressionModel.load(sc, path)
    >>> abs(sameModel.predict(np.array([0.0])) - 0) < 0.5
    True
    >>> abs(sameModel.predict(np.array([1.0])) - 1) < 0.5
    True
    >>> abs(sameModel.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
    True
    >>> from shutil import rmtree
    >>> try:
    ...    rmtree(path)
    ... except:
    ...    pass
    >>> data = [
    ...     LabeledPoint(0.0, SparseVector(1, {0: 0.0})),
    ...     LabeledPoint(1.0, SparseVector(1, {0: 1.0})),
    ...     LabeledPoint(3.0, SparseVector(1, {0: 2.0})),
    ...     LabeledPoint(2.0, SparseVector(1, {0: 3.0}))
    ... ]
    >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10,
    ...     initialWeights=array([1.0]))
    >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
    True
    >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
    True
    >>> lrm = RidgeRegressionWithSGD.train(sc.parallelize(data), iterations=10, step=1.0,
    ...     regParam=0.01, miniBatchFraction=1.0, initialWeights=array([1.0]), intercept=True,
    ...     validateData=True)
    >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
    True
    >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
    True
    """
    def save(self, sc, path):
        java_model = sc._jvm.org.apache.spark.mllib.regression.RidgeRegressionModel(
            _py2java(sc, self._coeff), self.intercept)
        java_model.save(sc._jsc.sc(), path)

    @classmethod
    def load(cls, sc, path):
        java_model = sc._jvm.org.apache.spark.mllib.regression.RidgeRegressionModel.load(
            sc._jsc.sc(), path)
        weights = _java2py(sc, java_model.weights())
        intercept = java_model.intercept()
        model = RidgeRegressionModel(weights, intercept)
        return model


class RidgeRegressionWithSGD(object):

    @classmethod
    def train(cls, data, iterations=100, step=1.0, regParam=0.01,
              miniBatchFraction=1.0, initialWeights=None, intercept=False,
              validateData=True, convergenceTol=0.001):
        """
        Train a regression model with L2-regularization using
        Stochastic Gradient Descent.
        This solves the l2-regularized least squares regression
        formulation

            f(weights) = 1/(2n) ||A weights - y||^2 + regParam/2 ||weights||^2.

        Here the data matrix has n rows, and the input RDD holds the
        set of rows of A, each with its corresponding right hand side
        label y. See also the documentation for the precise formulation.

        :param data:              The training data, an RDD of
                                  LabeledPoint.
        :param iterations:        The number of iterations
                                  (default: 100).
        :param step:              The step parameter used in SGD
                                  (default: 1.0).
        :param regParam:          The regularizer parameter
                                  (default: 0.01).
        :param miniBatchFraction: Fraction of data to be used for each
                                  SGD iteration (default: 1.0).
        :param initialWeights:    The initial weights (default: None).
        :param intercept:         Boolean parameter which indicates the
                                  use or not of the augmented representation
                                  for training data (i.e. whether bias
                                  features are activated or not,
                                  default: False).
        :param validateData:      Boolean parameter which indicates if
                                  the algorithm should validate data
                                  before training. (default: True)
        :param convergenceTol:    A condition which decides iteration termination.
                                  (default: 0.001)
        """
        def train(rdd, i):
            return callMLlibFunc("trainRidgeModelWithSGD", rdd, int(iterations), float(step),
                                 float(regParam), float(miniBatchFraction), i, bool(intercept),
                                 bool(validateData), float(convergenceTol))

        return _regression_train_wrapper(train, RidgeRegressionModel, data, initialWeights)


class IsotonicRegressionModel(Saveable, Loader):

    """
    Regression model for isotonic regression.

    :param boundaries: Array of boundaries for which predictions are
            known. Boundaries must be sorted in increasing order.
    :param predictions: Array of predictions associated to the
            boundaries at the same index. Results of isotonic
            regression and therefore monotone.
    :param isotonic: indicates whether this is isotonic or antitonic.

    >>> data = [(1, 0, 1), (2, 1, 1), (3, 2, 1), (1, 3, 1), (6, 4, 1), (17, 5, 1), (16, 6, 1)]
    >>> irm = IsotonicRegression.train(sc.parallelize(data))
    >>> irm.predict(3)
    2.0
    >>> irm.predict(5)
    16.5
    >>> irm.predict(sc.parallelize([3, 5])).collect()
    [2.0, 16.5]
    >>> import os, tempfile
    >>> path = tempfile.mkdtemp()
    >>> irm.save(sc, path)
    >>> sameModel = IsotonicRegressionModel.load(sc, path)
    >>> sameModel.predict(3)
    2.0
    >>> sameModel.predict(5)
    16.5
    >>> from shutil import rmtree
    >>> try:
    ...     rmtree(path)
    ... except OSError:
    ...     pass
    """

    def __init__(self, boundaries, predictions, isotonic):
        self.boundaries = boundaries
        self.predictions = predictions
        self.isotonic = isotonic

    def predict(self, x):
        """
        Predict labels for provided features.
        Using a piecewise linear function.
        1) If x exactly matches a boundary then associated prediction
        is returned. In case there are multiple predictions with the
        same boundary then one of them is returned. Which one is
        undefined (same as java.util.Arrays.binarySearch).
        2) If x is lower or higher than all boundaries then first or
        last prediction is returned respectively. In case there are
        multiple predictions with the same boundary then the lowest
        or highest is returned respectively.
        3) If x falls between two values in boundary array then
        prediction is treated as piecewise linear function and
        interpolated value is returned. In case there are multiple
        values with the same boundary then the same rules as in 2)
        are used.

