aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDon Gagne <don@thegagnes.com>2015-03-23 19:01:53 -0700
committerLorenz Meier <lm@inf.ethz.ch>2015-03-28 13:09:07 -0700
commit9d61e3a7db733309c02b238703c3773d436864f2 (patch)
tree4fbe83d2125de35b0a721a08731396a870195399
parentfdc053e88355dcd5690f5cd9e28ca2069c1a2776 (diff)
downloadpx4-firmware-9d61e3a7db733309c02b238703c3773d436864f2.tar.gz
px4-firmware-9d61e3a7db733309c02b238703c3773d436864f2.tar.bz2
px4-firmware-9d61e3a7db733309c02b238703c3773d436864f2.zip
Use new calibrate_from_orientation api
-rw-r--r--src/modules/commander/accelerometer_calibration.cpp375
1 files changed, 96 insertions, 279 deletions
diff --git a/src/modules/commander/accelerometer_calibration.cpp b/src/modules/commander/accelerometer_calibration.cpp
index 526b135d8..37db59c14 100644
--- a/src/modules/commander/accelerometer_calibration.cpp
+++ b/src/modules/commander/accelerometer_calibration.cpp
@@ -120,8 +120,11 @@
* @author Anton Babushkin <anton.babushkin@me.com>
*/
+// FIXME: Can some of these headers move out with detect_ move?
+
#include "accelerometer_calibration.h"
#include "calibration_messages.h"
+#include "calibration_routines.h"
#include "commander_helper.h"
#include <unistd.h>
@@ -149,18 +152,24 @@ static const int ERROR = -1;
static const char *sensor_name = "accel";
-static const unsigned max_sens = 3;
-
-int do_accel_calibration_measurements(int mavlink_fd, float (&accel_offs)[max_sens][3], float (&accel_T)[max_sens][3][3], unsigned *active_sensors);
-int detect_orientation(int mavlink_fd, int (&subs)[max_sens]);
-int read_accelerometer_avg(int (&subs)[max_sens], float (&accel_avg)[max_sens][6][3], unsigned orient, unsigned samples_num);
+int do_accel_calibration_measurements(int mavlink_fd, float (&accel_offs)[max_accel_sens][3], float (&accel_T)[max_accel_sens][3][3], unsigned *active_sensors);
+int read_accelerometer_avg(int (&subs)[max_accel_sens], float (&accel_avg)[max_accel_sens][detect_orientation_side_count][3], unsigned orient, unsigned samples_num);
int mat_invert3(float src[3][3], float dst[3][3]);
-int calculate_calibration_values(unsigned sensor, float (&accel_ref)[max_sens][6][3], float (&accel_T)[max_sens][3][3], float (&accel_offs)[max_sens][3], float g);
+int calculate_calibration_values(unsigned sensor, float (&accel_ref)[max_accel_sens][detect_orientation_side_count][3], float (&accel_T)[max_accel_sens][3][3], float (&accel_offs)[max_accel_sens][3], float g);
+int accel_calibration_worker(detect_orientation_return orientation, void* worker_data);
+
+/// Data passed to calibration worker routine
+typedef struct {
+ int mavlink_fd;
+ unsigned done_count;
+ int subs[max_accel_sens];
+ float accel_ref[max_accel_sens][detect_orientation_side_count][3];
+} accel_worker_data_t;
int do_accel_calibration(int mavlink_fd)
{
int fd;
- int32_t device_id[max_sens];
+ int32_t device_id[max_accel_sens];
mavlink_and_console_log_info(mavlink_fd, CAL_STARTED_MSG, sensor_name);
@@ -178,7 +187,7 @@ int do_accel_calibration(int mavlink_fd)
char str[30];
/* reset all sensors */
- for (unsigned s = 0; s < max_sens; s++) {
+ for (unsigned s = 0; s < max_accel_sens; s++) {
sprintf(str, "%s%u", ACCEL_BASE_DEVICE_PATH, s);
/* reset all offsets to zero and all scales to one */
fd = open(str, 0);
@@ -193,12 +202,12 @@ int do_accel_calibration(int mavlink_fd)
close(fd);
if (res != OK) {
- mavlink_and_console_log_critical(mavlink_fd, CAL_FAILED_RESET_CAL_MSG);
+ mavlink_and_console_log_critical(mavlink_fd, CAL_FAILED_RESET_CAL_MSG, s);
}
}
- float accel_offs[max_sens][3];
- float accel_T[max_sens][3][3];
+ float accel_offs[max_accel_sens][3];
+ float accel_T[max_accel_sens][3][3];
unsigned active_sensors;
if (res == OK) {
@@ -234,27 +243,27 @@ int do_accel_calibration(int mavlink_fd)
accel_scale.y_scale = accel_T_rotated(1, 1);
