aboutsummaryrefslogblamecommitdiff
path: root/src/modules/mc_pos_control_multiplatform/mc_pos_control.cpp
blob: a46163e6f6777750da01d6e130641a23099072b5 (plain) (tree)
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949















































































                                                                                                                 

                                                                         


















































































































































                                                                                                              



                                                                                                                                          


                                                                                                                 
                                                                                                     











                                                                                                           
                                                                           




















































































































































































































































































































                                                                                                                                                               
                                                                   




































































































































































































































































































































































































                                                                                                                                                                                                                        
/****************************************************************************
 *
 *   Copyright (c) 2013, 2014 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file mc_pos_control.cpp
 * Multicopter position controller.
 *
 * @author Anton Babushkin <anton.babushkin@me.com>
 * @author Thomas Gubler <thomasgubler@gmail.com>
 */

#include "mc_pos_control.h"
#include "mc_pos_control_params.h"

#define TILT_COS_MAX	0.7f
#define SIGMA		0.000001f
#define MIN_DIST	0.01f

MulticopterPositionControl::MulticopterPositionControl() :

	_task_should_exit(false),
	_control_task(-1),
	_mavlink_fd(-1),

/* publications */
	_att_sp_pub(nullptr),
	_local_pos_sp_pub(nullptr),
	_global_vel_sp_pub(nullptr),

	_ref_alt(0.0f),
	_ref_timestamp(0),

	_reset_pos_sp(true),
	_reset_alt_sp(true),
	_mode_auto(false),
	_thrust_int(),
	_R()
{
	memset(&_ref_pos, 0, sizeof(_ref_pos));

	/*
	 * Do subscriptions
	 */
	_att = _n.subscribe<px4_vehicle_attitude>(&MulticopterPositionControl::handle_vehicle_attitude, this, 0);
	_v_att_sp = _n.subscribe<px4_vehicle_attitude_setpoint>(0);
	_control_mode = _n.subscribe<px4_vehicle_control_mode>(0);
	_parameter_update = _n.subscribe<px4_parameter_update>(
			&MulticopterPositionControl::handle_parameter_update, this, 1000);
	_manual_control_sp = _n.subscribe<px4_manual_control_setpoint>(0);
	_armed = _n.subscribe<px4_actuator_armed>(0);
	_local_pos = _n.subscribe<px4_vehicle_local_position>(0);
	_pos_sp_triplet = _n.subscribe<px4_position_setpoint_triplet>(0);
	_local_pos_sp = _n.subscribe<px4_vehicle_local_position_setpoint>(0);
	_global_vel_sp = _n.subscribe<px4_vehicle_global_velocity_setpoint>(0);



	_params.pos_p.zero();
	_params.vel_p.zero();
	_params.vel_i.zero();
	_params.vel_d.zero();
	_params.vel_max.zero();
	_params.vel_ff.zero();
	_params.sp_offs_max.zero();

	_pos.zero();
	_pos_sp.zero();
	_vel.zero();
	_vel_sp.zero();
	_vel_prev.zero();
	_vel_ff.zero();
	_sp_move_rate.zero();

	_params_handles.thr_min		= PX4_PARAM_INIT(MPC_THR_MIN);
	_params_handles.thr_max		= PX4_PARAM_INIT(MPC_THR_MAX);
	_params_handles.z_p		= PX4_PARAM_INIT(MPC_Z_P);
	_params_handles.z_vel_p		= PX4_PARAM_INIT(MPC_Z_VEL_P);
	_params_handles.z_vel_i		= PX4_PARAM_INIT(MPC_Z_VEL_I);
	_params_handles.z_vel_d		= PX4_PARAM_INIT(MPC_Z_VEL_D);
	_params_handles.z_vel_max	= PX4_PARAM_INIT(MPC_Z_VEL_MAX);
	_params_handles.z_ff		= PX4_PARAM_INIT(MPC_Z_FF);
	_params_handles.xy_p		= PX4_PARAM_INIT(MPC_XY_P);
	_params_handles.xy_vel_p	= PX4_PARAM_INIT(MPC_XY_VEL_P);
	_params_handles.xy_vel_i	= PX4_PARAM_INIT(MPC_XY_VEL_I);
	_params_handles.xy_vel_d	= PX4_PARAM_INIT(MPC_XY_VEL_D);
	_params_handles.xy_vel_max	= PX4_PARAM_INIT(MPC_XY_VEL_MAX);
	_params_handles.xy_ff		= PX4_PARAM_INIT(MPC_XY_FF);
	_params_handles.tilt_max_air	= PX4_PARAM_INIT(MPC_TILTMAX_AIR);
	_params_handles.land_speed	= PX4_PARAM_INIT(MPC_LAND_SPEED);
	_params_handles.tilt_max_land	= PX4_PARAM_INIT(MPC_TILTMAX_LND);

