aboutsummaryrefslogtreecommitdiff
path: root/src/lib/ecl/l1/ecl_l1_pos_controller.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/ecl/l1/ecl_l1_pos_controller.cpp')
-rw-r--r--src/lib/ecl/l1/ecl_l1_pos_controller.cpp366
1 files changed, 366 insertions, 0 deletions
diff --git a/src/lib/ecl/l1/ecl_l1_pos_controller.cpp b/src/lib/ecl/l1/ecl_l1_pos_controller.cpp
new file mode 100644
index 000000000..27d76f959
--- /dev/null
+++ b/src/lib/ecl/l1/ecl_l1_pos_controller.cpp
@@ -0,0 +1,366 @@
+/****************************************************************************
+ *
+ * Copyright (c) 2013 Estimation and Control Library (ECL). All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * 3. Neither the name ECL nor the names of its contributors may be
+ * used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+ * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+ * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+ * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+ * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
+ * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+ * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ *
+ ****************************************************************************/
+
+/**
+ * @file ecl_l1_pos_controller.h
+ * Implementation of L1 position control.
+ * Authors and acknowledgements in header.
+ *
+ */
+
+#include "ecl_l1_pos_controller.h"
+
+float ECL_L1_Pos_Controller::nav_roll()
+{
+ float ret = atanf(_lateral_accel * 1.0f / CONSTANTS_ONE_G);
+ ret = math::constrain(ret, -_roll_lim_rad, _roll_lim_rad);
+ return ret;
+}
+
+float ECL_L1_Pos_Controller::nav_lateral_acceleration_demand()
+{
+ return _lateral_accel;
+}
+
+float ECL_L1_Pos_Controller::nav_bearing()
+{
+ return _wrap_pi(_nav_bearing);
+}
+
+float ECL_L1_Pos_Controller::bearing_error()
+{
+ return _bearing_error;
+}
+
+float ECL_L1_Pos_Controller::target_bearing()
+{
+ return _target_bearing;
+}
+
+float ECL_L1_Pos_Controller::switch_distance(float wp_radius)
+{
+ /* following [2], switching on L1 distance */
+ return math::max(wp_radius, _L1_distance);
+}
+
+bool ECL_L1_Pos_Controller::reached_loiter_target(void)
+{
+ return _circle_mode;
+}
+
+float ECL_L1_Pos_Controller::crosstrack_error(void)
+{
+ return _crosstrack_error;
+}
+
+void ECL_L1_Pos_Controller::navigate_waypoints(const math::Vector2f &vector_A, const math::Vector2f &vector_B, const math::Vector2f &vector_curr_position,
+ const math::Vector2f &ground_speed_vector)
+{
+
+ /* this follows the logic presented in [1] */
+
+ float eta;
+ float xtrack_vel;
+ float ltrack_vel;
+
+ /* get the direction between the last (visited) and next waypoint */
+ _target_bearing = get_bearing_to_next_waypoint(vector_curr_position.getX(), vector_curr_position.getY(), vector_B.getX(), vector_B.getY());
+
+ /* enforce a minimum ground speed of 0.1 m/s to avoid singularities */
+ float ground_speed = math::max(ground_speed_vector.length(), 0.1f);
+
+ /* calculate the L1 length required for the desired period */
+ _L1_distance = _L1_ratio * ground_speed;
+
+ /* calculate vector from A to B */
+ math::Vector2f vector_AB = get_local_planar_vector(vector_A, vector_B);
+
+ /*
+ * check if waypoints are on top of each other. If yes,
+ * skip A and directly continue to B
+ */
+ if (vector_AB.length() < 1.0e-6f) {
+ vector_AB = get_local_planar_vector(vector_curr_position, vector_B);
+ }
+
+ vector_AB.normalize();
+
+ /* calculate the vector from waypoint A to the aircraft */
+ math::Vector2f vector_A_to_airplane = get_local_planar_vector(vector_A, vector_curr_position);
+
+ /* calculate crosstrack error (output only) */
+ _crosstrack_error = vector_AB % vector_A_to_airplane;
+
+ /*
+ * If the current position is in a +-135 degree angle behind waypoint A
+ * and further away from A than the L1 distance, then A becomes the L1 point.