accel_scale.z_offset = accel_offs_rotated(2);
accel_scale.z_scale = accel_T_rotated(2, 2);
-
+
bool failed = false;
/* set parameters */
(void)sprintf(str, "CAL_ACC%u_XOFF", i);
- failed |= (OK != param_set(param_find(str), &(accel_scale.x_offset)));
+ failed |= (OK != param_set_no_notification(param_find(str), &(accel_scale.x_offset)));
(void)sprintf(str, "CAL_ACC%u_YOFF", i);
- failed |= (OK != param_set(param_find(str), &(accel_scale.y_offset)));
+ failed |= (OK != param_set_no_notification(param_find(str), &(accel_scale.y_offset)));
(void)sprintf(str, "CAL_ACC%u_ZOFF", i);
- failed |= (OK != param_set(param_find(str), &(accel_scale.z_offset)));
+ failed |= (OK != param_set_no_notification(param_find(str), &(accel_scale.z_offset)));
(void)sprintf(str, "CAL_ACC%u_XSCALE", i);
- failed |= (OK != param_set(param_find(str), &(accel_scale.x_scale)));
+ failed |= (OK != param_set_no_notification(param_find(str), &(accel_scale.x_scale)));
(void)sprintf(str, "CAL_ACC%u_YSCALE", i);
- failed |= (OK != param_set(param_find(str), &(accel_scale.y_scale)));
+ failed |= (OK != param_set_no_notification(param_find(str), &(accel_scale.y_scale)));
(void)sprintf(str, "CAL_ACC%u_ZSCALE", i);
- failed |= (OK != param_set(param_find(str), &(accel_scale.z_scale)));
+ failed |= (OK != param_set_no_notification(param_find(str), &(accel_scale.z_scale)));
(void)sprintf(str, "CAL_ACC%u_ID", i);
- failed |= (OK != param_set(param_find(str), &(device_id[i])));
+ failed |= (OK != param_set_no_notification(param_find(str), &(device_id[i])));
if (failed) {
- mavlink_and_console_log_critical(mavlink_fd, CAL_FAILED_SET_PARAMS_MSG);
+ mavlink_and_console_log_critical(mavlink_fd, CAL_FAILED_SET_PARAMS_MSG, i);
return ERROR;
}
@@ -270,7 +279,7 @@ int do_accel_calibration(int mavlink_fd)
}
if (res != OK) {
- mavlink_and_console_log_critical(mavlink_fd, CAL_FAILED_APPLY_CAL_MSG);
+ mavlink_and_console_log_critical(mavlink_fd, CAL_FAILED_APPLY_CAL_MSG, i);
}
}
@@ -291,309 +300,117 @@ int do_accel_calibration(int mavlink_fd)
return res;
}
-int do_accel_calibration_measurements(int mavlink_fd, float (&accel_offs)[max_sens][3], float (&accel_T)[max_sens][3][3], unsigned *active_sensors)
+int accel_calibration_worker(detect_orientation_return orientation, void* data)
{
const unsigned samples_num = 3000;
+ accel_worker_data_t* worker_data = (accel_worker_data_t*)(data);
+
+ mavlink_and_console_log_info(worker_data->mavlink_fd, "Hold still, starting to measure %s side", detect_orientation_str(orientation));
+ sleep(1);
+
+ read_accelerometer_avg(worker_data->subs, worker_data->accel_ref, orientation, samples_num);
+
+ mavlink_and_console_log_info(worker_data->mavlink_fd, "%s side result: [ %8.4f %8.4f %8.4f ]", detect_orientation_str(orientation),
+ (double)worker_data->accel_ref[0][orientation][0],
+ (double)worker_data->accel_ref[0][orientation][1],
+ (double)worker_data->accel_ref[0][orientation][2]);
+
+ worker_data->done_count++;
+ mavlink_and_console_log_info(worker_data->mavlink_fd, CAL_PROGRESS_MSG, sensor_name, 17 * worker_data->done_count);
+
+ return OK;
+}
+
+int do_accel_calibration_measurements(int mavlink_fd, float (&accel_offs)[max_accel_sens][3], float (&accel_T)[max_accel_sens][3][3], unsigned *active_sensors)
+{
+ int result = OK;
+
*active_sensors = 0;
+
+ accel_worker_data_t worker_data;
+
+ worker_data.mavlink_fd = mavlink_fd;
+ worker_data.done_count = 0;
- float accel_ref[max_sens][6][3];
- bool data_collected[6] = { false, false, false, false, false, false };
- const char *orientation_strs[6] = { "back", "front", "left", "right", "up", "down" };
+ bool data_collected[detect_orientation_side_count] = { false, false, false, false, false, false };
- int subs[max_sens];
+ // Initialize subs to error condition so we know which ones are open and which are not
+ for (size_t i=0; i<max_accel_sens; i++) {
