aboutsummaryrefslogtreecommitdiff
path: root/python/pyspark/sql/functions.py
blob: 274c410a1ee9ca350d0798edcc84bc69acc5006f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
A collections of builtin functions
"""
import sys

if sys.version < "3":
    from itertools import imap as map

from pyspark import SparkContext
from pyspark.rdd import _prepare_for_python_RDD, ignore_unicode_prefix
from pyspark.serializers import PickleSerializer, AutoBatchedSerializer
from pyspark.sql.types import StringType
from pyspark.sql.dataframe import Column, _to_java_column, _to_seq


__all__ = [
    'approxCountDistinct',
    'countDistinct',
    'monotonicallyIncreasingId',
    'rand',
    'randn',
    'sparkPartitionId',
    'udf']


def _create_function(name, doc=""):
    """ Create a function for aggregator by name"""
    def _(col):
        sc = SparkContext._active_spark_context
        jc = getattr(sc._jvm.functions, name)(col._jc if isinstance(col, Column) else col)
        return Column(jc)
    _.__name__ = name
    _.__doc__ = doc
    return _


def _create_binary_mathfunction(name, doc=""):
    """ Create a binary mathfunction by name"""
    def _(col1, col2):
        sc = SparkContext._active_spark_context
        # users might write ints for simplicity. This would throw an error on the JVM side.
        jc = getattr(sc._jvm.functions, name)(col1._jc if isinstance(col1, Column) else float(col1),
                                              col2._jc if isinstance(col2, Column) else float(col2))
        return Column(jc)
    _.__name__ = name
    _.__doc__ = doc
    return _


_functions = {
    'lit': 'Creates a :class:`Column` of literal value.',
    'col': 'Returns a :class:`Column` based on the given column name.',
    'column': 'Returns a :class:`Column` based on the given column name.',
    'asc': 'Returns a sort expression based on the ascending order of the given column name.',
    'desc': 'Returns a sort expression based on the descending order of the given column name.',

    'upper': 'Converts a string expression to upper case.',
    'lower': 'Converts a string expression to upper case.',
    'sqrt': 'Computes the square root of the specified float value.',
    'abs': 'Computes the absolute value.',

    # unary math functions
    'acos': 'Computes the cosine inverse of the given value; the returned angle is in the range' +
            '0.0 through pi.',
    'asin': 'Computes the sine inverse of the given value; the returned angle is in the range' +
            '-pi/2 through pi/2.',
    'atan': 'Computes the tangent inverse of the given value.',
    'cbrt': 'Computes the cube-root of the given value.',
    'ceil': 'Computes the ceiling of the given value.',
    'cos': 'Computes the cosine of the given value.',
    'cosh': 'Computes the hyperbolic cosine of the given value.',
    'exp': 'Computes the exponential of the given value.',
    'expm1': 'Computes the exponential of the given value minus one.',
    'floor': 'Computes the floor of the given value.',
    'log': 'Computes the natural logarithm of the given value.',
    'log10': 'Computes the logarithm of the given value in Base 10.',
    'log1p': 'Computes the natural logarithm of the given value plus one.',
    'rint': 'Returns the double value that is closest in value to the argument and' +
            ' is equal to a mathematical integer.',
    'signum': 'Computes the signum of the given value.',
    'sin': 'Computes the sine of the given value.',
    'sinh': 'Computes the hyperbolic sine of the given value.',
    'tan': 'Computes the tangent of the given value.',
    'tanh': 'Computes the hyperbolic tangent of the given value.',
    'toDegrees': 'Converts an angle measured in radians to an approximately equivalent angle ' +
             'measured in degrees.',
    'toRadians': 'Converts an angle measured in degrees to an approximately equivalent angle ' +
             'measured in radians.',

    'bitwiseNOT': 'Computes bitwise not.',

    'max': 'Aggregate function: returns the maximum value of the expression in a group.',
    'min': 'Aggregate function: returns the minimum value of the expression in a group.',
    'first': 'Aggregate function: returns the first value in a group.',
    'last': 'Aggregate function: returns the last value in a group.',
    'count': 'Aggregate function: returns the number of items in a group.',
    'sum': 'Aggregate function: returns the sum of all values in the expression.',
    'avg': 'Aggregate function: returns the average of the values in a group.',
    'mean': 'Aggregate function: returns the average of the values in a group.',
    'sumDistinct': 'Aggregate function: returns the sum of distinct values in the expression.',
}