+ * If the aircraft is already between A and B normal L1 logic is applied.
+ */
+ float distance_A_to_airplane = vector_A_to_airplane.length();
+ float alongTrackDist = vector_A_to_airplane * vector_AB;
+
+ /* estimate airplane position WRT to B */
+ math::Vector2f vector_B_to_P_unit = get_local_planar_vector(vector_B, vector_curr_position).normalized();
+
+ /* calculate angle of airplane position vector relative to line) */
+
+ // XXX this could probably also be based solely on the dot product
+ float AB_to_BP_bearing = atan2f(vector_B_to_P_unit % vector_AB, vector_B_to_P_unit * vector_AB);
+
+ /* extension from [2], fly directly to A */
+ if (distance_A_to_airplane > _L1_distance && alongTrackDist / math::max(distance_A_to_airplane , 1.0f) < -0.7071f) {
+
+ /* calculate eta to fly to waypoint A */
+
+ /* unit vector from waypoint A to current position */
+ math::Vector2f vector_A_to_airplane_unit = vector_A_to_airplane.normalized();
+ /* velocity across / orthogonal to line */
+ xtrack_vel = ground_speed_vector % (-vector_A_to_airplane_unit);
+ /* velocity along line */
+ ltrack_vel = ground_speed_vector * (-vector_A_to_airplane_unit);
+ eta = atan2f(xtrack_vel, ltrack_vel);
+ /* bearing from current position to L1 point */
+ _nav_bearing = atan2f(-vector_A_to_airplane_unit.getY() , -vector_A_to_airplane_unit.getX());
+
+ /*
+ * If the AB vector and the vector from B to airplane point in the same
+ * direction, we have missed the waypoint. At +- 90 degrees we are just passing it.
+ */
+ } else if (fabsf(AB_to_BP_bearing) < math::radians(100.0f)) {
+ /*
+ * Extension, fly back to waypoint.
+ *
+ * This corner case is possible if the system was following
+ * the AB line from waypoint A to waypoint B, then is
+ * switched to manual mode (or otherwise misses the waypoint)
+ * and behind the waypoint continues to follow the AB line.
+ */
+
+ /* calculate eta to fly to waypoint B */
+
+ /* velocity across / orthogonal to line */
+ xtrack_vel = ground_speed_vector % (-vector_B_to_P_unit);
+ /* velocity along line */
+ ltrack_vel = ground_speed_vector * (-vector_B_to_P_unit);
+ eta = atan2f(xtrack_vel, ltrack_vel);
+ /* bearing from current position to L1 point */
+ _nav_bearing = atan2f(-vector_B_to_P_unit.getY() , -vector_B_to_P_unit.getX());
+
+ } else {
+
+ /* calculate eta to fly along the line between A and B */
+
+ /* velocity across / orthogonal to line */
+ xtrack_vel = ground_speed_vector % vector_AB;
+ /* velocity along line */
+ ltrack_vel = ground_speed_vector * vector_AB;
+ /* calculate eta2 (angle of velocity vector relative to line) */
+ float eta2 = atan2f(xtrack_vel, ltrack_vel);
+ /* calculate eta1 (angle to L1 point) */
+ float xtrackErr = vector_A_to_airplane % vector_AB;
+ float sine_eta1 = xtrackErr / math::max(_L1_distance , 0.1f);
+ /* limit output to 45 degrees */
+ sine_eta1 = math::constrain(sine_eta1, -0.7071f, 0.7071f); //sin(pi/4) = 0.7071
+ float eta1 = asinf(sine_eta1);
+ eta = eta1 + eta2;
+ /* bearing from current position to L1 point */
+ _nav_bearing = atan2f(vector_AB.getY(), vector_AB.getX()) + eta1;
+
+ }
+
+ /* limit angle to +-90 degrees */
+ eta = math::constrain(eta, (-M_PI_F) / 2.0f, +M_PI_F / 2.0f);
+ _lateral_accel = _K_L1 * ground_speed * ground_speed / _L1_distance * sinf(eta);
+
+ /* flying to waypoints, not circling them */
+ _circle_mode = false;
