aboutsummaryrefslogtreecommitdiff
path: root/apps/sensors/sensors.c
diff options
context:
space:
mode:
Diffstat (limited to 'apps/sensors/sensors.c')
-rw-r--r--apps/sensors/sensors.c852
1 files changed, 852 insertions, 0 deletions
diff --git a/apps/sensors/sensors.c b/apps/sensors/sensors.c
new file mode 100644
index 000000000..a88361e1a
--- /dev/null
+++ b/apps/sensors/sensors.c
@@ -0,0 +1,852 @@
+/****************************************************************************
+ *
+ * Copyright (C) 2012 PX4 Development Team. All rights reserved.
+ * Author: @author Lorenz Meier <lm@inf.ethz.ch>
+ * @author Thomas Gubler <thomasgubler@student.ethz.ch>
+ * @author Julian Oes <joes@student.ethz.ch>
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * 3. Neither the name PX4 nor the names of its contributors may be
+ * used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+ * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+ * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+ * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+ * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
+ * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+ * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ *
+ ****************************************************************************/
+
+/**
+ * @file sensors.c
+ * Sensor readout process.
+ */
+
+#include <nuttx/config.h>
+
+#include <pthread.h>
+#include <fcntl.h>
+#include <sys/prctl.h>
+#include <nuttx/analog/adc.h>
+#include <unistd.h>
+#include <string.h>
+#include <stdbool.h>
+#include <stdio.h>
+#include <errno.h>
+#include <float.h>
+
+#include <arch/board/up_hrt.h>
+#include <arch/board/drv_lis331.h>
+#include <arch/board/drv_bma180.h>
+#include <arch/board/drv_l3gd20.h>
+#include <arch/board/drv_hmc5883l.h>
+#include <arch/board/up_adc.h>
+
+#include <systemlib/systemlib.h>
+#include <uORB/uORB.h>
+#include <uORB/topics/sensor_combined.h>
+#include <uORB/topics/rc_channels.h>
+#include <uORB/topics/vehicle_status.h>
+
+#include "sensors.h"
+
+#define errno *get_errno_ptr()
+
+#define SENSOR_INTERVAL_MICROSEC 2000
+
+#define GYRO_HEALTH_COUNTER_LIMIT_ERROR 20 /* 40 ms downtime at 500 Hz update rate */
+#define ACC_HEALTH_COUNTER_LIMIT_ERROR 20 /* 40 ms downtime at 500 Hz update rate */
+#define MAGN_HEALTH_COUNTER_LIMIT_ERROR 100 /* 1000 ms downtime at 100 Hz update rate */
+#define BARO_HEALTH_COUNTER_LIMIT_ERROR 50 /* 500 ms downtime at 100 Hz update rate */
+#define ADC_HEALTH_COUNTER_LIMIT_ERROR 10 /* 100 ms downtime at 100 Hz update rate */
+
+#define GYRO_HEALTH_COUNTER_LIMIT_OK 5
+#define ACC_HEALTH_COUNTER_LIMIT_OK 5
+#define MAGN_HEALTH_COUNTER_LIMIT_OK 5
+#define BARO_HEALTH_COUNTER_LIMIT_OK 5
+#define ADC_HEALTH_COUNTER_LIMIT_OK 5
+
+#define ADC_BATTERY_VOLATGE_CHANNEL 10
+
+#define BAT_VOL_INITIAL 12.f
+#define BAT_VOL_LOWPASS_1 0.99f
+#define BAT_VOL_LOWPASS_2 0.01f
+#define VOLTAGE_BATTERY_IGNORE_THRESHOLD_VOLTS 3.5f
+
+/*PPM Settings*/
+#define PPM_MIN 1000
+#define PPM_MAX 2000
+/*Our internal resolution is 10000*/
+#define PPM_SCALE 10000/((PPM_MAX-PPM_MIN)/2)
+
+#define PPM_MID (PPM_MIN+PPM_MAX)/2
+
+/****************************************************************************
+ * Definitions
+ ****************************************************************************/
+static pthread_cond_t sensors_read_ready;
+static pthread_mutex_t sensors_read_ready_mutex;
+
+static int sensors_timer_loop_counter = 0;
+
+/* File descriptors for all sensors */
+static int fd_gyro = -1;
+static int fd_accelerometer = -1;
+static int fd_magnetometer = -1;
+static int fd_barometer = -1;
+static int fd_adc = -1;
+
+/* Private functions declared static */
+static void sensors_timer_loop(void *arg);
+
+#ifdef CONFIG_HRT_PPM
+extern uint16_t ppm_buffer[];
+extern unsigned ppm_decoded_channels;
+#endif
+
+/* file handle that will be used for subscribing */
+static int sensor_pub;
+
+/**
+ * Sensor readout and publishing.
