aboutsummaryrefslogblamecommitdiff
path: root/apps/ardrone_interface/ardrone_motor_control.c
blob: ad5893963700cc0bc884e29c8d671c3ef460653a (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
















































































































































































































































































































































































































































                                                                                                                                                                                               
/****************************************************************************
 *
 *   Copyright (C) 2012 PX4 Development Team. All rights reserved.
 *   Author: Lorenz Meier <lm@inf.ethz.ch>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file ardrone_motor_control.c
 * Implementation of AR.Drone 1.0 / 2.0 motor control interface
 */

#include <nuttx/config.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <drivers/drv_gpio.h>
#include <arch/board/up_hrt.h>

#include "ardrone_motor_control.h"

static const unsigned long motor_gpios = GPIO_EXT_1 | GPIO_EXT_2 | GPIO_MULTI_1 | GPIO_MULTI_2;
static const unsigned long motor_gpio[4] = { GPIO_EXT_1, GPIO_EXT_2, GPIO_MULTI_1, GPIO_MULTI_2 };

typedef union {
	uint16_t motor_value;
	uint8_t bytes[2];
} motor_union_t;

/**
 * @brief Generate the 8-byte motor set packet
 *
 * @return the number of bytes (8)
 */
void ar_get_motor_packet(uint8_t *motor_buf, uint16_t motor1, uint16_t motor2, uint16_t motor3, uint16_t motor4)
{
	motor_buf[0] = 0x20;
	motor_buf[1] = 0x00;
	motor_buf[2] = 0x00;
	motor_buf[3] = 0x00;
	motor_buf[4] = 0x00;
	/*
	 * {0x20, 0x00, 0x00, 0x00, 0x00};
	 * 0x20 is start sign / motor command
	 */
	motor_union_t curr_motor;
	uint16_t nineBitMask = 0x1FF;

	/* Set motor 1 */
	curr_motor.motor_value = (motor1 & nineBitMask) << 4;
	motor_buf[0] |= curr_motor.bytes[1];
	motor_buf[1] |= curr_motor.bytes[0];

	/* Set motor 2 */
	curr_motor.motor_value = (motor2 & nineBitMask) << 3;
	motor_buf[1] |= curr_motor.bytes[1];
	motor_buf[2] |= curr_motor.bytes[0];

	/* Set motor 3 */
	curr_motor.motor_value = (motor3 & nineBitMask) << 2;
	motor_buf[2] |= curr_motor.bytes[1];
	motor_buf[3] |= curr_motor.bytes[0];

	/* Set motor 4 */
	curr_motor.motor_value = (motor4 & nineBitMask) << 1;
	motor_buf[3] |= curr_motor.bytes[1];
	motor_buf[4] |= curr_motor.bytes[0];
}

void ar_enable_broadcast(int fd)
{
	ar_select_motor(fd, 0);
}

int ar_multiplexing_init()
{
	int		fd;
	
	fd = open(GPIO_DEVICE_PATH, 0);

	if (fd < 0) {
		printf("GPIO: open fail\n");
		return fd;
	}

	/* deactivate all outputs */
	int ret = 0;
	ret += ioctl(fd, GPIO_SET, motor_gpios);

	if (ioctl(fd, GPIO_SET_OUTPUT, motor_gpios) != 0) {
		printf("GPIO: output set fail\n");
		close(fd);
		return -1;
	}

	if (ret < 0) {
		printf("GPIO: clearing pins fail\n");
		close(fd);
		return -1;
	}

	return fd;
}

int ar_multiplexing_deinit(int fd)
{
	if (fd < 0) {
		printf("GPIO: no valid descriptor\n");
		return fd;
	}

	int ret = 0;

	/* deselect motor 1-4 */
	ret += ioctl(fd, GPIO_SET, motor_gpios);

	if (ret != 0) {
		printf("GPIO: clear failed %d times\n", ret);
	}

	if (ioctl(fd, GPIO_SET_INPUT, motor_gpios) != 0) {
		printf("GPIO: input set fail\n");
		return -1;
	}

	close(fd);

	return ret;
}

int ar_select_motor(int fd, uint8_t motor)
{
	int ret = 0;
	unsigned long gpioset;
	/*
	 *  Four GPIOS:
	 *		GPIO_EXT1
	 *		GPIO_EXT2
	 *		GPIO_UART2_CTS
	 *		GPIO_UART2_RTS
	 */

