aboutsummaryrefslogtreecommitdiff
path: root/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/util/QuantileSummaries.scala
blob: fd62bd511fac0234245b10c2c1e55f9117e57040 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.util

import scala.collection.mutable.{ArrayBuffer, ListBuffer}

import org.apache.spark.sql.catalyst.util.QuantileSummaries.Stats

/**
 * Helper class to compute approximate quantile summary.
 * This implementation is based on the algorithm proposed in the paper:
 * "Space-efficient Online Computation of Quantile Summaries" by Greenwald, Michael
 * and Khanna, Sanjeev. (http://dx.doi.org/10.1145/375663.375670)
 *
 * In order to optimize for speed, it maintains an internal buffer of the last seen samples,
 * and only inserts them after crossing a certain size threshold. This guarantees a near-constant
 * runtime complexity compared to the original algorithm.
 *
 * @param compressThreshold the compression threshold.
 *   After the internal buffer of statistics crosses this size, it attempts to compress the
 *   statistics together.
 * @param relativeError the target relative error.
 *   It is uniform across the complete range of values.
 * @param sampled a buffer of quantile statistics.
 *   See the G-K article for more details.
 * @param count the count of all the elements *inserted in the sampled buffer*
 *              (excluding the head buffer)
 */
class QuantileSummaries(
    val compressThreshold: Int,
    val relativeError: Double,
    val sampled: Array[Stats] = Array.empty,
    val count: Long = 0L) extends Serializable {

  // a buffer of latest samples seen so far
  private val headSampled: ArrayBuffer[Double] = ArrayBuffer.empty

  import QuantileSummaries._

  /**
   * Returns a summary with the given observation inserted into the summary.
   * This method may either modify in place the current summary (and return the same summary,
   * modified in place), or it may create a new summary from scratch it necessary.
   * @param x the new observation to insert into the summary
   */
  def insert(x: Double): QuantileSummaries = {
    headSampled += x
    if (headSampled.size >= defaultHeadSize) {
      val result = this.withHeadBufferInserted
      if (result.sampled.length >= compressThreshold) {
        result.compress()
      } else {
        result
      }
    } else {
      this
    }
  }

  /**
   * Inserts an array of (unsorted samples) in a batch, sorting the array first to traverse
   * the summary statistics in a single batch.
   *
   * This method does not modify the current object and returns if necessary a new copy.
   *
   * @return a new quantile summary object.
   */
  private def withHeadBufferInserted: QuantileSummaries = {
    if (headSampled.isEmpty) {
      return this
    }
    var currentCount = count
    val sorted = headSampled.toArray.sorted
    val newSamples: ArrayBuffer[Stats] = new ArrayBuffer[Stats]()
    // The index of the next element to insert
    var sampleIdx = 0
    // The index of the sample currently being inserted.
    var opsIdx: Int = 0
    while(opsIdx < sorted.length) {
      val currentSample = sorted(opsIdx)
      // Add all the samples before the next observation.
      while(sampleIdx < sampled.size && sampled(sampleIdx).value <= currentSample) {
        newSamples += sampled(sampleIdx)
        sampleIdx += 1
      }

      // If it is the first one to insert, of if it is the last one
      currentCount += 1
      val delta =
        if (newSamples.isEmpty || (sampleIdx == sampled.size && opsIdx == sorted.length - 1)) {
          0
        } else {
          math.floor(2 * relativeError * currentCount).toInt
        }

      val tuple = Stats(currentSample, 1, delta)
      newSamples += tuple
      opsIdx += 1
    }

    // Add all the remaining existing samples
    while(sampleIdx < sampled.size) {
      newSamples += sampled(sampleIdx)
      sampleIdx += 1
    }
    new QuantileSummaries(compressThreshold, relativeError, newSamples.toArray, currentCount)
  }

  /**
   * Returns a new summary that compresses the summary statistics and the head buffer.
   *
   * This implements the COMPRESS function of the GK algorithm. It does not modify the object.
   *
   * @return a new summary object with compressed statistics
   */
  def compress(): QuantileSummaries = {
    // Inserts all the elements first
    val inserted = this.withHeadBufferInserted
    assert(inserted.headSampled.isEmpty)
    assert(inserted.count == count + headSampled.size)
    val compressed =
      compressImmut(inserted.sampled, mergeThreshold = 2 * relativeError * inserted.count)
    new QuantileSummaries(compressThreshold, relativeError, compressed, inserted.count)
  }

  private def shallowCopy: QuantileSummaries = {
    new QuantileSummaries(compressThreshold, relativeError, sampled, count)
  }