+ *
+ * This function reads all onboard sensors and publishes the sensor_combined topic.
+ *
+ * @see sensor_combined_s
+ * @ingroup apps
+ */
+__EXPORT int sensors_main(int argc, char *argv[]);
+
+/**
+ * Initialize all sensor drivers.
+ *
+ * @return 0 on success, != 0 on failure
+ */
+static int sensors_init(void)
+{
+ printf("[sensors] Sensor configuration..\n");
+
+ /* open magnetometer */
+ fd_magnetometer = open("/dev/hmc5883l", O_RDONLY);
+
+ if (fd_magnetometer < 0) {
+ fprintf(stderr, "[sensors] HMC5883L open fail (err #%d): %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
+ fflush(stderr);
+ /* this sensor is critical, exit on failed init */
+ errno = ENOSYS;
+ return ERROR;
+
+ } else {
+ printf("[sensors] HMC5883L open ok\n");
+ }
+
+ /* open barometer */
+ fd_barometer = open("/dev/ms5611", O_RDONLY);
+
+ if (fd_barometer < 0) {
+ fprintf(stderr, "[sensors] MS5611 open fail (err #%d): %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
+ fflush(stderr);
+
+ } else {
+ printf("[sensors] MS5611 open ok\n");
+ }
+
+ /* open gyro */
+ fd_gyro = open("/dev/l3gd20", O_RDONLY);
+
+ if (fd_gyro < 0) {
+ fprintf(stderr, "[sensors] L3GD20 open fail (err #%d): %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
+ fflush(stderr);
+ /* this sensor is critical, exit on failed init */
+ errno = ENOSYS;
+ return ERROR;
+
+ } else {
+ printf("[sensors] L3GD20 open ok\n");
+ }
+
+ /* open accelerometer */
+ fd_accelerometer = open("/dev/bma180", O_RDONLY);
+
+ if (fd_accelerometer < 0) {
+ fprintf(stderr, "[sensors] BMA180: open fail (err #%d): %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
+ fflush(stderr);
+ /* this sensor is critical, exit on failed init */
+ errno = ENOSYS;
+ return ERROR;
+
+ } else {
+ printf("[sensors] BMA180 open ok\n");
+ }
+
+ /* open adc */
+ fd_adc = open("/dev/adc0", O_RDONLY | O_NONBLOCK);
+
+ if (fd_adc < 0) {
+ fprintf(stderr, "[sensors] ADC: open fail (err #%d): %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
+ fflush(stderr);
+ /* this sensor is critical, exit on failed init */
+ errno = ENOSYS;
+ return ERROR;
+
+ } else {
+ printf("[sensors] ADC open ok\n");
+ }
+
+ /* configure gyro */
+ if (ioctl(fd_gyro, L3GD20_SETRATE, L3GD20_RATE_760HZ_LP_30HZ) || ioctl(fd_gyro, L3GD20_SETRANGE, L3GD20_RANGE_500DPS)) {
+ fprintf(stderr, "[sensors] L3GD20 configuration (ioctl) fail (err #%d): %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
+ fflush(stderr);
+ /* this sensor is critical, exit on failed init */
+ errno = ENOSYS;
+ return ERROR;
+
+ } else {
+ printf("[sensors] L3GD20 configuration ok\n");
+ }
+
+ /* XXX Add IOCTL configuration of remaining sensors */
+
+ printf("[sensors] All sensors configured\n");
+ return OK;
+}
+
+/**
+ * Callback function called by high resolution timer.
+ *
+ * This function signals a pthread condition and wakes up the
+ * sensor main loop.