	/* select motor 0 to enable broadcast */
	if (motor == 0) {
		/* select motor 1-4 */
		ret += ioctl(fd, GPIO_CLEAR, motor_gpios);

	} else {
		/* deselect all */
		ret += ioctl(fd, GPIO_SET, motor_gpios);

		/* select reqested motor */	
		ret += ioctl(fd, GPIO_CLEAR, motor_gpio[motor - 1]);

		/* deselect all others */
		// gpioset = motor_gpios ^ motor_gpio[motor - 1];
		// ret += ioctl(fd, GPIO_SET, gpioset);
	}

	return ret;
}

int ar_init_motors(int ardrone_uart, int *gpios_pin)
{
	/* Initialize multiplexing */
	*gpios_pin = ar_multiplexing_init();

	/* Write ARDrone commands on UART2 */
	uint8_t initbuf[] = {0xE0, 0x91, 0xA1, 0x00, 0x40};
	uint8_t multicastbuf[] = {0xA0, 0xA0, 0xA0, 0xA0, 0xA0, 0xA0};

	/* initialize all motors
	 * - select one motor at a time
	 * - configure motor
	 */
	int i;
	int errcounter = 0;

	for (i = 1; i < 5; ++i) {
		/* Initialize motors 1-4 */
		initbuf[3] = i;
		errcounter += ar_select_motor(*gpios_pin, i);

		write(ardrone_uart, initbuf + 0, 1);

		/* sleep 400 ms */
		usleep(200000);
		usleep(200000);

		write(ardrone_uart, initbuf + 1, 1);
		/* wait 50 ms */
		usleep(50000);

		write(ardrone_uart, initbuf + 2, 1);
		/* wait 50 ms */
		usleep(50000);

		write(ardrone_uart, initbuf + 3, 1);
		/* wait 50 ms */
		usleep(50000);

		write(ardrone_uart, initbuf + 4, 1);
		/* wait 50 ms */
		usleep(50000);

		/* enable multicast */
		write(ardrone_uart, multicastbuf + 0, 1);
		/* wait 1 ms */
		usleep(1000);

		write(ardrone_uart, multicastbuf + 1, 1);
		/* wait 1 ms */
		usleep(1000);

		write(ardrone_uart, multicastbuf + 2, 1);
		/* wait 1 ms */
		usleep(1000);

		write(ardrone_uart, multicastbuf + 3, 1);
		/* wait 1 ms */
		usleep(1000);

		write(ardrone_uart, multicastbuf + 4, 1);
		/* wait 1 ms */
		usleep(1000);

		write(ardrone_uart, multicastbuf + 5, 1);
		/* wait 5 ms */
		usleep(50000);
	}

	/* start the multicast part */
	errcounter += ar_select_motor(*gpios_pin, 0);

	if (errcounter != 0) {
		fprintf(stderr, "[ar motors] init sequence incomplete, failed %d times", -errcounter);
		fflush(stdout);
	}
	return errcounter;
}

/*
 * Sets the leds on the motor controllers, 1 turns led on, 0 off.
 */
void ar_set_leds(int ardrone_uart, uint8_t led1_red, uint8_t led1_green, uint8_t led2_red, uint8_t led2_green, uint8_t led3_red, uint8_t led3_green, uint8_t led4_red, uint8_t led4_green)
{
	/*
	 * 2 bytes are sent. The first 3 bits describe the command: 011 means led control
	 * the following 4 bits are the red leds for motor 4, 3, 2, 1
	 * then 4 bits with unknown function, then 4 bits for green leds for motor 4, 3, 2, 1
	 * the last bit is unknown.
	 *
	 * The packet is therefore:
	 * 011 rrrr 0000 gggg 0
	 */
	uint8_t leds[2];
	leds[0] = 0x60 | ((led4_red & 0x01) << 4) | ((led3_red & 0x01) << 3) | ((led2_red & 0x01) << 2) | ((led1_red & 0x01) << 1);
	leds[1] = ((led4_green & 0x01) << 4) | ((led3_green & 0x01) << 3) | ((led2_green & 0x01) << 2) | ((led1_green & 0x01) << 1);
	write(ardrone_uart, leds, 2);
}