+ worker_data.subs[i] = -1;
+ }
- uint64_t timestamps[max_sens];
+ uint64_t timestamps[max_accel_sens];
- for (unsigned i = 0; i < max_sens; i++) {
- subs[i] = orb_subscribe_multi(ORB_ID(sensor_accel), i);
+ for (unsigned i = 0; i < max_accel_sens; i++) {
+ worker_data.subs[i] = orb_subscribe_multi(ORB_ID(sensor_accel), i);
+ if (worker_data.subs[i] < 0) {
+ result = ERROR;
+ break;
+ }
+
/* store initial timestamp - used to infer which sensors are active */
struct accel_report arp = {};
- (void)orb_copy(ORB_ID(sensor_accel), subs[i], &arp);
+ (void)orb_copy(ORB_ID(sensor_accel), worker_data.subs[i], &arp);
timestamps[i] = arp.timestamp;
}
- unsigned done_count = 0;
- int res = OK;
-
- while (true) {
- bool done = true;
- unsigned old_done_count = done_count;
- done_count = 0;
-
- for (int i = 0; i < 6; i++) {
- if (data_collected[i]) {
- done_count++;
-
- } else {
- done = false;
- }
- }
-
- if (old_done_count != done_count) {
- mavlink_and_console_log_info(mavlink_fd, CAL_PROGRESS_MSG, sensor_name, 17 * done_count);
- }
-
- if (done) {
- break;
- }
-
- /* inform user which axes are still needed */
- mavlink_and_console_log_info(mavlink_fd, "pending: %s%s%s%s%s%s",
- (!data_collected[5]) ? "down " : "",
- (!data_collected[0]) ? "back " : "",
- (!data_collected[1]) ? "front " : "",
- (!data_collected[2]) ? "left " : "",
- (!data_collected[3]) ? "right " : "",
- (!data_collected[4]) ? "up " : "");
-
- /* allow user enough time to read the message */
- sleep(1);
-
- int orient = detect_orientation(mavlink_fd, subs);
-
- if (orient < 0) {
- mavlink_and_console_log_info(mavlink_fd, "invalid motion, hold still...");
- sleep(2);
- continue;
- }
-
- /* inform user about already handled side */
- if (data_collected[orient]) {
- mavlink_and_console_log_info(mavlink_fd, "%s side done, rotate to a different side", orientation_strs[orient]);
- sleep(1);
- continue;
- }
-
- mavlink_and_console_log_info(mavlink_fd, "Hold still, starting to measure %s side", orientation_strs[orient]);
- sleep(1);
- read_accelerometer_avg(subs, accel_ref, orient, samples_num);
- mavlink_and_console_log_info(mavlink_fd, "%s side done, rotate to a different side", orientation_strs[orient]);
- usleep(100000);
- mavlink_and_console_log_info(mavlink_fd, "result for %s side: [ %8.4f %8.4f %8.4f ]", orientation_strs[orient],
- (double)accel_ref[0][orient][0],
- (double)accel_ref[0][orient][1],
- (double)accel_ref[0][orient][2]);
-
- data_collected[orient] = true;
- tune_neutral(true);
+ if (result == OK) {
+ result = calibrate_from_orientation(mavlink_fd, data_collected, accel_calibration_worker, &worker_data);
}
/* close all subscriptions */
- for (unsigned i = 0; i < max_sens; i++) {
- /* figure out which sensors were active */
- struct accel_report arp = {};
- (void)orb_copy(ORB_ID(sensor_accel), subs[i], &arp);
- if (arp.timestamp != 0 && timestamps[i] != arp.timestamp) {
- (*active_sensors)++;
+ for (unsigned i = 0; i < max_accel_sens; i++) {
+ if (worker_data.subs[i] >= 0) {
+ /* figure out which sensors were active */
+ struct accel_report arp = {};
+ (void)orb_copy(ORB_ID(sensor_accel), worker_data.subs[i], &arp);
+ if (arp.timestamp != 0 && timestamps[i] != arp.timestamp) {
+ (*active_sensors)++;
+ }
+ close(worker_data.subs[i]);
}
- close(subs[i]);
}
- if (res == OK) {
+ if (result == OK) {
/* calculate offsets and transform matrix */
for (unsigned i = 0; i < (*active_sensors); i++) {
- res = calculate_calibration_values(i, accel_ref, accel_T, accel_offs, CONSTANTS_ONE_G);
+ result = calculate_calibration_values(i, worker_data.accel_ref, accel_T, accel_offs, CONSTANTS_ONE_G);
- if (res != OK) {
+ if (result != OK) {
mavlink_and_console_log_critical(mavlink_fd, "ERROR: calibration values calculation error");
break;
}
}
}
- return res;
-}
-
-/**
- * Wait for vehicle become still and detect it's orientation.