+ */
+static void sensors_timer_loop(void *arg)
+{
+ /* Inform the read thread that it is now time to read */
+ sensors_timer_loop_counter++;
+ /* Do not use global data broadcast because of
+ * use of printf() in call - would be fatal here
+ */
+ pthread_cond_broadcast(&sensors_read_ready);
+}
+
+int sensors_main(int argc, char *argv[])
+{
+ /* inform about start */
+ printf("[sensors] Initializing..\n");
+ fflush(stdout);
+ int ret = OK;
+
+ /* start sensor reading */
+ if (sensors_init() != OK) {
+ fprintf(stderr, "[sensors] ERROR: Failed to initialize all sensors\n");
+ /* Clean up */
+ close(fd_gyro);
+ close(fd_accelerometer);
+ close(fd_magnetometer);
+ close(fd_barometer);
+ close(fd_adc);
+
+ fprintf(stderr, "[sensors] rebooting system.\n");
+ fflush(stderr);
+ fflush(stdout);
+ usleep(100000);
+
+ /* Sensors are critical, immediately reboot system on failure */
+ reboot();
+ /* Not ever reaching here */
+
+ } else {
+ /* flush stdout from init routine */
+ fflush(stdout);
+ }
+
+ bool gyro_healthy = false;
+ bool acc_healthy = false;
+ bool magn_healthy = false;
+ bool baro_healthy = false;
+ bool adc_healthy = false;
+
+ bool hil_enabled = false;
+
+ int magcounter = 0;
+ int barocounter = 0;
+ int adccounter = 0;
+
+ unsigned int mag_fail_count = 0;
+ unsigned int mag_success_count = 0;
+
+ unsigned int baro_fail_count = 0;
+ unsigned int baro_success_count = 0;
+
+ unsigned int gyro_fail_count = 0;
+ unsigned int gyro_success_count = 0;
+
+ unsigned int acc_fail_count = 0;
+ unsigned int acc_success_count = 0;
+
+ unsigned int adc_fail_count = 0;
+ unsigned int adc_success_count = 0;
+
+ ssize_t ret_gyro;
+ ssize_t ret_accelerometer;
+ ssize_t ret_magnetometer;
+ ssize_t ret_barometer;
+ ssize_t ret_adc;
+ int nsamples_adc;
+
+ int16_t buf_gyro[3];
+ int16_t buf_accelerometer[3];
+ int16_t buf_magnetometer[3];
+ float buf_barometer[3];
+
+ int16_t mag_offset[3] = {0, 0, 0};
+ int16_t acc_offset[3] = {0, 0, 0};
+ int16_t gyro_offset[3] = {0, 0, 0};
+
+ struct adc_msg4_s {
+ uint8_t am_channel1; /**< The 8-bit ADC Channel 1 */
+ int32_t am_data1; /**< ADC convert result 1 (4 bytes) */
+ uint8_t am_channel2; /**< The 8-bit ADC Channel 2 */
+ int32_t am_data2; /**< ADC convert result 2 (4 bytes) */
+ uint8_t am_channel3; /**< The 8-bit ADC Channel 3 */
+ int32_t am_data3; /**< ADC convert result 3 (4 bytes) */
+ uint8_t am_channel4; /**< The 8-bit ADC Channel 4 */
+ int32_t am_data4; /**< ADC convert result 4 (4 bytes) */
+ } __attribute__((__packed__));;
+ struct adc_msg4_s buf_adc;
+ size_t adc_readsize = 1 * sizeof(struct adc_msg4_s);
+
+ float battery_voltage_conversion;
+ battery_voltage_conversion = global_data_parameter_storage->pm.param_values[PARAM_BATTERYVOLTAGE_CONVERSION];
+
+ if (-1.0f == battery_voltage_conversion) {
+ /**< default is conversion factor for the PX4IO / PX4IOAR board, the factor for PX4FMU standalone is different */
+ battery_voltage_conversion = 3.3f * 52.0f / 5.0f / 4095.0f;
+ }
+
+#ifdef CONFIG_HRT_PPM
+ int ppmcounter = 0;
+#endif
+ /* initialize to 100 to execute immediately */
+ int paramcounter = 100;
+
+ int excessive_readout_time_counter = 0;
+
+ int read_loop_counter = 0;
+
+ /* Empty sensor buffers, avoid junk values */
+ /* Read first two values of each sensor into void */
+ (void)read(fd_gyro, buf_gyro, sizeof(buf_gyro));
+ (void)read(fd_accelerometer, buf_accelerometer, sizeof(buf_accelerometer));
+ (void)read(fd_magnetometer, buf_magnetometer, sizeof(buf_magnetometer));
+