	/* fetch initial parameter values */
	parameters_update();

	_R.identity();
}

MulticopterPositionControl::~MulticopterPositionControl()
{
}

int
MulticopterPositionControl::parameters_update()
{
	PX4_PARAM_GET(_params_handles.thr_min, &_params.thr_min);
	PX4_PARAM_GET(_params_handles.thr_max, &_params.thr_max);
	PX4_PARAM_GET(_params_handles.tilt_max_air, &_params.tilt_max_air);
	_params.tilt_max_air = math::radians(_params.tilt_max_air);
	PX4_PARAM_GET(_params_handles.land_speed, &_params.land_speed);
	PX4_PARAM_GET(_params_handles.tilt_max_land, &_params.tilt_max_land);
	_params.tilt_max_land = math::radians(_params.tilt_max_land);

	float v;
	PX4_PARAM_GET(_params_handles.xy_p, &v);
	_params.pos_p(0) = v;
	_params.pos_p(1) = v;
	PX4_PARAM_GET(_params_handles.z_p, &v);
	_params.pos_p(2) = v;
	PX4_PARAM_GET(_params_handles.xy_vel_p, &v);
	_params.vel_p(0) = v;
	_params.vel_p(1) = v;
	PX4_PARAM_GET(_params_handles.z_vel_p, &v);
	_params.vel_p(2) = v;
	PX4_PARAM_GET(_params_handles.xy_vel_i, &v);
	_params.vel_i(0) = v;
	_params.vel_i(1) = v;
	PX4_PARAM_GET(_params_handles.z_vel_i, &v);
	_params.vel_i(2) = v;
	PX4_PARAM_GET(_params_handles.xy_vel_d, &v);
	_params.vel_d(0) = v;
	_params.vel_d(1) = v;
	PX4_PARAM_GET(_params_handles.z_vel_d, &v);
	_params.vel_d(2) = v;
	PX4_PARAM_GET(_params_handles.xy_vel_max, &v);
	_params.vel_max(0) = v;
	_params.vel_max(1) = v;
	PX4_PARAM_GET(_params_handles.z_vel_max, &v);
	_params.vel_max(2) = v;
	PX4_PARAM_GET(_params_handles.xy_ff, &v);
	v = math::constrain(v, 0.0f, 1.0f);
	_params.vel_ff(0) = v;
	_params.vel_ff(1) = v;
	PX4_PARAM_GET(_params_handles.z_ff, &v);
	v = math::constrain(v, 0.0f, 1.0f);
	_params.vel_ff(2) = v;

	_params.sp_offs_max = _params.vel_max.edivide(_params.pos_p) * 2.0f;

	return OK;
}


float
MulticopterPositionControl::scale_control(float ctl, float end, float dz)
{
	if (ctl > dz) {
		return (ctl - dz) / (end - dz);

	} else if (ctl < -dz) {
		return (ctl + dz) / (end - dz);

	} else {
		return 0.0f;
	}
}

void
MulticopterPositionControl::update_ref()
{
	if (_local_pos->data().ref_timestamp != _ref_timestamp) {
		double lat_sp, lon_sp;
		float alt_sp = 0.0f;

		if (_ref_timestamp != 0) {
			/* calculate current position setpoint in global frame */
			map_projection_reproject(&_ref_pos, _pos_sp(0), _pos_sp(1), &lat_sp, &lon_sp);
			alt_sp = _ref_alt - _pos_sp(2);
		}

		/* update local projection reference */
		map_projection_init(&_ref_pos, _local_pos->data().ref_lat, _local_pos->data().ref_lon);
		_ref_alt = _local_pos->data().ref_alt;

		if (_ref_timestamp != 0) {
			/* reproject position setpoint to new reference */
			map_projection_project(&_ref_pos, lat_sp, lon_sp, &_pos_sp.data[0], &_pos_sp.data[1]);
			_pos_sp(2) = -(alt_sp - _ref_alt);
		}

		_ref_timestamp = _local_pos->data().ref_timestamp;
	}
}

void
MulticopterPositionControl::reset_pos_sp()
{
	if (_reset_pos_sp) {
		_reset_pos_sp = false;
		/* shift position setpoint to make attitude setpoint continuous */
		_pos_sp(0) = _pos(0); //+ (_vel(0) - PX4_R(_att_sp_msg.data().R_body, 0, 2) * _att_sp_msg.data().thrust / _params.vel_p(0)
				// - _params.vel_ff(0) * _sp_move_rate(0)) / _params.pos_p(0);
		_pos_sp(1) = _pos(1); //+ (_vel(1) - PX4_R(_att_sp_msg.data().R_body, 1, 2) * _att_sp_msg.data().thrust / _params.vel_p(1)
				// - _params.vel_ff(1) * _sp_move_rate(1)) / _params.pos_p(1);

