aboutsummaryrefslogtreecommitdiff
path: root/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_q31.c
diff options
context:
space:
mode:
authorpx4dev <px4@purgatory.org>2013-05-20 00:30:43 +0200
committerpx4dev <px4@purgatory.org>2013-05-20 00:30:43 +0200
commit5576e321fa8cd027b15deeb15b7ca05541fde4fe (patch)
treeb8a8dac6fab2ecdb72c90ece845112161a52997a /src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_q31.c
parent3a1c9f14f68054537657851eacb60d930c3d4221 (diff)
downloadpx4-firmware-5576e321fa8cd027b15deeb15b7ca05541fde4fe.tar.gz
px4-firmware-5576e321fa8cd027b15deeb15b7ca05541fde4fe.tar.bz2
px4-firmware-5576e321fa8cd027b15deeb15b7ca05541fde4fe.zip
Use the new prebuilt-library support to wrap the ARM CMSIS DSP library, and update to the version shipped with CMSIS 3.0 r3p2
Diffstat (limited to 'src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_q31.c')
-rw-r--r--src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_q31.c400
1 files changed, 0 insertions, 400 deletions
diff --git a/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_q31.c b/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_q31.c
deleted file mode 100644
index 5626bdd1c..000000000
--- a/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_q31.c
+++ /dev/null
@@ -1,400 +0,0 @@
-/* ----------------------------------------------------------------------
-* Copyright (C) 2010 ARM Limited. All rights reserved.
-*
-* $Date: 15. February 2012
-* $Revision: V1.1.0
-*
-* Project: CMSIS DSP Library
-* Title: arm_biquad_cascade_df1_q31.c
-*
-* Description: Processing function for the
-* Q31 Biquad cascade filter
-*
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*
-* Version 1.1.0 2012/02/15
-* Updated with more optimizations, bug fixes and minor API changes.
-*
-* Version 1.0.10 2011/7/15
-* Big Endian support added and Merged M0 and M3/M4 Source code.
-*
-* Version 1.0.3 2010/11/29
-* Re-organized the CMSIS folders and updated documentation.
-*
-* Version 1.0.2 2010/11/11
-* Documentation updated.
-*
-* Version 1.0.1 2010/10/05
-* Production release and review comments incorporated.
-*
-* Version 1.0.0 2010/09/20
-* Production release and review comments incorporated.
-*
-* Version 0.0.5 2010/04/26
-* incorporated review comments and updated with latest CMSIS layer
-*
-* Version 0.0.3 2010/03/10
-* Initial version
-* -------------------------------------------------------------------- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @addtogroup BiquadCascadeDF1
- * @{
- */
-
-/**
- * @brief Processing function for the Q31 Biquad cascade filter.
- * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process per call.
- * @return none.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using an internal 64-bit accumulator.
- * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
- * Thus, if the accumulator result overflows it wraps around rather than clip.
- * In order to avoid overflows completely the input signal must be scaled down by 2 bits and lie in the range [-0.25 +0.25).
- * After all 5 multiply-accumulates are performed, the 2.62 accumulator is shifted by <code>postShift</code> bits and the result truncated to
- * 1.31 format by discarding the low 32 bits.
- *
- * \par
- * Refer to the function <code>arm_biquad_cascade_df1_fast_q31()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.