# math functions that take two arguments as input
_binary_mathfunctions = {
    'atan2': 'Returns the angle theta from the conversion of rectangular coordinates (x, y) to' +
             'polar coordinates (r, theta).',
    'hypot': 'Computes `sqrt(a^2^ + b^2^)` without intermediate overflow or underflow.',
    'pow': 'Returns the value of the first argument raised to the power of the second argument.'
}

for _name, _doc in _functions.items():
    globals()[_name] = _create_function(_name, _doc)
for _name, _doc in _binary_mathfunctions.items():
    globals()[_name] = _create_binary_mathfunction(_name, _doc)
del _name, _doc
__all__ += _functions.keys()
__all__ += _binary_mathfunctions.keys()
__all__.sort()


def array(*cols):
    """Creates a new array column.

    :param cols: list of column names (string) or list of :class:`Column` expressions that have
        the same data type.

    >>> df.select(array('age', 'age').alias("arr")).collect()
    [Row(arr=[2, 2]), Row(arr=[5, 5])]
    >>> df.select(array([df.age, df.age]).alias("arr")).collect()
    [Row(arr=[2, 2]), Row(arr=[5, 5])]
    """
    sc = SparkContext._active_spark_context
    if len(cols) == 1 and isinstance(cols[0], (list, set)):
        cols = cols[0]
    jc = sc._jvm.functions.array(_to_seq(sc, cols, _to_java_column))
    return Column(jc)


def approxCountDistinct(col, rsd=None):
    """Returns a new :class:`Column` for approximate distinct count of ``col``.

    >>> df.agg(approxCountDistinct(df.age).alias('c')).collect()
    [Row(c=2)]
    """
    sc = SparkContext._active_spark_context
    if rsd is None:
        jc = sc._jvm.functions.approxCountDistinct(_to_java_column(col))
    else:
        jc = sc._jvm.functions.approxCountDistinct(_to_java_column(col), rsd)
    return Column(jc)


def countDistinct(col, *cols):
    """Returns a new :class:`Column` for distinct count of ``col`` or ``cols``.

    >>> df.agg(countDistinct(df.age, df.name).alias('c')).collect()
    [Row(c=2)]

    >>> df.agg(countDistinct("age", "name").alias('c')).collect()
    [Row(c=2)]
    """
    sc = SparkContext._active_spark_context
    jc = sc._jvm.functions.countDistinct(_to_java_column(col), _to_seq(sc, cols, _to_java_column))
    return Column(jc)


def monotonicallyIncreasingId():
    """A column that generates monotonically increasing 64-bit integers.

    The generated ID is guaranteed to be monotonically increasing and unique, but not consecutive.
    The current implementation puts the partition ID in the upper 31 bits, and the record number
    within each partition in the lower 33 bits. The assumption is that the data frame has
    less than 1 billion partitions, and each partition has less than 8 billion records.

    As an example, consider a [[DataFrame]] with two partitions, each with 3 records.
    This expression would return the following IDs:
    0, 1, 2, 8589934592 (1L << 33), 8589934593, 8589934594.

    >>> df0 = sc.parallelize(range(2), 2).mapPartitions(lambda x: [(1,), (2,), (3,)]).toDF(['col1'])
    >>> df0.select(monotonicallyIncreasingId().alias('id')).collect()
    [Row(id=0), Row(id=1), Row(id=2), Row(id=8589934592), Row(id=8589934593), Row(id=8589934594)]
    """
    sc = SparkContext._active_spark_context
    return Column(sc._jvm.functions.monotonicallyIncreasingId())


def rand(seed=None):
    """Generates a random column with i.i.d. samples from U[0.0, 1.0].
    """
    sc = SparkContext._active_spark_context
    if seed:
        jc = sc._jvm.functions.rand(seed)
    else:
        jc = sc._jvm.functions.rand()
    return Column(jc)


def randn(seed=None):
    """Generates a column with i.i.d. samples from the standard normal distribution.
    """
    sc = SparkContext._active_spark_context
    if seed:
        jc = sc._jvm.functions.randn(seed)
    else:
        jc = sc._jvm.functions.randn()
    return Column(jc)


def sparkPartitionId():
    """A column for partition ID of the Spark task.