- *
- * @param mavlink_fd the MAVLink file descriptor to print output to
- * @param subs the accelerometer subscriptions. Only the first one will be used.
- *
- * @return 0..5 according to orientation when vehicle is still and ready for measurements,
- * ERROR if vehicle is not still after 30s or orientation error is more than 5m/s^2
- */
-int detect_orientation(int mavlink_fd, int (&subs)[max_sens])
-{
- const unsigned ndim = 3;
-
- struct accel_report sensor;
- /* exponential moving average of accel */
- float accel_ema[ndim] = { 0.0f };
- /* max-hold dispersion of accel */
- float accel_disp[3] = { 0.0f, 0.0f, 0.0f };
- /* EMA time constant in seconds*/
- float ema_len = 0.5f;
- /* set "still" threshold to 0.25 m/s^2 */
- float still_thr2 = powf(0.25f, 2);
- /* set accel error threshold to 5m/s^2 */
- float accel_err_thr = 5.0f;
- /* still time required in us */
- hrt_abstime still_time = 2000000;
- struct pollfd fds[1];
- fds[0].fd = subs[0];
- fds[0].events = POLLIN;
-
- hrt_abstime t_start = hrt_absolute_time();
- /* set timeout to 30s */
- hrt_abstime timeout = 30000000;
- hrt_abstime t_timeout = t_start + timeout;
- hrt_abstime t = t_start;
- hrt_abstime t_prev = t_start;
- hrt_abstime t_still = 0;
-
- unsigned poll_errcount = 0;
-
- while (true) {
- /* wait blocking for new data */
- int poll_ret = poll(fds, 1, 1000);
-
- if (poll_ret) {
- orb_copy(ORB_ID(sensor_accel), subs[0], &sensor);
- t = hrt_absolute_time();
- float dt = (t - t_prev) / 1000000.0f;
- t_prev = t;
- float w = dt / ema_len;
-
- for (unsigned i = 0; i < ndim; i++) {
-
- float di = 0.0f;
- switch (i) {
- case 0:
- di = sensor.x;
- break;
- case 1:
- di = sensor.y;
- break;
- case 2:
- di = sensor.z;
- break;
- }
-
- float d = di - accel_ema[i];
- accel_ema[i] += d * w;
- d = d * d;
- accel_disp[i] = accel_disp[i] * (1.0f - w);
-
- if (d > still_thr2 * 8.0f) {
- d = still_thr2 * 8.0f;
- }
-
- if (d > accel_disp[i]) {
- accel_disp[i] = d;
- }
- }
-
- /* still detector with hysteresis */
- if (accel_disp[0] < still_thr2 &&
- accel_disp[1] < still_thr2 &&
- accel_disp[2] < still_thr2) {
- /* is still now */
- if (t_still == 0) {
- /* first time */
- mavlink_and_console_log_info(mavlink_fd, "detected rest position, hold still...");
- t_still = t;
- t_timeout = t + timeout;
-
- } else {
- /* still since t_still */
- if (t > t_still + still_time) {
- /* vehicle is still, exit from the loop to detection of its orientation */
- break;
- }
- }
-
- } else if (accel_disp[0] > still_thr2 * 4.0f ||
- accel_disp[1] > still_thr2 * 4.0f ||
- accel_disp[2] > still_thr2 * 4.0f) {
- /* not still, reset still start time */
- if (t_still != 0) {
- mavlink_and_console_log_info(mavlink_fd, "detected motion, hold still...");
- sleep(3);
- t_still = 0;
- }
- }
-
- } else if (poll_ret == 0) {
- poll_errcount++;
- }
-
- if (t > t_timeout) {
- poll_errcount++;
- }
-
- if (poll_errcount > 1000) {
- mavlink_and_console_log_critical(mavlink_fd, CAL_FAILED_SENSOR_MSG);
- return ERROR;
- }
- }
-
- if (fabsf(accel_ema[0] - CONSTANTS_ONE_G) < accel_err_thr &&
- fabsf(accel_ema[1]) < accel_err_thr &&