+ if (fd_barometer > 0)(void)read(fd_barometer, buf_barometer, sizeof(buf_barometer));
+
+ struct sensor_combined_s raw = {
+ .timestamp = hrt_absolute_time(),
+ .gyro_raw = {buf_gyro[0], buf_gyro[1], buf_gyro[2]},
+ .gyro_raw_counter = 0,
+ .gyro_rad_s = {0, 0, 0},
+ .accelerometer_raw = {buf_accelerometer[0], buf_accelerometer[1], buf_accelerometer[2]},
+ .accelerometer_raw_counter = 0,
+ .accelerometer_m_s2 = {0, 0, 0},
+ .magnetometer_raw = {buf_magnetometer[0], buf_magnetometer[1], buf_magnetometer[2]},
+ .magnetometer_raw_counter = 0,
+ .baro_pres_mbar = 0,
+ .baro_alt_meter = 0,
+ .baro_temp_celcius = 0,
+ .battery_voltage_v = BAT_VOL_INITIAL,
+ .adc_voltage_v = {0, 0 , 0},
+ .baro_raw_counter = 0,
+ .battery_voltage_counter = 0,
+ .battery_voltage_valid = false,
+ };
+
+ /* condition to wait for */
+ pthread_mutex_init(&sensors_read_ready_mutex, NULL);
+ pthread_cond_init(&sensors_read_ready, NULL);
+
+ /* advertise the topic and make the initial publication */
+ sensor_pub = orb_advertise(ORB_ID(sensor_combined), &raw);
+
+ /* advertise the rc topic */
+ struct rc_channels_s rc = {0};
+ int rc_pub = orb_advertise(ORB_ID(rc_channels), &rc);
+
+ /* subscribe to system status */
+ struct vehicle_status_s vstatus;
+ int vstatus_sub = orb_subscribe(ORB_ID(vehicle_status));
+
+
+ printf("[sensors] rate: %u Hz\n", (unsigned int)(1000000 / SENSOR_INTERVAL_MICROSEC));
+
+ struct hrt_call sensors_hrt_call;
+ /* Enable high resolution timer callback to unblock main thread, run after 2 ms */
+ hrt_call_every(&sensors_hrt_call, 2000, SENSOR_INTERVAL_MICROSEC, &sensors_timer_loop, NULL);
+
+ while (1) {
+ pthread_mutex_lock(&sensors_read_ready_mutex);
+
+ struct timespec time_to_wait = {0, 0};
+ /* Wait 2 seconds until timeout */
+ time_to_wait.tv_nsec = 0;
+ time_to_wait.tv_sec = time(NULL) + 2;
+
+ if (pthread_cond_timedwait(&sensors_read_ready, &sensors_read_ready_mutex, &time_to_wait) == OK) {
+ pthread_mutex_unlock(&sensors_read_ready_mutex);
+
+ bool gyro_updated = false;
+ bool acc_updated = false;
+ bool magn_updated = false;
+ bool baro_updated = false;
+ bool adc_updated = false;
+
+ /* store the time closest to all measurements */
+ uint64_t current_time = hrt_absolute_time();
+ raw.timestamp = current_time;
+
+ if (paramcounter == 100) {
+ // XXX paramcounter is not a good name, rename / restructure
+ // XXX make counter ticks dependent on update rate of sensor main loop
+
+ /* Check HIL state */
+ orb_copy(ORB_ID(vehicle_status), vstatus_sub, &vstatus);
+
+ /* switching from non-HIL to HIL mode */
+ if ((vstatus.mode & VEHICLE_MODE_FLAG_HIL_ENABLED) && !hil_enabled) {
+ hil_enabled = true;
+ close(sensor_pub);
+
+ /* switching from HIL to non-HIL mode */
+
+ } else if (!(vstatus.mode & VEHICLE_MODE_FLAG_HIL_ENABLED) && hil_enabled) {
+ /* advertise the topic and make the initial publication */
+ sensor_pub = orb_advertise(ORB_ID(sensor_combined), &raw);
+ hil_enabled = false;
+ }
+
+
+ /* Update RC scalings and function mappings */
+ rc.chan[0].scaling_factor = (10000 / ((global_data_parameter_storage->pm.param_values[PARAM_RC1_MAX] - global_data_parameter_storage->pm.param_values[PARAM_RC1_MIN]) / 2)
+ * global_data_parameter_storage->pm.param_values[PARAM_RC1_REV]);
+ rc.chan[0].mid = (uint16_t)global_data_parameter_storage->pm.param_values[PARAM_RC1_TRIM];
+
+ rc.chan[1].scaling_factor = (10000 / ((global_data_parameter_storage->pm.param_values[PARAM_RC2_MAX] - global_data_parameter_storage->pm.param_values[PARAM_RC2_MIN]) / 2)