  /**
   * Merges two (compressed) summaries together.
   *
   * Returns a new summary.
   */
  def merge(other: QuantileSummaries): QuantileSummaries = {
    require(headSampled.isEmpty, "Current buffer needs to be compressed before merge")
    require(other.headSampled.isEmpty, "Other buffer needs to be compressed before merge")
    if (other.count == 0) {
      this.shallowCopy
    } else if (count == 0) {
      other.shallowCopy
    } else {
      // Merge the two buffers.
      // The GK algorithm is a bit unclear about it, but it seems there is no need to adjust the
      // statistics during the merging: the invariants are still respected after the merge.
      // TODO: could replace full sort by ordered merge, the two lists are known to be sorted
      // already.
      val res = (sampled ++ other.sampled).sortBy(_.value)
      val comp = compressImmut(res, mergeThreshold = 2 * relativeError * count)
      new QuantileSummaries(
        other.compressThreshold, other.relativeError, comp, other.count + count)
    }
  }

  /**
   * Runs a query for a given quantile.
   * The result follows the approximation guarantees detailed above.
   * The query can only be run on a compressed summary: you need to call compress() before using
   * it.
   *
   * @param quantile the target quantile
   * @return
   */
  def query(quantile: Double): Double = {
    require(quantile >= 0 && quantile <= 1.0, "quantile should be in the range [0.0, 1.0]")
    require(headSampled.isEmpty,
      "Cannot operate on an uncompressed summary, call compress() first")

    if (quantile <= relativeError) {
      return sampled.head.value
    }

    if (quantile >= 1 - relativeError) {
      return sampled.last.value
    }

    // Target rank
    val rank = math.ceil(quantile * count).toInt
    val targetError = math.ceil(relativeError * count)
    // Minimum rank at current sample
    var minRank = 0
    var i = 1
    while (i < sampled.size - 1) {
      val curSample = sampled(i)
      minRank += curSample.g
      val maxRank = minRank + curSample.delta
      if (maxRank - targetError <= rank && rank <= minRank + targetError) {
        return curSample.value
      }
      i += 1
    }
    sampled.last.value
  }
}

object QuantileSummaries {
  // TODO(tjhunter) more tuning could be done one the constants here, but for now
  // the main cost of the algorithm is accessing the data in SQL.
  /**
   * The default value for the compression threshold.
   */
  val defaultCompressThreshold: Int = 10000

  /**
   * The size of the head buffer.
   */
  val defaultHeadSize: Int = 50000

  /**
   * The default value for the relative error (1%).
   * With this value, the best extreme percentiles that can be approximated are 1% and 99%.
   */
  val defaultRelativeError: Double = 0.01

  /**
   * Statistics from the Greenwald-Khanna paper.
   * @param value the sampled value
   * @param g the minimum rank jump from the previous value's minimum rank
   * @param delta the maximum span of the rank.
   */
  case class Stats(value: Double, g: Int, delta: Int)

  private def compressImmut(
      currentSamples: IndexedSeq[Stats],
      mergeThreshold: Double): Array[Stats] = {
    if (currentSamples.isEmpty) {
      return Array.empty[Stats]
    }
    val res = ListBuffer.empty[Stats]
    // Start for the last element, which is always part of the set.
    // The head contains the current new head, that may be merged with the current element.
    var head = currentSamples.last
    var i = currentSamples.size - 2
    // Do not compress the last element
    while (i >= 1) {
      // The current sample:
      val sample1 = currentSamples(i)
      // Do we need to compress?
      if (sample1.g + head.g + head.delta < mergeThreshold) {
        // Do not insert yet, just merge the current element into the head.
        head = head.copy(g = head.g + sample1.g)
      } else {
        // Prepend the current head, and keep the current sample as target for merging.
        res.prepend(head)
        head = sample1
      }
      i -= 1
    }
    res.prepend(head)
    // If necessary, add the minimum element:
    val currHead = currentSamples.head
    if (currHead.value < head.value) {
      res.prepend(currentSamples.head)
    }
    res.toArray
  }
}