		//XXX: port this once a mavlink like interface is available
		// mavlink_log_info(_mavlink_fd, "[mpc] reset pos sp: %d, %d", (int)_pos_sp(0), (int)_pos_sp(1));
		PX4_INFO("[mpc] reset pos sp: %2.3f, %2.3f", (double)_pos_sp(0), (double)_pos_sp(1));
	}
}

void
MulticopterPositionControl::reset_alt_sp()
{
	if (_reset_alt_sp) {
		_reset_alt_sp = false;
		_pos_sp(2) = _pos(2) + (_vel(2) - _params.vel_ff(2) * _sp_move_rate(2)) / _params.pos_p(2);

		//XXX: port this once a mavlink like interface is available
		// mavlink_log_info(_mavlink_fd, "[mpc] reset alt sp: %d", -(int)_pos_sp(2));
		PX4_INFO("[mpc] reset alt sp: %2.3f", -(double)_pos_sp(2));
	}
}

void
MulticopterPositionControl::limit_pos_sp_offset()
{
	math::Vector<3> pos_sp_offs;
	pos_sp_offs.zero();

	if (_control_mode->data().flag_control_position_enabled) {
		pos_sp_offs(0) = (_pos_sp(0) - _pos(0)) / _params.sp_offs_max(0);
		pos_sp_offs(1) = (_pos_sp(1) - _pos(1)) / _params.sp_offs_max(1);
	}

	if (_control_mode->data().flag_control_altitude_enabled) {
		pos_sp_offs(2) = (_pos_sp(2) - _pos(2)) / _params.sp_offs_max(2);
	}

	float pos_sp_offs_norm = pos_sp_offs.length();

	if (pos_sp_offs_norm > 1.0f) {
		pos_sp_offs /= pos_sp_offs_norm;
		_pos_sp = _pos + pos_sp_offs.emult(_params.sp_offs_max);
	}
}

void
MulticopterPositionControl::control_manual(float dt)
{
	_sp_move_rate.zero();

	if (_control_mode->data().flag_control_altitude_enabled) {
		/* move altitude setpoint with throttle stick */
		_sp_move_rate(2) = -scale_control(_manual_control_sp->data().z - 0.5f, 0.5f, alt_ctl_dz);
	}

	if (_control_mode->data().flag_control_position_enabled) {
		/* move position setpoint with roll/pitch stick */
		_sp_move_rate(0) = _manual_control_sp->data().x;
		_sp_move_rate(1) = _manual_control_sp->data().y;
	}

	/* limit setpoint move rate */
	float sp_move_norm = _sp_move_rate.length();

	if (sp_move_norm > 1.0f) {
		_sp_move_rate /= sp_move_norm;
	}

	/* _sp_move_rate scaled to 0..1, scale it to max speed and rotate around yaw */
	math::Matrix<3, 3> R_yaw_sp;
	R_yaw_sp.from_euler(0.0f, 0.0f, _att_sp_msg.data().yaw_body);
	_sp_move_rate = R_yaw_sp * _sp_move_rate.emult(_params.vel_max);

	if (_control_mode->data().flag_control_altitude_enabled) {
		/* reset alt setpoint to current altitude if needed */
		reset_alt_sp();
	}

	if (_control_mode->data().flag_control_position_enabled) {
		/* reset position setpoint to current position if needed */
		reset_pos_sp();
	}

	/* feed forward setpoint move rate with weight vel_ff */
	_vel_ff = _sp_move_rate.emult(_params.vel_ff);

	/* move position setpoint */
	_pos_sp += _sp_move_rate * dt;

	/* check if position setpoint is too far from actual position */
	math::Vector<3> pos_sp_offs;
	pos_sp_offs.zero();

	if (_control_mode->data().flag_control_position_enabled) {
		pos_sp_offs(0) = (_pos_sp(0) - _pos(0)) / _params.sp_offs_max(0);
		pos_sp_offs(1) = (_pos_sp(1) - _pos(1)) / _params.sp_offs_max(1);
	}

	if (_control_mode->data().flag_control_altitude_enabled) {
		pos_sp_offs(2) = (_pos_sp(2) - _pos(2)) / _params.sp_offs_max(2);
	}

	float pos_sp_offs_norm = pos_sp_offs.length();

	if (pos_sp_offs_norm > 1.0f) {
		pos_sp_offs /= pos_sp_offs_norm;
		_pos_sp = _pos + pos_sp_offs.emult(_params.sp_offs_max);
	}
}

void
MulticopterPositionControl::control_offboard(float dt)
{
	if (_pos_sp_triplet->data().current.valid) {
		if (_control_mode->data().flag_control_position_enabled && _pos_sp_triplet->data().current.position_valid) {
			/* control position */
			_pos_sp(0) = _pos_sp_triplet->data().current.x;
			_pos_sp(1) = _pos_sp_triplet->data().current.y;
		} else if (_control_mode->data().flag_control_velocity_enabled && _pos_sp_triplet->data().current.velocity_valid) {
			/* control velocity */
			/* reset position setpoint to current position if needed */
			reset_pos_sp();