+ * global_data_parameter_storage->pm.param_values[PARAM_RC2_REV]);
+ rc.chan[1].mid = (uint16_t)global_data_parameter_storage->pm.param_values[PARAM_RC2_TRIM];
+
+ rc.chan[2].scaling_factor = (10000 / ((global_data_parameter_storage->pm.param_values[PARAM_RC3_MAX] - global_data_parameter_storage->pm.param_values[PARAM_RC3_MIN]) / 2)
+ * global_data_parameter_storage->pm.param_values[PARAM_RC3_REV]);
+ rc.chan[2].mid = (uint16_t)global_data_parameter_storage->pm.param_values[PARAM_RC3_TRIM];
+
+ rc.chan[3].scaling_factor = (10000 / ((global_data_parameter_storage->pm.param_values[PARAM_RC4_MAX] - global_data_parameter_storage->pm.param_values[PARAM_RC4_MIN]) / 2)
+ * global_data_parameter_storage->pm.param_values[PARAM_RC4_REV]);
+ rc.chan[3].mid = (uint16_t)global_data_parameter_storage->pm.param_values[PARAM_RC4_TRIM];
+
+ rc.chan[4].scaling_factor = (10000 / ((global_data_parameter_storage->pm.param_values[PARAM_RC5_MAX] - global_data_parameter_storage->pm.param_values[PARAM_RC5_MIN]) / 2)
+ * global_data_parameter_storage->pm.param_values[PARAM_RC5_REV]);
+ rc.chan[4].mid = (uint16_t)global_data_parameter_storage->pm.param_values[PARAM_RC5_TRIM];
+
+ rc.function[0] = global_data_parameter_storage->pm.param_values[PARAM_THROTTLE_CHAN] - 1;
+ rc.function[1] = global_data_parameter_storage->pm.param_values[PARAM_ROLL_CHAN] - 1;
+ rc.function[2] = global_data_parameter_storage->pm.param_values[PARAM_PITCH_CHAN] - 1;
+ rc.function[3] = global_data_parameter_storage->pm.param_values[PARAM_YAW_CHAN] - 1;
+ rc.function[4] = global_data_parameter_storage->pm.param_values[PARAM_OVERRIDE_CHAN] - 1;
+
+ gyro_offset[0] = global_data_parameter_storage->pm.param_values[PARAM_SENSOR_GYRO_XOFFSET];
+ gyro_offset[1] = global_data_parameter_storage->pm.param_values[PARAM_SENSOR_GYRO_YOFFSET];
+ gyro_offset[2] = global_data_parameter_storage->pm.param_values[PARAM_SENSOR_GYRO_ZOFFSET];
+
+ mag_offset[0] = global_data_parameter_storage->pm.param_values[PARAM_SENSOR_MAG_XOFFSET];
+ mag_offset[1] = global_data_parameter_storage->pm.param_values[PARAM_SENSOR_MAG_YOFFSET];
+ mag_offset[2] = global_data_parameter_storage->pm.param_values[PARAM_SENSOR_MAG_ZOFFSET];
+
+ paramcounter = 0;
+ }
+
+ paramcounter++;
+
+ /* try reading gyro */
+ uint64_t start_gyro = hrt_absolute_time();
+ ret_gyro = read(fd_gyro, buf_gyro, sizeof(buf_gyro));
+ int gyrotime = hrt_absolute_time() - start_gyro;
+
+ if (gyrotime > 500) printf("GYRO (pure read): %d us\n", gyrotime);
+
+ /* GYROSCOPE */
+ if (ret_gyro != sizeof(buf_gyro)) {
+ gyro_fail_count++;
+
+ if ((((gyro_fail_count % 20) == 0) || (gyro_fail_count > 20 && gyro_fail_count < 100)) && (int)*get_errno_ptr() != EAGAIN) {
+ fprintf(stderr, "[sensors] L3GD20 ERROR #%d: %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
+ }
+
+ if (gyro_healthy && gyro_fail_count >= GYRO_HEALTH_COUNTER_LIMIT_ERROR) {
+ // global_data_send_subsystem_info(&gyro_present_enabled);
+ gyro_healthy = false;
+ gyro_success_count = 0;
+ }
+
+ } else {
+ gyro_success_count++;
+
+ if (!gyro_healthy && gyro_success_count >= GYRO_HEALTH_COUNTER_LIMIT_OK) {
+ // global_data_send_subsystem_info(&gyro_present_enabled_healthy);
+ gyro_healthy = true;
+ gyro_fail_count = 0;
+
+ }
+
+ gyro_updated = true;
+ }
+
+ gyrotime = hrt_absolute_time() - start_gyro;
+
+ if (gyrotime > 500) printf("GYRO (complete): %d us\n", gyrotime);
+
+ /* try reading acc */
+ uint64_t start_acc = hrt_absolute_time();
+ ret_accelerometer = read(fd_accelerometer, buf_accelerometer, sizeof(buf_accelerometer));
+