+
+ /* the bearing angle, in NED frame */
+ _bearing_error = eta;
+}
+
+void ECL_L1_Pos_Controller::navigate_loiter(const math::Vector2f &vector_A, const math::Vector2f &vector_curr_position, float radius, int8_t loiter_direction,
+ const math::Vector2f &ground_speed_vector)
+{
+ /* the complete guidance logic in this section was proposed by [2] */
+
+ /* calculate the gains for the PD loop (circle tracking) */
+ float omega = (2.0f * M_PI_F / _L1_period);
+ float K_crosstrack = omega * omega;
+ float K_velocity = 2.0f * _L1_damping * omega;
+
+ /* update bearing to next waypoint */
+ _target_bearing = get_bearing_to_next_waypoint(vector_curr_position.getX(), vector_curr_position.getY(), vector_A.getX(), vector_A.getY());
+
+ /* ground speed, enforce minimum of 0.1 m/s to avoid singularities */
+ float ground_speed = math::max(ground_speed_vector.length() , 0.1f);
+
+ /* calculate the L1 length required for the desired period */
+ _L1_distance = _L1_ratio * ground_speed;
+
+ /* calculate the vector from waypoint A to current position */
+ math::Vector2f vector_A_to_airplane = get_local_planar_vector(vector_A, vector_curr_position);
+
+ /* store the normalized vector from waypoint A to current position */
+ math::Vector2f vector_A_to_airplane_unit = (vector_A_to_airplane).normalized();
+
+ /* calculate eta angle towards the loiter center */
+
+ /* velocity across / orthogonal to line from waypoint to current position */
+ float xtrack_vel_center = vector_A_to_airplane_unit % ground_speed_vector;
+ /* velocity along line from waypoint to current position */
+ float ltrack_vel_center = - (ground_speed_vector * vector_A_to_airplane_unit);
+ float eta = atan2f(xtrack_vel_center, ltrack_vel_center);
+ /* limit eta to 90 degrees */
+ eta = math::constrain(eta, -M_PI_F / 2.0f, +M_PI_F / 2.0f);
+
+ /* calculate the lateral acceleration to capture the center point */
+ float lateral_accel_sp_center = _K_L1 * ground_speed * ground_speed / _L1_distance * sinf(eta);
+
+ /* for PD control: Calculate radial position and velocity errors */
+
+ /* radial velocity error */
+ float xtrack_vel_circle = -ltrack_vel_center;
+ /* radial distance from the loiter circle (not center) */
+ float xtrack_err_circle = vector_A_to_airplane.length() - radius;
+
+ /* cross track error for feedback */
+ _crosstrack_error = xtrack_err_circle;
+
+ /* calculate PD update to circle waypoint */
+ float lateral_accel_sp_circle_pd = (xtrack_err_circle * K_crosstrack + xtrack_vel_circle * K_velocity);
+
+ /* calculate velocity on circle / along tangent */
+ float tangent_vel = xtrack_vel_center * loiter_direction;
+
+ /* prevent PD output from turning the wrong way */
+ if (tangent_vel < 0.0f) {
+ lateral_accel_sp_circle_pd = math::max(lateral_accel_sp_circle_pd , 0.0f);
+ }
+
+ /* calculate centripetal acceleration setpoint */
+ float lateral_accel_sp_circle_centripetal = tangent_vel * tangent_vel / math::max((0.5f * radius) , (radius + xtrack_err_circle));
+
+ /* add PD control on circle and centripetal acceleration for total circle command */
+ float lateral_accel_sp_circle = loiter_direction * (lateral_accel_sp_circle_pd + lateral_accel_sp_circle_centripetal);
+
+ /*
+ * Switch between circle (loiter) and capture (towards waypoint center) mode when
+ * the commands switch over. Only fly towards waypoint if outside the circle.