    Note that this is indeterministic because it depends on data partitioning and task scheduling.

    >>> df.repartition(1).select(sparkPartitionId().alias("pid")).collect()
    [Row(pid=0), Row(pid=0)]
    """
    sc = SparkContext._active_spark_context
    return Column(sc._jvm.functions.sparkPartitionId())


@ignore_unicode_prefix
def struct(*cols):
    """Creates a new struct column.

    :param cols: list of column names (string) or list of :class:`Column` expressions
        that are named or aliased.

    >>> df.select(struct('age', 'name').alias("struct")).collect()
    [Row(struct=Row(age=2, name=u'Alice')), Row(struct=Row(age=5, name=u'Bob'))]
    >>> df.select(struct([df.age, df.name]).alias("struct")).collect()
    [Row(struct=Row(age=2, name=u'Alice')), Row(struct=Row(age=5, name=u'Bob'))]
    """
    sc = SparkContext._active_spark_context
    if len(cols) == 1 and isinstance(cols[0], (list, set)):
        cols = cols[0]
    jc = sc._jvm.functions.struct(_to_seq(sc, cols, _to_java_column))
    return Column(jc)


class UserDefinedFunction(object):
    """
    User defined function in Python
    """
    def __init__(self, func, returnType):
        self.func = func
        self.returnType = returnType
        self._broadcast = None
        self._judf = self._create_judf()

    def _create_judf(self):
        f = self.func  # put it in closure `func`
        func = lambda _, it: map(lambda x: f(*x), it)
        ser = AutoBatchedSerializer(PickleSerializer())
        command = (func, None, ser, ser)
        sc = SparkContext._active_spark_context
        pickled_command, broadcast_vars, env, includes = _prepare_for_python_RDD(sc, command, self)
        ssql_ctx = sc._jvm.SQLContext(sc._jsc.sc())
        jdt = ssql_ctx.parseDataType(self.returnType.json())
        fname = f.__name__ if hasattr(f, '__name__') else f.__class__.__name__
        judf = sc._jvm.UserDefinedPythonFunction(fname, bytearray(pickled_command), env,
                                                 includes, sc.pythonExec, broadcast_vars,
                                                 sc._javaAccumulator, jdt)
        return judf

    def __del__(self):
        if self._broadcast is not None:
            self._broadcast.unpersist()
            self._broadcast = None

    def __call__(self, *cols):
        sc = SparkContext._active_spark_context
        jc = self._judf.apply(_to_seq(sc, cols, _to_java_column))
        return Column(jc)


def udf(f, returnType=StringType()):
    """Creates a :class:`Column` expression representing a user defined function (UDF).

    >>> from pyspark.sql.types import IntegerType
    >>> slen = udf(lambda s: len(s), IntegerType())
    >>> df.select(slen(df.name).alias('slen')).collect()
    [Row(slen=5), Row(slen=3)]
    """
    return UserDefinedFunction(f, returnType)


def _test():
    import doctest
    from pyspark.context import SparkContext
    from pyspark.sql import Row, SQLContext
    import pyspark.sql.functions
    globs = pyspark.sql.functions.__dict__.copy()
    sc = SparkContext('local[4]', 'PythonTest')
    globs['sc'] = sc
    globs['sqlContext'] = SQLContext(sc)
    globs['df'] = sc.parallelize([Row(name='Alice', age=2), Row(name='Bob', age=5)]).toDF()
    (failure_count, test_count) = doctest.testmod(
        pyspark.sql.functions, globs=globs,
        optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE)
    globs['sc'].stop()
    if failure_count:
        exit(-1)


if __name__ == "__main__":
    _test()