			/* set position setpoint move rate */
			_sp_move_rate(0) = _pos_sp_triplet->data().current.vx;
			_sp_move_rate(1) = _pos_sp_triplet->data().current.vy;
		}

		if (_pos_sp_triplet->data().current.yaw_valid) {
			_att_sp_msg.data().yaw_body = _pos_sp_triplet->data().current.yaw;
		} else if (_pos_sp_triplet->data().current.yawspeed_valid) {
			_att_sp_msg.data().yaw_body = _att_sp_msg.data().yaw_body + _pos_sp_triplet->data().current.yawspeed * dt;
		}

		if (_control_mode->data().flag_control_altitude_enabled && _pos_sp_triplet->data().current.position_valid) {
			/* Control altitude */
			_pos_sp(2) = _pos_sp_triplet->data().current.z;
		} else if (_control_mode->data().flag_control_climb_rate_enabled && _pos_sp_triplet->data().current.velocity_valid) {
			/* reset alt setpoint to current altitude if needed */
			reset_alt_sp();

			/* set altitude setpoint move rate */
			_sp_move_rate(2) = _pos_sp_triplet->data().current.vz;
		}

		/* feed forward setpoint move rate with weight vel_ff */
		_vel_ff = _sp_move_rate.emult(_params.vel_ff);

		/* move position setpoint */
		_pos_sp += _sp_move_rate * dt;

	} else {
		reset_pos_sp();
		reset_alt_sp();
	}
}

bool
MulticopterPositionControl::cross_sphere_line(const math::Vector<3>& sphere_c, float sphere_r,
		const math::Vector<3> line_a, const math::Vector<3> line_b, math::Vector<3>& res)
{
	/* project center of sphere on line */
	/* normalized AB */
	math::Vector<3> ab_norm = line_b - line_a;
	ab_norm.normalize();
	math::Vector<3> d = line_a + ab_norm * ((sphere_c - line_a) * ab_norm);
	float cd_len = (sphere_c - d).length();

	/* we have triangle CDX with known CD and CX = R, find DX */
	if (sphere_r > cd_len) {
		/* have two roots, select one in A->B direction from D */
		float dx_len = sqrtf(sphere_r * sphere_r - cd_len * cd_len);
		res = d + ab_norm * dx_len;
		return true;

	} else {
		/* have no roots, return D */
		res = d;
		return false;
	}
}

void
MulticopterPositionControl::control_auto(float dt)
{
	if (!_mode_auto) {
		_mode_auto = true;
		/* reset position setpoint on AUTO mode activation */
		reset_pos_sp();
		reset_alt_sp();
	}

	if (_pos_sp_triplet->data().current.valid) {
		/* in case of interrupted mission don't go to waypoint but stay at current position */
		_reset_pos_sp = true;
		_reset_alt_sp = true;

		/* project setpoint to local frame */
		math::Vector<3> curr_sp;
		map_projection_project(&_ref_pos,
				       _pos_sp_triplet->data().current.lat, _pos_sp_triplet->data().current.lon,
				       &curr_sp.data[0], &curr_sp.data[1]);
		curr_sp(2) = -(_pos_sp_triplet->data().current.alt - _ref_alt);

		/* scaled space: 1 == position error resulting max allowed speed, L1 = 1 in this space */
		math::Vector<3> scale = _params.pos_p.edivide(_params.vel_max);	// TODO add mult param here

		/* convert current setpoint to scaled space */
		math::Vector<3> curr_sp_s = curr_sp.emult(scale);