- */
-
-void arm_biquad_cascade_df1_q31(
- const arm_biquad_casd_df1_inst_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize)
-{
- q63_t acc; /* accumulator */
- uint32_t uShift = ((uint32_t) S->postShift + 1u);
- uint32_t lShift = 32u - uShift; /* Shift to be applied to the output */
- q31_t *pIn = pSrc; /* input pointer initialization */
- q31_t *pOut = pDst; /* output pointer initialization */
- q31_t *pState = S->pState; /* pState pointer initialization */
- q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
- q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
- q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
- q31_t Xn; /* temporary input */
- uint32_t sample, stage = S->numStages; /* loop counters */
-
-
-#ifndef ARM_MATH_CM0
-
- q31_t acc_l, acc_h; /* temporary output variables */
-
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
- do
- {
- /* Reading the coefficients */
- b0 = *pCoeffs++;
- b1 = *pCoeffs++;
- b2 = *pCoeffs++;
- a1 = *pCoeffs++;
- a2 = *pCoeffs++;
-
- /* Reading the state values */
- Xn1 = pState[0];
- Xn2 = pState[1];
- Yn1 = pState[2];
- Yn2 = pState[3];
-
- /* Apply loop unrolling and compute 4 output values simultaneously. */
- /* The variable acc hold output values that are being computed:
- *
- * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
- */
-
- sample = blockSize >> 2u;
-
- /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
- ** a second loop below computes the remaining 1 to 3 samples. */
- while(sample > 0u)
- {
- /* Read the input */
- Xn = *pIn++;
-
- /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
-
- /* acc = b0 * x[n] */
- acc = (q63_t) b0 *Xn;
- /* acc += b1 * x[n-1] */
- acc += (q63_t) b1 *Xn1;
- /* acc += b[2] * x[n-2] */
- acc += (q63_t) b2 *Xn2;
- /* acc += a1 * y[n-1] */
- acc += (q63_t) a1 *Yn1;
- /* acc += a2 * y[n-2] */
- acc += (q63_t) a2 *Yn2;
-
- /* The result is converted to 1.31 , Yn2 variable is reused */
-
- /* Calc lower part of acc */
- acc_l = acc & 0xffffffff;
-
- /* Calc upper part of acc */
- acc_h = (acc >> 32) & 0xffffffff;
-
- /* Apply shift for lower part of acc and upper part of acc */
- Yn2 = (uint32_t) acc_l >> lShift | acc_h << uShift;
-
- /* Store the output in the destination buffer. */
- *pOut++ = Yn2;
-
- /* Read the second input */
- Xn2 = *pIn++;
-
- /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
-
- /* acc = b0 * x[n] */
- acc = (q63_t) b0 *Xn2;
- /* acc += b1 * x[n-1] */
- acc += (q63_t) b1 *Xn;
- /* acc += b[2] * x[n-2] */
- acc += (q63_t) b2 *Xn1;
- /* acc += a1 * y[n-1] */
- acc += (q63_t) a1 *Yn2;
- /* acc += a2 * y[n-2] */
- acc += (q63_t) a2 *Yn1;
-
-
- /* The result is converted to 1.31, Yn1 variable is reused */
-
- /* Calc lower part of acc */
- acc_l = acc & 0xffffffff;
-
- /* Calc upper part of acc */
- acc_h = (acc >> 32) & 0xffffffff;
-
-
- /* Apply shift for lower part of acc and upper part of acc */
- Yn1 = (uint32_t) acc_l >> lShift | acc_h << uShift;
-
- /* Store the output in the destination buffer. */
- *pOut++ = Yn1;
-
- /* Read the third input */
- Xn1 = *pIn++;
-
- /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
-
- /* acc = b0 * x[n] */
- acc = (q63_t) b0 *Xn1;
- /* acc += b1 * x[n-1] */
- acc += (q63_t) b1 *Xn2;
- /* acc += b[2] * x[n-2] */
- acc += (q63_t) b2 *Xn;
- /* acc += a1 * y[n-1] */
- acc += (q63_t) a1 *Yn1;
- /* acc += a2 * y[n-2] */
- acc += (q63_t) a2 *Yn2;
-
- /* The result is converted to 1.31, Yn2 variable is reused */
- /* Calc lower part of acc */
- acc_l = acc & 0xffffffff;
-
- /* Calc upper part of acc */
- acc_h = (acc >> 32) & 0xffffffff;
-
-
- /* Apply shift for lower part of acc and upper part of acc */
- Yn2 = (uint32_t) acc_l >> lShift | acc_h << uShift;
-
- /* Store the output in the destination buffer. */
- *pOut++ = Yn2;
-
- /* Read the forth input */
- Xn = *pIn++;
-
- /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
-
- /* acc = b0 * x[n] */