        :param x: Feature or RDD of Features to be labeled.
        """
        if isinstance(x, RDD):
            return x.map(lambda v: self.predict(v))
        return np.interp(x, self.boundaries, self.predictions)

    def save(self, sc, path):
        java_boundaries = _py2java(sc, self.boundaries.tolist())
        java_predictions = _py2java(sc, self.predictions.tolist())
        java_model = sc._jvm.org.apache.spark.mllib.regression.IsotonicRegressionModel(
            java_boundaries, java_predictions, self.isotonic)
        java_model.save(sc._jsc.sc(), path)

    @classmethod
    def load(cls, sc, path):
        java_model = sc._jvm.org.apache.spark.mllib.regression.IsotonicRegressionModel.load(
            sc._jsc.sc(), path)
        py_boundaries = _java2py(sc, java_model.boundaryVector()).toArray()
        py_predictions = _java2py(sc, java_model.predictionVector()).toArray()
        return IsotonicRegressionModel(py_boundaries, py_predictions, java_model.isotonic)


class IsotonicRegression(object):

    @classmethod
    def train(cls, data, isotonic=True):
        """
        Train a isotonic regression model on the given data.

        :param data: RDD of (label, feature, weight) tuples.
        :param isotonic: Whether this is isotonic or antitonic.
        """
        boundaries, predictions = callMLlibFunc("trainIsotonicRegressionModel",
                                                data.map(_convert_to_vector), bool(isotonic))
        return IsotonicRegressionModel(boundaries.toArray(), predictions.toArray(), isotonic)


class StreamingLinearAlgorithm(object):
    """
    Base class that has to be inherited by any StreamingLinearAlgorithm.

    Prevents reimplementation of methods predictOn and predictOnValues.
    """
    def __init__(self, model):
        self._model = model

    def latestModel(self):
        """
        Returns the latest model.
        """
        return self._model

    def _validate(self, dstream):
        if not isinstance(dstream, DStream):
            raise TypeError(
                "dstream should be a DStream object, got %s" % type(dstream))
        if not self._model:
            raise ValueError(
                "Model must be intialized using setInitialWeights")

    def predictOn(self, dstream):
        """
        Make predictions on a dstream.

        :return: Transformed dstream object.
        """
        self._validate(dstream)
        return dstream.map(lambda x: self._model.predict(x))

    def predictOnValues(self, dstream):
        """
        Make predictions on a keyed dstream.

        :return: Transformed dstream object.
        """
        self._validate(dstream)
        return dstream.mapValues(lambda x: self._model.predict(x))


@inherit_doc
class StreamingLinearRegressionWithSGD(StreamingLinearAlgorithm):
    """
    Run LinearRegression with SGD on a batch of data.

    The problem minimized is (1 / n_samples) * (y - weights'X)**2.
    After training on a batch of data, the weights obtained at the end of
    training are used as initial weights for the next batch.

    :param stepSize: Step size for each iteration of gradient descent.
    :param numIterations: Total number of iterations run.
    :param miniBatchFraction: Fraction of data on which SGD is run for each
                              iteration.
    :param convergenceTol: A condition which decides iteration termination.
    """
    def __init__(self, stepSize=0.1, numIterations=50, miniBatchFraction=1.0, convergenceTol=0.001):
        self.stepSize = stepSize
        self.numIterations = numIterations
        self.miniBatchFraction = miniBatchFraction
        self.convergenceTol = convergenceTol
        self._model = None
        super(StreamingLinearRegressionWithSGD, self).__init__(
            model=self._model)

    def setInitialWeights(self, initialWeights):
        """
        Set the initial value of weights.

        This must be set before running trainOn and predictOn
        """
        initialWeights = _convert_to_vector(initialWeights)
        self._model = LinearRegressionModel(initialWeights, 0)
        return self

    def trainOn(self, dstream):
        """Train the model on the incoming dstream."""
        self._validate(dstream)

        def update(rdd):
            # LinearRegressionWithSGD.train raises an error for an empty RDD.
            if not rdd.isEmpty():
                self._model = LinearRegressionWithSGD.train(
                    rdd, self.numIterations, self.stepSize,
                    self.miniBatchFraction, self._model.weights,
                    intercept=self._model.intercept, convergenceTol=self.convergenceTol)

        dstream.foreachRDD(update)


def _test():
    import doctest
    from pyspark import SparkContext
    import pyspark.mllib.regression
    globs = pyspark.mllib.regression.__dict__.copy()
    globs['sc'] = SparkContext('local[2]', 'PythonTest', batchSize=2)
    (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
    globs['sc'].stop()
    if failure_count:
        exit(-1)

if __name__ == "__main__":
    _test()