		/* by default use current setpoint as is */
		math::Vector<3> pos_sp_s = curr_sp_s;

		if (_pos_sp_triplet->data().current.type == _pos_sp_triplet->data().current.SETPOINT_TYPE_POSITION && _pos_sp_triplet->data().previous.valid) {
			/* follow "previous - current" line */
			math::Vector<3> prev_sp;
			map_projection_project(&_ref_pos,
						   _pos_sp_triplet->data().previous.lat, _pos_sp_triplet->data().previous.lon,
						   &prev_sp.data[0], &prev_sp.data[1]);
			prev_sp(2) = -(_pos_sp_triplet->data().previous.alt - _ref_alt);

			if ((curr_sp - prev_sp).length() > MIN_DIST) {

				/* find X - cross point of L1 sphere and trajectory */
				math::Vector<3> pos_s = _pos.emult(scale);
				math::Vector<3> prev_sp_s = prev_sp.emult(scale);
				math::Vector<3> prev_curr_s = curr_sp_s - prev_sp_s;
				math::Vector<3> curr_pos_s = pos_s - curr_sp_s;
				float curr_pos_s_len = curr_pos_s.length();
				if (curr_pos_s_len < 1.0f) {
					/* copter is closer to waypoint than L1 radius */
					/* check next waypoint and use it to avoid slowing down when passing via waypoint */
					if (_pos_sp_triplet->data().next.valid) {
						math::Vector<3> next_sp;
						map_projection_project(&_ref_pos,
									   _pos_sp_triplet->data().next.lat, _pos_sp_triplet->data().next.lon,
									   &next_sp.data[0], &next_sp.data[1]);
						next_sp(2) = -(_pos_sp_triplet->data().next.alt - _ref_alt);

						if ((next_sp - curr_sp).length() > MIN_DIST) {
							math::Vector<3> next_sp_s = next_sp.emult(scale);

							/* calculate angle prev - curr - next */
							math::Vector<3> curr_next_s = next_sp_s - curr_sp_s;
							math::Vector<3> prev_curr_s_norm = prev_curr_s.normalized();

							/* cos(a) * curr_next, a = angle between current and next trajectory segments */
							float cos_a_curr_next = prev_curr_s_norm * curr_next_s;

							/* cos(b), b = angle pos - curr_sp - prev_sp */
							float cos_b = -curr_pos_s * prev_curr_s_norm / curr_pos_s_len;

							if (cos_a_curr_next > 0.0f && cos_b > 0.0f) {
								float curr_next_s_len = curr_next_s.length();
								/* if curr - next distance is larger than L1 radius, limit it */
								if (curr_next_s_len > 1.0f) {
									cos_a_curr_next /= curr_next_s_len;
								}

								/* feed forward position setpoint offset */
								math::Vector<3> pos_ff = prev_curr_s_norm *
										cos_a_curr_next * cos_b * cos_b * (1.0f - curr_pos_s_len) *
										(1.0f - expf(-curr_pos_s_len * curr_pos_s_len * 20.0f));
								pos_sp_s += pos_ff;
							}
						}
					}

				} else {
					bool near = cross_sphere_line(pos_s, 1.0f, prev_sp_s, curr_sp_s, pos_sp_s);
					if (near) {
						/* L1 sphere crosses trajectory */

					} else {
						/* copter is too far from trajectory */
						/* if copter is behind prev waypoint, go directly to prev waypoint */
						if ((pos_sp_s - prev_sp_s) * prev_curr_s < 0.0f) {
							pos_sp_s = prev_sp_s;
						}

						/* if copter is in front of curr waypoint, go directly to curr waypoint */
						if ((pos_sp_s - curr_sp_s) * prev_curr_s > 0.0f) {
							pos_sp_s = curr_sp_s;
						}

						pos_sp_s = pos_s + (pos_sp_s - pos_s).normalized();
					}
				}
			}
		}

		/* move setpoint not faster than max allowed speed */
		math::Vector<3> pos_sp_old_s = _pos_sp.emult(scale);

		/* difference between current and desired position setpoints, 1 = max speed */
		math::Vector<3> d_pos_m = (pos_sp_s - pos_sp_old_s).edivide(_params.pos_p);
		float d_pos_m_len = d_pos_m.length();
		if (d_pos_m_len > dt) {
			pos_sp_s = pos_sp_old_s + (d_pos_m / d_pos_m_len * dt).emult(_params.pos_p);
		}

		/* scale result back to normal space */
		_pos_sp = pos_sp_s.edivide(scale);

		/* update yaw setpoint if needed */
		if (isfinite(_pos_sp_triplet->data().current.yaw)) {
			_att_sp_msg.data().yaw_body = _pos_sp_triplet->data().current.yaw;
		}

	} else {
		/* no waypoint, do nothing, setpoint was already reset */
	}
}

void MulticopterPositionControl::handle_parameter_update(const px4_parameter_update &msg)
{
	parameters_update();
}

void  MulticopterPositionControl::handle_vehicle_attitude(const px4_vehicle_attitude &msg)
{
	static bool reset_int_z = true;
	static bool reset_int_z_manual = false;
	static bool reset_int_xy = true;
	static bool was_armed = false;
	static uint64_t t_prev = 0;

	uint64_t t = get_time_micros();
	float dt = t_prev != 0 ? (t - t_prev) * 0.000001f : 0.005f;
	t_prev = t;

	if (_control_mode->data().flag_armed && !was_armed) {
		/* reset setpoints and integrals on arming */
		_reset_pos_sp = true;
		_reset_alt_sp = true;
		reset_int_z = true;
		reset_int_xy = true;
	}

	was_armed = _control_mode->data().flag_armed;

	update_ref();

	if (_control_mode->data().flag_control_altitude_enabled ||
		_control_mode->data().flag_control_position_enabled ||
		_control_mode->data().flag_control_climb_rate_enabled ||
		_control_mode->data().flag_control_velocity_enabled) {