+ */
+
+ // XXX check switch over
+ if ((lateral_accel_sp_center < lateral_accel_sp_circle && loiter_direction > 0 && xtrack_err_circle > 0.0f) |
+ (lateral_accel_sp_center > lateral_accel_sp_circle && loiter_direction < 0 && xtrack_err_circle > 0.0f)) {
+ _lateral_accel = lateral_accel_sp_center;
+ _circle_mode = false;
+ /* angle between requested and current velocity vector */
+ _bearing_error = eta;
+ /* bearing from current position to L1 point */
+ _nav_bearing = atan2f(-vector_A_to_airplane_unit.getY() , -vector_A_to_airplane_unit.getX());
+
+ } else {
+ _lateral_accel = lateral_accel_sp_circle;
+ _circle_mode = true;
+ _bearing_error = 0.0f;
+ /* bearing from current position to L1 point */
+ _nav_bearing = atan2f(-vector_A_to_airplane_unit.getY() , -vector_A_to_airplane_unit.getX());
+ }
+}
+
+
+void ECL_L1_Pos_Controller::navigate_heading(float navigation_heading, float current_heading, const math::Vector2f &ground_speed_vector)
+{
+ /* the complete guidance logic in this section was proposed by [2] */
+
+ float eta;
+
+ /*
+ * As the commanded heading is the only reference
+ * (and no crosstrack correction occurs),
+ * target and navigation bearing become the same
+ */
+ _target_bearing = _nav_bearing = _wrap_pi(navigation_heading);
+ eta = _target_bearing - _wrap_pi(current_heading);
+ eta = _wrap_pi(eta);
+
+ /* consequently the bearing error is exactly eta: */
+ _bearing_error = eta;
+
+ /* ground speed is the length of the ground speed vector */
+ float ground_speed = ground_speed_vector.length();
+
+ /* adjust L1 distance to keep constant frequency */
+ _L1_distance = ground_speed / _heading_omega;
+ float omega_vel = ground_speed * _heading_omega;
+
+ /* not circling a waypoint */
+ _circle_mode = false;
+
+ /* navigating heading means by definition no crosstrack error */
+ _crosstrack_error = 0;
+
+ /* limit eta to 90 degrees */
+ eta = math::constrain(eta, (-M_PI_F) / 2.0f, +M_PI_F / 2.0f);
+ _lateral_accel = 2.0f * sinf(eta) * omega_vel;
+}
+
+void ECL_L1_Pos_Controller::navigate_level_flight(float current_heading)
+{
+ /* the logic in this section is trivial, but originally proposed by [2] */
+
+ /* reset all heading / error measures resulting in zero roll */
+ _target_bearing = current_heading;
+ _nav_bearing = current_heading;
+ _bearing_error = 0;
+ _crosstrack_error = 0;
+ _lateral_accel = 0;
+
+ /* not circling a waypoint when flying level */
+ _circle_mode = false;
+
+}
+
+
+math::Vector2f ECL_L1_Pos_Controller::get_local_planar_vector(const math::Vector2f &origin, const math::Vector2f &target) const
+{
+ /* this is an approximation for small angles, proposed by [2] */
+
+ math::Vector2f out;
+
+ out.setX(math::radians((target.getX() - origin.getX())));
+ out.setY(math::radians((target.getY() - origin.getY())*cosf(math::radians(origin.getX()))));
+
+ return out * static_cast<float>(CONSTANTS_RADIUS_OF_EARTH);
+}
+