- acc = (q63_t) b0 *Xn;
- /* acc += b1 * x[n-1] */
- acc += (q63_t) b1 *Xn1;
- /* acc += b[2] * x[n-2] */
- acc += (q63_t) b2 *Xn2;
- /* acc += a1 * y[n-1] */
- acc += (q63_t) a1 *Yn2;
- /* acc += a2 * y[n-2] */
- acc += (q63_t) a2 *Yn1;
-
- /* The result is converted to 1.31, Yn1 variable is reused */
- /* Calc lower part of acc */
- acc_l = acc & 0xffffffff;
-
- /* Calc upper part of acc */
- acc_h = (acc >> 32) & 0xffffffff;
-
- /* Apply shift for lower part of acc and upper part of acc */
- Yn1 = (uint32_t) acc_l >> lShift | acc_h << uShift;
-
- /* Every time after the output is computed state should be updated. */
- /* The states should be updated as: */
- /* Xn2 = Xn1 */
- /* Xn1 = Xn */
- /* Yn2 = Yn1 */
- /* Yn1 = acc */
- Xn2 = Xn1;
- Xn1 = Xn;
-
- /* Store the output in the destination buffer. */
- *pOut++ = Yn1;
-
- /* decrement the loop counter */
- sample--;
- }
-
- /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- sample = (blockSize & 0x3u);
-
- while(sample > 0u)
- {
- /* Read the input */
- Xn = *pIn++;
-
- /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
-
- /* acc = b0 * x[n] */
- acc = (q63_t) b0 *Xn;
- /* acc += b1 * x[n-1] */
- acc += (q63_t) b1 *Xn1;
- /* acc += b[2] * x[n-2] */
- acc += (q63_t) b2 *Xn2;
- /* acc += a1 * y[n-1] */
- acc += (q63_t) a1 *Yn1;
- /* acc += a2 * y[n-2] */
- acc += (q63_t) a2 *Yn2;
-
- /* The result is converted to 1.31 */
- acc = acc >> lShift;
-
- /* Every time after the output is computed state should be updated. */
- /* The states should be updated as: */
- /* Xn2 = Xn1 */
- /* Xn1 = Xn */
- /* Yn2 = Yn1 */
- /* Yn1 = acc */
- Xn2 = Xn1;
- Xn1 = Xn;
- Yn2 = Yn1;
- Yn1 = (q31_t) acc;
-
- /* Store the output in the destination buffer. */
- *pOut++ = (q31_t) acc;
-
- /* decrement the loop counter */
- sample--;
- }
-
- /* The first stage goes from the input buffer to the output buffer. */
- /* Subsequent stages occur in-place in the output buffer */
- pIn = pDst;
-
- /* Reset to destination pointer */
- pOut = pDst;
-
- /* Store the updated state variables back into the pState array */
- *pState++ = Xn1;
- *pState++ = Xn2;
- *pState++ = Yn1;
- *pState++ = Yn2;
-
- } while(--stage);
-
-#else
-
- /* Run the below code for Cortex-M0 */
-
- do
- {
- /* Reading the coefficients */
- b0 = *pCoeffs++;
- b1 = *pCoeffs++;
- b2 = *pCoeffs++;
- a1 = *pCoeffs++;
- a2 = *pCoeffs++;
-
- /* Reading the state values */
- Xn1 = pState[0];
- Xn2 = pState[1];
- Yn1 = pState[2];
- Yn2 = pState[3];
-
- /* The variables acc holds the output value that is computed:
- * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
- */
-
- sample = blockSize;
-
- while(sample > 0u)
- {
- /* Read the input */
- Xn = *pIn++;
-
- /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
- /* acc = b0 * x[n] */
- acc = (q63_t) b0 *Xn;
-
- /* acc += b1 * x[n-1] */
- acc += (q63_t) b1 *Xn1;
- /* acc += b[2] * x[n-2] */
- acc += (q63_t) b2 *Xn2;
- /* acc += a1 * y[n-1] */
- acc += (q63_t) a1 *Yn1;
- /* acc += a2 * y[n-2] */
- acc += (q63_t) a2 *Yn2;
-
- /* The result is converted to 1.31 */
- acc = acc >> lShift;
-
- /* Every time after the output is computed state should be updated. */
- /* The states should be updated as: */
- /* Xn2 = Xn1 */
- /* Xn1 = Xn */
- /* Yn2 = Yn1 */
- /* Yn1 = acc */
- Xn2 = Xn1;
- Xn1 = Xn;
- Yn2 = Yn1;
- Yn1 = (q31_t) acc;
-
- /* Store the output in the destination buffer. */
- *pOut++ = (q31_t) acc;
-
- /* decrement the loop counter */
- sample--;
- }
-
- /* The first stage goes from the input buffer to the output buffer. */
- /* Subsequent stages occur in-place in the output buffer */
- pIn = pDst;
-
- /* Reset to destination pointer */
- pOut = pDst;
-
- /* Store the updated state variables back into the pState array */
- *pState++ = Xn1;
- *pState++ = Xn2;
- *pState++ = Yn1;
- *pState++ = Yn2;
-
- } while(--stage);
-
-#endif /* #ifndef ARM_MATH_CM0 */
-}
-
-/**
- * @} end of BiquadCascadeDF1 group
- */