		_pos(0) = _local_pos->data().x;
		_pos(1) = _local_pos->data().y;
		_pos(2) = _local_pos->data().z;

		_vel(0) = _local_pos->data().vx;
		_vel(1) = _local_pos->data().vy;
		_vel(2) = _local_pos->data().vz;

		_vel_ff.zero();
		_sp_move_rate.zero();

		/* select control source */
		if (_control_mode->data().flag_control_manual_enabled) {
			/* manual control */
			control_manual(dt);
			_mode_auto = false;

		} else if (_control_mode->data().flag_control_offboard_enabled) {
			/* offboard control */
			control_offboard(dt);
			_mode_auto = false;

		} else {
			/* AUTO */
			control_auto(dt);
		}

		/* fill local position setpoint */
		_local_pos_sp_msg.data().timestamp = get_time_micros();
		_local_pos_sp_msg.data().x = _pos_sp(0);
		_local_pos_sp_msg.data().y = _pos_sp(1);
		_local_pos_sp_msg.data().z = _pos_sp(2);
		_local_pos_sp_msg.data().yaw = _att_sp_msg.data().yaw_body;

		/* publish local position setpoint */
		if (_local_pos_sp_pub != nullptr) {
			_local_pos_sp_pub->publish(_local_pos_sp_msg);

		} else {
			_local_pos_sp_pub = _n.advertise<px4_vehicle_local_position_setpoint>();
		}


		if (!_control_mode->data().flag_control_manual_enabled && _pos_sp_triplet->data().current.valid && _pos_sp_triplet->data().current.type == _pos_sp_triplet->data().current.SETPOINT_TYPE_IDLE) {
			/* idle state, don't run controller and set zero thrust */
			_R.identity();
			memcpy(&_att_sp_msg.data().R_body[0], _R.data, sizeof(_att_sp_msg.data().R_body));
			_att_sp_msg.data().R_valid = true;

			_att_sp_msg.data().roll_body = 0.0f;
			_att_sp_msg.data().pitch_body = 0.0f;
			_att_sp_msg.data().yaw_body = _att->data().yaw;
			_att_sp_msg.data().thrust = 0.0f;

			_att_sp_msg.data().timestamp = get_time_micros();

			/* publish attitude setpoint */
			if (_att_sp_pub != nullptr) {
				_att_sp_pub->publish(_att_sp_msg);

			} else {
				_att_sp_pub = _n.advertise<px4_vehicle_attitude_setpoint>();
			}

		} else {
			/* run position & altitude controllers, calculate velocity setpoint */
			math::Vector<3> pos_err = _pos_sp - _pos;

			_vel_sp = pos_err.emult(_params.pos_p) + _vel_ff;

			if (!_control_mode->data().flag_control_altitude_enabled) {
				_reset_alt_sp = true;
				_vel_sp(2) = 0.0f;
			}

			if (!_control_mode->data().flag_control_position_enabled) {
				_reset_pos_sp = true;
				_vel_sp(0) = 0.0f;
				_vel_sp(1) = 0.0f;
			}

			/* use constant descend rate when landing, ignore altitude setpoint */
			if (!_control_mode->data().flag_control_manual_enabled && _pos_sp_triplet->data().current.valid && _pos_sp_triplet->data().current.type == _pos_sp_triplet->data().current.SETPOINT_TYPE_LAND) {
				_vel_sp(2) = _params.land_speed;
			}

			_global_vel_sp_msg.data().vx = _vel_sp(0);
			_global_vel_sp_msg.data().vy = _vel_sp(1);
			_global_vel_sp_msg.data().vz = _vel_sp(2);

			/* publish velocity setpoint */
			if (_global_vel_sp_pub != nullptr) {
				_global_vel_sp_pub->publish(_global_vel_sp_msg);

			} else {
				_global_vel_sp_pub = _n.advertise<px4_vehicle_global_velocity_setpoint>();
			}

			if (_control_mode->data().flag_control_climb_rate_enabled || _control_mode->data().flag_control_velocity_enabled) {
				/* reset integrals if needed */
				if (_control_mode->data().flag_control_climb_rate_enabled) {
					if (reset_int_z) {
						reset_int_z = false;
						float i = _params.thr_min;

						if (reset_int_z_manual) {
							i = _manual_control_sp->data().z;

							if (i < _params.thr_min) {
								i = _params.thr_min;