+ /* ACCELEROMETER */
+ if (ret_accelerometer != sizeof(buf_accelerometer)) {
+ acc_fail_count++;
+
+ if (acc_fail_count & 0b1000 || (acc_fail_count > 20 && acc_fail_count < 100)) {
+ fprintf(stderr, "[sensors] BMA180 ERROR #%d: %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
+ }
+
+ if (acc_healthy && acc_fail_count >= ACC_HEALTH_COUNTER_LIMIT_ERROR) {
+ // global_data_send_subsystem_info(&acc_present_enabled);
+ gyro_healthy = false;
+ acc_success_count = 0;
+ }
+
+ } else {
+ acc_success_count++;
+
+ if (!acc_healthy && acc_success_count >= ACC_HEALTH_COUNTER_LIMIT_OK) {
+
+ // global_data_send_subsystem_info(&acc_present_enabled_healthy);
+ acc_healthy = true;
+ acc_fail_count = 0;
+
+ }
+
+ acc_updated = true;
+ }
+
+ int acctime = hrt_absolute_time() - start_acc;
+
+ if (acctime > 500) printf("ACC: %d us\n", acctime);
+
+ /* MAGNETOMETER */
+ if (magcounter == 4) { //(magcounter == 4) // 100 Hz
+ uint64_t start_mag = hrt_absolute_time();
+ ret_magnetometer = read(fd_magnetometer, buf_magnetometer, sizeof(buf_magnetometer));
+ int errcode_mag = (int) * get_errno_ptr();
+ int magtime = hrt_absolute_time() - start_mag;
+
+ if (magtime > 2000) {
+ printf("MAG (pure read): %d us\n", magtime);
+ }
+
+ if (ret_magnetometer != sizeof(buf_magnetometer)) {
+ mag_fail_count++;
+
+ if (mag_fail_count & 0b1000 || (mag_fail_count > 20 && mag_fail_count < 100)) {
+ fprintf(stderr, "[sensors] HMC5883L ERROR #%d: %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
+ }
+
+ if (magn_healthy && mag_fail_count >= MAGN_HEALTH_COUNTER_LIMIT_ERROR) {
+ // global_data_send_subsystem_info(&magn_present_enabled);
+ magn_healthy = false;
+ mag_success_count = 0;
+ }
+
+ } else {
+ mag_success_count++;
+
+ if (!magn_healthy && mag_success_count >= MAGN_HEALTH_COUNTER_LIMIT_OK) {
+ // global_data_send_subsystem_info(&magn_present_enabled_healthy);
+ magn_healthy = true;
+ mag_fail_count = 0;
+ }
+
+ magn_updated = true;
+ }
+
+ magtime = hrt_absolute_time() - start_mag;
+
+ if (magtime > 2000) {
+ printf("MAG (overall time): %d us\n", magtime);
+ fprintf(stderr, "[sensors] TIMEOUT HMC5883L ERROR #%d: %s\n", errcode_mag, strerror(errcode_mag));
+ }
+
+ magcounter = 0;
+ }
+
+ magcounter++;
+
+ /* BAROMETER */
+ if (barocounter == 5 && (fd_barometer > 0)) { //(barocounter == 4) // 100 Hz
+ uint64_t start_baro = hrt_absolute_time();
+ *get_errno_ptr() = 0;
+ ret_barometer = read(fd_barometer, buf_barometer, sizeof(buf_barometer));
+
+ if (ret_barometer != sizeof(buf_barometer)) {
+ baro_fail_count++;
+
+ if ((baro_fail_count & 0b1000 || (baro_fail_count > 20 && baro_fail_count < 100)) && (int)*get_errno_ptr() != EAGAIN) {
+ fprintf(stderr, "[sensors] MS5611 ERROR #%d: %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
+ }
+
+ if (baro_healthy && baro_fail_count >= BARO_HEALTH_COUNTER_LIMIT_ERROR) {
+ /* switched from healthy to unhealthy */
+ baro_healthy = false;
+ baro_success_count = 0;
+ // global_data_send_subsystem_info(&baro_present_enabled);
+ }
+
+ } else {
+ baro_success_count++;
+
+ if (!baro_healthy && baro_success_count >= MAGN_HEALTH_COUNTER_LIMIT_OK) {
+ /* switched from unhealthy to healthy */
+ baro_healthy = true;
+ baro_fail_count = 0;
+ // global_data_send_subsystem_info(&baro_present_enabled_healthy);
+ }
+
+ baro_updated = true;
+ }
+
+ barocounter = 0;
+ int barotime = hrt_absolute_time() - start_baro;
+
+ if (barotime > 2000) printf("BARO: %d us\n", barotime);
+ }
+
+ barocounter++;
+
+ /* ADC */
+ if (adccounter == 5) {
+ ret_adc = read(fd_adc, &buf_adc, adc_readsize);