- fabsf(accel_ema[2]) < accel_err_thr) {
- return 0; // [ g, 0, 0 ]
- }
-
- if (fabsf(accel_ema[0] + CONSTANTS_ONE_G) < accel_err_thr &&
- fabsf(accel_ema[1]) < accel_err_thr &&
- fabsf(accel_ema[2]) < accel_err_thr) {
- return 1; // [ -g, 0, 0 ]
- }
-
- if (fabsf(accel_ema[0]) < accel_err_thr &&
- fabsf(accel_ema[1] - CONSTANTS_ONE_G) < accel_err_thr &&
- fabsf(accel_ema[2]) < accel_err_thr) {
- return 2; // [ 0, g, 0 ]
- }
-
- if (fabsf(accel_ema[0]) < accel_err_thr &&
- fabsf(accel_ema[1] + CONSTANTS_ONE_G) < accel_err_thr &&
- fabsf(accel_ema[2]) < accel_err_thr) {
- return 3; // [ 0, -g, 0 ]
- }
-
- if (fabsf(accel_ema[0]) < accel_err_thr &&
- fabsf(accel_ema[1]) < accel_err_thr &&
- fabsf(accel_ema[2] - CONSTANTS_ONE_G) < accel_err_thr) {
- return 4; // [ 0, 0, g ]
- }
-
- if (fabsf(accel_ema[0]) < accel_err_thr &&
- fabsf(accel_ema[1]) < accel_err_thr &&
- fabsf(accel_ema[2] + CONSTANTS_ONE_G) < accel_err_thr) {
- return 5; // [ 0, 0, -g ]
- }
-
- mavlink_and_console_log_critical(mavlink_fd, "ERROR: invalid orientation");
-
- return ERROR; // Can't detect orientation
+ return result;
}
/*
* Read specified number of accelerometer samples, calculate average and dispersion.
*/
-int read_accelerometer_avg(int (&subs)[max_sens], float (&accel_avg)[max_sens][6][3], unsigned orient, unsigned samples_num)
+int read_accelerometer_avg(int (&subs)[max_accel_sens], float (&accel_avg)[max_accel_sens][detect_orientation_side_count][3], unsigned orient, unsigned samples_num)
{
- struct pollfd fds[max_sens];
+ struct pollfd fds[max_accel_sens];
- for (unsigned i = 0; i < max_sens; i++) {
+ for (unsigned i = 0; i < max_accel_sens; i++) {
fds[i].fd = subs[i];
fds[i].events = POLLIN;
}
- unsigned counts[max_sens] = { 0 };
- float accel_sum[max_sens][3];
+ unsigned counts[max_accel_sens] = { 0 };
+ float accel_sum[max_accel_sens][3];
memset(accel_sum, 0, sizeof(accel_sum));
unsigned errcount = 0;
/* use the first sensor to pace the readout, but do per-sensor counts */
while (counts[0] < samples_num) {
- int poll_ret = poll(&fds[0], max_sens, 1000);
+ int poll_ret = poll(&fds[0], max_accel_sens, 1000);
if (poll_ret > 0) {
- for (unsigned s = 0; s < max_sens; s++) {
+ for (unsigned s = 0; s < max_accel_sens; s++) {
bool changed;
orb_check(subs[s], &changed);
@@ -620,7 +437,7 @@ int read_accelerometer_avg(int (&subs)[max_sens], float (&accel_avg)[max_sens][6
}
}
- for (unsigned s = 0; s < max_sens; s++) {
+ for (unsigned s = 0; s < max_accel_sens; s++) {
for (unsigned i = 0; i < 3; i++) {
accel_avg[s][orient][i] = accel_sum[s][i] / counts[s];
}
@@ -652,7 +469,7 @@ int mat_invert3(float src[3][3], float dst[3][3])
return OK;
}
-int calculate_calibration_values(unsigned sensor, float (&accel_ref)[max_sens][6][3], float (&accel_T)[max_sens][3][3], float (&accel_offs)[max_sens][3], float g)
+int calculate_calibration_values(unsigned sensor, float (&accel_ref)[max_accel_sens][detect_orientation_side_count][3], float (&accel_T)[max_accel_sens][3][3], float (&accel_offs)[max_accel_sens][3], float g)
{
/* calculate offsets */
for (unsigned i = 0; i < 3; i++) {