							} else if (i > _params.thr_max) {
								i = _params.thr_max;
							}
						}

						_thrust_int(2) = -i;
					}

				} else {
					reset_int_z = true;
				}

				if (_control_mode->data().flag_control_velocity_enabled) {
					if (reset_int_xy) {
						reset_int_xy = false;
						_thrust_int(0) = 0.0f;
						_thrust_int(1) = 0.0f;
					}

				} else {
					reset_int_xy = true;
				}

				/* velocity error */
				math::Vector<3> vel_err = _vel_sp - _vel;

				/* derivative of velocity error, not includes setpoint acceleration */
				math::Vector<3> vel_err_d = (_sp_move_rate - _vel).emult(_params.pos_p) - (_vel - _vel_prev) / dt;
				_vel_prev = _vel;

				/* thrust vector in NED frame */
				math::Vector<3> thrust_sp = vel_err.emult(_params.vel_p) + vel_err_d.emult(_params.vel_d) + _thrust_int;

				if (!_control_mode->data().flag_control_velocity_enabled) {
					thrust_sp(0) = 0.0f;
					thrust_sp(1) = 0.0f;
				}

				if (!_control_mode->data().flag_control_climb_rate_enabled) {
					thrust_sp(2) = 0.0f;
				}

				/* limit thrust vector and check for saturation */
				bool saturation_xy = false;
				bool saturation_z = false;

				/* limit min lift */
				float thr_min = _params.thr_min;

				if (!_control_mode->data().flag_control_velocity_enabled && thr_min < 0.0f) {
					/* don't allow downside thrust direction in manual attitude mode */
					thr_min = 0.0f;
				}

				float tilt_max = _params.tilt_max_air;

				/* adjust limits for landing mode */
				if (!_control_mode->data().flag_control_manual_enabled && _pos_sp_triplet->data().current.valid &&
					_pos_sp_triplet->data().current.type == _pos_sp_triplet->data().current.SETPOINT_TYPE_LAND) {
					/* limit max tilt and min lift when landing */
					tilt_max = _params.tilt_max_land;

					if (thr_min < 0.0f) {
						thr_min = 0.0f;
					}
				}

				/* limit min lift */
				if (-thrust_sp(2) < thr_min) {
					thrust_sp(2) = -thr_min;
					saturation_z = true;
				}

				if (_control_mode->data().flag_control_velocity_enabled) {
					/* limit max tilt */
					if (thr_min >= 0.0f && tilt_max < M_PI_F / 2 - 0.05f) {
						/* absolute horizontal thrust */
						float thrust_sp_xy_len = math::Vector<2>(thrust_sp(0), thrust_sp(1)).length();

						if (thrust_sp_xy_len > 0.01f) {
							/* max horizontal thrust for given vertical thrust*/
							float thrust_xy_max = -thrust_sp(2) * tanf(tilt_max);

							if (thrust_sp_xy_len > thrust_xy_max) {
								float k = thrust_xy_max / thrust_sp_xy_len;
								thrust_sp(0) *= k;
								thrust_sp(1) *= k;
								saturation_xy = true;
							}
						}
					}

				} else {
					/* thrust compensation for altitude only control mode */
					float att_comp;

					if (PX4_R(_att->data().R, 2, 2) > TILT_COS_MAX) {
						att_comp = 1.0f / PX4_R(_att->data().R, 2, 2);

					} else if (PX4_R(_att->data().R, 2, 2) > 0.0f) {
						att_comp = ((1.0f / TILT_COS_MAX - 1.0f) / TILT_COS_MAX) * PX4_R(_att->data().R, 2, 2) + 1.0f;
						saturation_z = true;

					} else {
						att_comp = 1.0f;
						saturation_z = true;
					}

					thrust_sp(2) *= att_comp;
				}

				/* limit max thrust */
				float thrust_abs = thrust_sp.length();

				if (thrust_abs > _params.thr_max) {
					if (thrust_sp(2) < 0.0f) {
						if (-thrust_sp(2) > _params.thr_max) {
							/* thrust Z component is too large, limit it */
							thrust_sp(0) = 0.0f;
							thrust_sp(1) = 0.0f;
							thrust_sp(2) = -_params.thr_max;
							saturation_xy = true;
							saturation_z = true;

						} else {
							/* preserve thrust Z component and lower XY, keeping altitude is more important than position */
							float thrust_xy_max = sqrtf(_params.thr_max * _params.thr_max - thrust_sp(2) * thrust_sp(2));
							float thrust_xy_abs = math::Vector<2>(thrust_sp(0), thrust_sp(1)).length();
							float k = thrust_xy_max / thrust_xy_abs;
							thrust_sp(0) *= k;
							thrust_sp(1) *= k;
							saturation_xy = true;
						}