+ nsamples_adc = ret_adc / sizeof(struct adc_msg_s);
+
+ if (ret_adc < 0 || nsamples_adc * sizeof(struct adc_msg_s) != ret_adc) {
+ adc_fail_count++;
+
+ if ((adc_fail_count & 0b1000 || adc_fail_count < 10) && (int)*get_errno_ptr() != EAGAIN) {
+ fprintf(stderr, "[sensors] ADC ERROR #%d: %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
+ }
+
+ if (adc_healthy && adc_fail_count >= ADC_HEALTH_COUNTER_LIMIT_ERROR) {
+ adc_healthy = false;
+ adc_success_count = 0;
+ }
+
+ } else {
+ adc_success_count++;
+
+ if (!adc_healthy && adc_success_count >= ADC_HEALTH_COUNTER_LIMIT_OK) {
+ adc_healthy = true;
+ adc_fail_count = 0;
+ }
+
+ adc_updated = true;
+ }
+
+ adccounter = 0;
+
+ }
+
+ adccounter++;
+
+
+
+#ifdef CONFIG_HRT_PPM
+ bool ppm_updated = false;
+
+ /* PPM */
+ if (ppmcounter == 5) {
+
+ /* Read out values from HRT */
+ for (int i = 0; i < ppm_decoded_channels; i++) {
+ rc.chan[i].raw = ppm_buffer[i];
+ /* Set the range to +-, then scale up */
+ rc.chan[i].scale = (ppm_buffer[i] - rc.chan[i].mid) * rc.chan[i].scaling_factor;
+ }
+
+ rc.chan_count = ppm_decoded_channels;
+
+ rc.timestamp = hrt_absolute_time();
+ /* publish a few lines of code later if set to true */
+ ppm_updated = true;
+
+
+ //TODO: XXX check the mode switch channel and eventually send a request to the commander (see implementation in commander and mavlink)
+ ppmcounter = 0;
+ }
+
+ ppmcounter++;
+#endif
+
+ /* Copy values of gyro, acc, magnetometer & barometer */
+
+ /* GYROSCOPE */
+ if (gyro_updated) {
+ /* copy sensor readings to global data and transform coordinates into px4fmu board frame */
+
+ raw.gyro_raw[0] = ((buf_gyro[1] == -32768) ? -32767 : buf_gyro[1]); // x of the board is y of the sensor
+ /* assign negated value, except for -SHORT_MAX, as it would wrap there */
+ raw.gyro_raw[1] = ((buf_gyro[0] == -32768) ? 32767 : -buf_gyro[0]); // y on the board is -x of the sensor
+ raw.gyro_raw[2] = ((buf_gyro[2] == -32768) ? -32767 : buf_gyro[2]); // z of the board is -z of the sensor
+
+ /* scale measurements */
+ // XXX request scaling from driver instead of hardcoding it
+ /* scaling calculated as: raw * (1/(32768*(500/180*PI))) */
+ raw.gyro_rad_s[0] = (raw.gyro_raw[0] - gyro_offset[0]) * 0.000266316109f;
+ raw.gyro_rad_s[1] = (raw.gyro_raw[1] - gyro_offset[1]) * 0.000266316109f;
+ raw.gyro_rad_s[2] = (raw.gyro_raw[2] - gyro_offset[2]) * 0.000266316109f;
+
+ raw.gyro_raw_counter++;
+ }
+
+ /* ACCELEROMETER */
+ if (acc_updated) {
+ /* copy sensor readings to global data and transform coordinates into px4fmu board frame */
+
+ /* assign negated value, except for -SHORT_MAX, as it would wrap there */
+ raw.accelerometer_raw[0] = (buf_accelerometer[1] == -32768) ? 32767 : -buf_accelerometer[1]; // x of the board is -y of the sensor
+ raw.accelerometer_raw[1] = (buf_accelerometer[0] == -32768) ? -32767 : buf_accelerometer[0]; // y on the board is x of the sensor
+ raw.accelerometer_raw[2] = (buf_accelerometer[2] == -32768) ? -32767 : buf_accelerometer[2]; // z of the board is z of the sensor
+
+ // XXX read range from sensor
+ float range_g = 4.0f;
+ /* scale from 14 bit to m/s2 */
+ raw.accelerometer_m_s2[0] = (((raw.accelerometer_raw[0] - acc_offset[0]) * range_g) / 8192.0f) / 9.81f;
+ raw.accelerometer_m_s2[1] = (((raw.accelerometer_raw[1] - acc_offset[1]) * range_g) / 8192.0f) / 9.81f;
+ raw.accelerometer_m_s2[2] = (((raw.accelerometer_raw[2] - acc_offset[2]) * range_g) / 8192.0f) / 9.81f;
+
+ raw.accelerometer_raw_counter++;
+ }
+