int ardrone_write_motor_commands(int ardrone_fd, uint16_t motor1, uint16_t motor2, uint16_t motor3, uint16_t motor4) {
	const unsigned int min_motor_interval = 20000;
	static uint64_t last_motor_time = 0;
	if (hrt_absolute_time() - last_motor_time > min_motor_interval) {
		uint8_t buf[5] = {0};
		ar_get_motor_packet(buf, motor1, motor2, motor3, motor4);
		int ret;
		if ((ret = write(ardrone_fd, buf, sizeof(buf))) > 0) {
			return OK;
		} else {
			return ret;
		}
	} else {
		return -ERROR;
	}
}

void ardrone_mixing_and_output(int ardrone_write, const struct actuator_controls_s *actuators, bool verbose) {

	float roll_control = actuators->control[0];
	float pitch_control = actuators->control[1];
	float yaw_control = actuators->control[2];
	float motor_thrust = actuators->control[3];

	unsigned int motor_skip_counter = 0;

	const float min_thrust = 0.02f;			/**< 2% minimum thrust */
	const float max_thrust = 1.0f;			/**< 100% max thrust */
	const float scaling = 512.0f;			/**< 100% thrust equals a value of 512 */

	const float min_gas = min_thrust * scaling;	/**< value range sent to motors, minimum */
	const float max_gas = max_thrust * scaling;	/**< value range sent to motors, maximum */

	/* initialize all fields to zero */
	uint16_t motor_pwm[4] = {0};
	float motor_calc[4] = {0};

	float output_band = 0.0f;
	float band_factor = 0.75f;
	const float startpoint_full_control = 0.25f;	/**< start full control at 25% thrust */
	float yaw_factor = 1.0f;

	if (motor_thrust <= min_thrust) {
		motor_thrust = min_thrust;
		output_band = 0.0f;

	} else if (motor_thrust < startpoint_full_control && motor_thrust > min_thrust) {
		output_band = band_factor * (motor_thrust - min_thrust);

	} else if (motor_thrust >= startpoint_full_control && motor_thrust < max_thrust - band_factor * startpoint_full_control) {
		output_band = band_factor * startpoint_full_control;

	} else if (motor_thrust >= max_thrust - band_factor * startpoint_full_control) {
		output_band = band_factor * (max_thrust - motor_thrust);
	}

	if (verbose && motor_skip_counter % 100 == 0) {
		printf("1: mot1: %3.1f band: %3.1f r: %3.1f n: %3.1f y: %3.1f\n", (double)motor_thrust, (double)output_band, (double)roll_control, (double)pitch_control, (double)yaw_control);
	}

	//add the yaw, nick and roll components to the basic thrust //TODO:this should be done by the mixer

	// FRONT (MOTOR 1)
	motor_calc[0] = motor_thrust + (roll_control / 2 + pitch_control / 2 - yaw_control);

	// RIGHT (MOTOR 2)
	motor_calc[1] = motor_thrust + (-roll_control / 2 + pitch_control / 2 + yaw_control);

	// BACK (MOTOR 3)
	motor_calc[2] = motor_thrust + (-roll_control / 2 - pitch_control / 2 - yaw_control);

	// LEFT (MOTOR 4)
	motor_calc[3] = motor_thrust + (roll_control / 2 - pitch_control / 2 + yaw_control);