					} else {
						/* Z component is negative, going down, simply limit thrust vector */
						float k = _params.thr_max / thrust_abs;
						thrust_sp *= k;
						saturation_xy = true;
						saturation_z = true;
					}

					thrust_abs = _params.thr_max;
				}

				/* update integrals */
				if (_control_mode->data().flag_control_velocity_enabled && !saturation_xy) {
					_thrust_int(0) += vel_err(0) * _params.vel_i(0) * dt;
					_thrust_int(1) += vel_err(1) * _params.vel_i(1) * dt;
				}

				if (_control_mode->data().flag_control_climb_rate_enabled && !saturation_z) {
					_thrust_int(2) += vel_err(2) * _params.vel_i(2) * dt;

					/* protection against flipping on ground when landing */
					if (_thrust_int(2) > 0.0f) {
						_thrust_int(2) = 0.0f;
					}
				}

				/* calculate attitude setpoint from thrust vector */
				if (_control_mode->data().flag_control_velocity_enabled) {
					/* desired body_z axis = -normalize(thrust_vector) */
					math::Vector<3> body_x;
					math::Vector<3> body_y;
					math::Vector<3> body_z;

					if (thrust_abs > SIGMA) {
						body_z = -thrust_sp / thrust_abs;

					} else {
						/* no thrust, set Z axis to safe value */
						body_z.zero();
						body_z(2) = 1.0f;
					}

					/* vector of desired yaw direction in XY plane, rotated by PI/2 */
					math::Vector<3> y_C(-sinf(_att_sp_msg.data().yaw_body), cosf(_att_sp_msg.data().yaw_body), 0.0f);

					if (fabsf(body_z(2)) > SIGMA) {
						/* desired body_x axis, orthogonal to body_z */
						body_x = y_C % body_z;

						/* keep nose to front while inverted upside down */
						if (body_z(2) < 0.0f) {
							body_x = -body_x;
						}

						body_x.normalize();

					} else {
						/* desired thrust is in XY plane, set X downside to construct correct matrix,
							* but yaw component will not be used actually */
						body_x.zero();
						body_x(2) = 1.0f;
					}

					/* desired body_y axis */
					body_y = body_z % body_x;

					/* fill rotation matrix */
					for (int i = 0; i < 3; i++) {
						_R(i, 0) = body_x(i);
						_R(i, 1) = body_y(i);
						_R(i, 2) = body_z(i);
					}

					/* copy rotation matrix to attitude setpoint topic */
					memcpy(&_att_sp_msg.data().R_body[0], _R.data, sizeof(_att_sp_msg.data().R_body));
					_att_sp_msg.data().R_valid = true;

					/* calculate euler angles, for logging only, must not be used for control */
					math::Vector<3> euler = _R.to_euler();
					_att_sp_msg.data().roll_body = euler(0);
					_att_sp_msg.data().pitch_body = euler(1);
					/* yaw already used to construct rot matrix, but actual rotation matrix can have different yaw near singularity */

				} else if (!_control_mode->data().flag_control_manual_enabled) {
					/* autonomous altitude control without position control (failsafe landing),
						* force level attitude, don't change yaw */
					_R.from_euler(0.0f, 0.0f, _att_sp_msg.data().yaw_body);

					/* copy rotation matrix to attitude setpoint topic */
					memcpy(&_att_sp_msg.data().R_body[0], _R.data, sizeof(_att_sp_msg.data().R_body));
					_att_sp_msg.data().R_valid = true;

					_att_sp_msg.data().roll_body = 0.0f;
					_att_sp_msg.data().pitch_body = 0.0f;
				}

				_att_sp_msg.data().thrust = thrust_abs;

				_att_sp_msg.data().timestamp = get_time_micros();

				/* publish attitude setpoint */
				if (_att_sp_pub != nullptr) {
					_att_sp_pub->publish(_att_sp_msg);

				} else {
					_att_sp_pub = _n.advertise<px4_vehicle_attitude_setpoint>();
				}

			} else {
				reset_int_z = true;
			}
		}

	} else {
		/* position controller disabled, reset setpoints */
		_reset_alt_sp = true;
		_reset_pos_sp = true;
		_mode_auto = false;
		reset_int_z = true;
		reset_int_xy = true;
	}

	/* reset altitude controller integral (hovering throttle) to manual throttle after manual throttle control */
	reset_int_z_manual = _control_mode->data().flag_armed && _control_mode->data().flag_control_manual_enabled && !_control_mode->data().flag_control_climb_rate_enabled;
}