+ /* MAGNETOMETER */
+ if (magn_updated) {
+ /* copy sensor readings to global data and transform coordinates into px4fmu board frame */
+
+ /* assign negated value, except for -SHORT_MAX, as it would wrap there */
+ raw.magnetometer_raw[0] = (buf_magnetometer[1] == -32768) ? 32767 : -buf_magnetometer[1]; // x of the board is -y of the sensor
+ raw.magnetometer_raw[1] = (buf_magnetometer[0] == -32768) ? -32767 : buf_magnetometer[0]; // y on the board is x of the sensor
+ raw.magnetometer_raw[2] = (buf_magnetometer[2] == -32768) ? -32767 : buf_magnetometer[2]; // z of the board is z of the sensor
+
+ // XXX Read out mag range via I2C on init, assuming 0.88 Ga and 12 bit res here
+ raw.magnetometer_ga[0] = ((raw.magnetometer_raw[0] - mag_offset[0]) / 4096.0f) * 0.88f;
+ raw.magnetometer_ga[1] = ((raw.magnetometer_raw[1] - mag_offset[1]) / 4096.0f) * 0.88f;
+ raw.magnetometer_ga[2] = ((raw.magnetometer_raw[2] - mag_offset[2]) / 4096.0f) * 0.88f;
+
+ raw.magnetometer_raw_counter++;
+ }
+
+ /* BAROMETER */
+ if (baro_updated) {
+ /* copy sensor readings to global data and transform coordinates into px4fmu board frame */
+
+ raw.baro_pres_mbar = buf_barometer[0]; // Pressure in mbar
+ raw.baro_alt_meter = buf_barometer[1]; // Altitude in meters
+ raw.baro_temp_celcius = buf_barometer[2]; // Temperature in degrees celcius
+
+ raw.baro_raw_counter++;
+ }
+
+ /* ADC */
+ if (adc_updated) {
+ /* copy sensor readings to global data*/
+
+ if (ADC_BATTERY_VOLATGE_CHANNEL == buf_adc.am_channel1) {
+ /* Voltage in volts */
+ raw.battery_voltage_v = (BAT_VOL_LOWPASS_1 * (raw.battery_voltage_v + BAT_VOL_LOWPASS_2 * (uint16_t)(buf_adc.am_data1 * battery_voltage_conversion)));
+
+ if ((buf_adc.am_data1 * battery_voltage_conversion) < VOLTAGE_BATTERY_IGNORE_THRESHOLD_VOLTS) {
+ raw.battery_voltage_valid = false;
+ raw.battery_voltage_v = 0.f;
+
+ } else {
+ raw.battery_voltage_valid = true;
+ }
+
+ raw.battery_voltage_counter++;
+ }
+ }
+
+ uint64_t total_time = hrt_absolute_time() - current_time;
+
+ /* Inform other processes that new data is available to copy */
+ if ((gyro_updated || acc_updated || magn_updated || baro_updated) && !hil_enabled) {
+ /* Values changed, publish */
+ orb_publish(ORB_ID(sensor_combined), sensor_pub, &raw);
+ }
+
+#ifdef CONFIG_HRT_PPM
+
+ if (ppm_updated) {
+ orb_publish(ORB_ID(rc_channels), rc_pub, &rc);
+ }
+
+#endif
+
+ if (total_time > 2600) {
+ excessive_readout_time_counter++;
+ }
+
+ if (total_time > 2600 && excessive_readout_time_counter > 100 && excessive_readout_time_counter % 100 == 0) {
+ fprintf(stderr, "[sensors] slow update (>2600 us): %d us (#%d)\n", (int)total_time, excessive_readout_time_counter);
+
+ } else if (total_time > 6000) {
+ if (excessive_readout_time_counter < 100 || excessive_readout_time_counter % 100 == 0) fprintf(stderr, "[sensors] WARNING: Slow update (>6000 us): %d us (#%d)\n", (int)total_time, excessive_readout_time_counter);
+ }
+
+
+ read_loop_counter++;
+#ifdef CONFIG_SENSORS_DEBUG_ENABLED
+
+ if (read_loop_counter % 1000 == 0) printf("[sensors] read loop counter: %d\n", read_loop_counter);
+
+ fflush(stdout);
+
+ if (sensors_timer_loop_counter % 1000 == 0) printf("[sensors] timer/trigger loop counter: %d\n", sensors_timer_loop_counter);
+
+#endif
+ }
+ }
+
+ /* Never really getting here */
+ printf("[sensors] sensor readout stopped\n");
+
+ close(fd_gyro);
+ close(fd_accelerometer);
+ close(fd_magnetometer);
+ close(fd_barometer);
+ close(fd_adc);
+
+ printf("[sensors] exiting.\n");
+
+ return ret;
+}
+