	// if we are not in the output band
	if (!(motor_calc[0] < motor_thrust + output_band && motor_calc[0] > motor_thrust - output_band
	      && motor_calc[1] < motor_thrust + output_band && motor_calc[1] > motor_thrust - output_band
	      && motor_calc[2] < motor_thrust + output_band && motor_calc[2] > motor_thrust - output_band
	      && motor_calc[3] < motor_thrust + output_band && motor_calc[3] > motor_thrust - output_band)) {

		yaw_factor = 0.5f;
		// FRONT (MOTOR 1)
		motor_calc[0] = motor_thrust + (roll_control / 2 + pitch_control / 2 - yaw_control * yaw_factor);

		// RIGHT (MOTOR 2)
		motor_calc[1] = motor_thrust + (-roll_control / 2 + pitch_control / 2 + yaw_control * yaw_factor);

		// BACK (MOTOR 3)
		motor_calc[2] = motor_thrust + (-roll_control / 2 - pitch_control / 2 - yaw_control * yaw_factor);

		// LEFT (MOTOR 4)
		motor_calc[3] = motor_thrust + (roll_control / 2 - pitch_control / 2 + yaw_control * yaw_factor);
	}

	if (verbose && motor_skip_counter % 100 == 0) {
		printf("2: m1: %3.1f m2: %3.1f m3: %3.1f m4: %3.1f\n", (double)motor_calc[0], (double)motor_calc[1], (double)motor_calc[2], (double)motor_calc[3]);
	}

	for (int i = 0; i < 4; i++) {
		//check for limits
		if (motor_calc[i] < motor_thrust - output_band) {
			motor_calc[i] = motor_thrust - output_band;
		}

		if (motor_calc[i] > motor_thrust + output_band) {
			motor_calc[i] = motor_thrust + output_band;
		}
	}

	if (verbose && motor_skip_counter % 100 == 0) {
		printf("3: band lim: m1: %3.1f m2: %3.1f m3: %3.1f m4: %3.1f\n", (double)motor_calc[0], (double)motor_calc[1], (double)motor_calc[2], (double)motor_calc[3]);
	}

	/* set the motor values */

	/* scale up from 0..1 to 10..512) */
	motor_pwm[0] = (uint16_t) (motor_calc[0] * ((float)max_gas - min_gas) + min_gas);
	motor_pwm[1] = (uint16_t) (motor_calc[1] * ((float)max_gas - min_gas) + min_gas);
	motor_pwm[2] = (uint16_t) (motor_calc[2] * ((float)max_gas - min_gas) + min_gas);
	motor_pwm[3] = (uint16_t) (motor_calc[3] * ((float)max_gas - min_gas) + min_gas);

	if (verbose && motor_skip_counter % 100 == 0) {
		printf("4: scaled: m1: %d m2: %d m3: %d m4: %d\n", motor_pwm[0], motor_pwm[1], motor_pwm[2], motor_pwm[3]);
	}

	/* Keep motors spinning while armed and prevent overflows */

	/* Failsafe logic - should never be necessary */
	motor_pwm[0] = (motor_pwm[0] > 0) ? motor_pwm[0] : 10;
	motor_pwm[1] = (motor_pwm[1] > 0) ? motor_pwm[1] : 10;
	motor_pwm[2] = (motor_pwm[2] > 0) ? motor_pwm[2] : 10;
	motor_pwm[3] = (motor_pwm[3] > 0) ? motor_pwm[3] : 10;

	/* Failsafe logic - should never be necessary */
	motor_pwm[0] = (motor_pwm[0] <= 512) ? motor_pwm[0] : 512;
	motor_pwm[1] = (motor_pwm[1] <= 512) ? motor_pwm[1] : 512;
	motor_pwm[2] = (motor_pwm[2] <= 512) ? motor_pwm[2] : 512;
	motor_pwm[3] = (motor_pwm[3] <= 512) ? motor_pwm[3] : 512;

	/* send motors via UART */
	if (verbose && motor_skip_counter % 100 == 0) printf("5: mot: %3.1f-%i-%i-%i-%i\n\n", (double)motor_thrust, motor_pwm[0], motor_pwm[1], motor_pwm[2], motor_pwm[3]);
	ardrone_write_motor_commands(ardrone_write, motor_pwm[0], motor_pwm[1], motor_pwm[2], motor_pwm[3]);

	motor_skip_counter++;
}