aboutsummaryrefslogtreecommitdiff
path: root/src/modules/att_pos_estimator_ekf/KalmanNav.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/modules/att_pos_estimator_ekf/KalmanNav.cpp')
-rw-r--r--src/modules/att_pos_estimator_ekf/KalmanNav.cpp126
1 files changed, 58 insertions, 68 deletions
diff --git a/src/modules/att_pos_estimator_ekf/KalmanNav.cpp b/src/modules/att_pos_estimator_ekf/KalmanNav.cpp
index ecca04dd7..668bac5d9 100644
--- a/src/modules/att_pos_estimator_ekf/KalmanNav.cpp
+++ b/src/modules/att_pos_estimator_ekf/KalmanNav.cpp
@@ -53,21 +53,6 @@ static const int8_t ret_error = -1; // error occurred
KalmanNav::KalmanNav(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
- // ekf matrices
- F(9, 9),
- G(9, 6),
- P(9, 9),
- P0(9, 9),
- V(6, 6),
- // attitude measurement ekf matrices
- HAtt(4, 9),
- RAtt(4, 4),
- // position measurement ekf matrices
- HPos(6, 9),
- RPos(6, 6),
- // attitude representations
- C_nb(),
- q(),
// subscriptions
_sensors(&getSubscriptions(), ORB_ID(sensor_combined), 5), // limit to 200 Hz
_gps(&getSubscriptions(), ORB_ID(vehicle_gps_position), 100), // limit to 10 Hz
@@ -112,8 +97,17 @@ KalmanNav::KalmanNav(SuperBlock *parent, const char *name) :
{
using namespace math;
+ F.zero();
+ G.zero();
+ V.zero();
+ HAtt.zero();
+ RAtt.zero();
+ HPos.zero();
+ RPos.zero();
+
// initial state covariance matrix
- P0 = Matrix::identity(9) * 0.01f;
+ P0.identity();
+ P0 *= 0.01f;
P = P0;
// initial state
@@ -138,7 +132,7 @@ KalmanNav::KalmanNav(SuperBlock *parent, const char *name) :
_sensors.magnetometer_ga[2]);
// initialize dcm
- C_nb = Dcm(q);
+ C_nb = q.to_dcm();
// HPos is constant
HPos(0, 3) = 1.0f;
@@ -228,8 +222,8 @@ void KalmanNav::update()
if (correctAtt() == ret_ok) _attitudeInitCounter++;
if (_attitudeInitCounter > 100) {
- warnx("initialized EKF attitude\n");
- warnx("phi: %8.4f, theta: %8.4f, psi: %8.4f\n",
+ warnx("initialized EKF attitude");
+ warnx("phi: %8.4f, theta: %8.4f, psi: %8.4f",
double(phi), double(theta), double(psi));
_attitudeInitialized = true;
}
@@ -259,8 +253,8 @@ void KalmanNav::update()
// lat/lon and not have init
map_projection_init(lat0, lon0);
_positionInitialized = true;
- warnx("initialized EKF state with GPS\n");
- warnx("vN: %8.4f, vE: %8.4f, vD: %8.4f, lat: %8.4f, lon: %8.4f, alt: %8.4f\n",
+ warnx("initialized EKF state with GPS");
+ warnx("vN: %8.4f, vE: %8.4f, vD: %8.4f, lat: %8.4f, lon: %8.4f, alt: %8.4f",
double(vN), double(vE), double(vD),
lat, lon, double(alt));
}
@@ -320,14 +314,13 @@ void KalmanNav::updatePublications()
// global position publication
_pos.timestamp = _pubTimeStamp;
_pos.time_gps_usec = _gps.timestamp_position;
- _pos.valid = true;
- _pos.lat = getLatDegE7();
- _pos.lon = getLonDegE7();
+ _pos.global_valid = true;
+ _pos.lat = lat * M_RAD_TO_DEG;
+ _pos.lon = lon * M_RAD_TO_DEG;
_pos.alt = float(alt);
- _pos.relative_alt = float(alt); // TODO, make relative
- _pos.vx = vN;
- _pos.vy = vE;
- _pos.vz = vD;
+ _pos.vel_n = vN;
+ _pos.vel_e = vE;
+ _pos.vel_d = vD;
_pos.yaw = psi;
// local position publication
@@ -404,28 +397,28 @@ int KalmanNav::predictState(float dt)
// attitude prediction
if (_attitudeInitialized) {
- Vector3 w(_sensors.gyro_rad_s);
+ Vector<3> w(_sensors.gyro_rad_s);
// attitude
q = q + q.derivative(w) * dt;
// renormalize quaternion if needed
- if (fabsf(q.norm() - 1.0f) > 1e-4f) {
- q = q.unit();
+ if (fabsf(q.length() - 1.0f) > 1e-4f) {
+ q.normalize();
}
// C_nb update
- C_nb = Dcm(q);
+ C_nb = q.to_dcm();
// euler update
- EulerAngles euler(C_nb);
- phi = euler.getPhi();
- theta = euler.getTheta();
- psi = euler.getPsi();
+ Vector<3> euler = C_nb.to_euler();
+ phi = euler.data[0];
+ theta = euler.data[1];
+ psi = euler.data[2];
// specific acceleration in nav frame
- Vector3 accelB(_sensors.accelerometer_m_s2);
- Vector3 accelN = C_nb * accelB;
+ Vector<3> accelB(_sensors.accelerometer_m_s2);
+ Vector<3> accelN = C_nb * accelB;
fN = accelN(0);
fE = accelN(1);
fD = accelN(2);
@@ -549,10 +542,10 @@ int KalmanNav::predictStateCovariance(float dt)
G(5, 4) = C_nb(2, 1);
G(5, 5) = C_nb(2, 2);
- // continuous predictioon equations
- // for discrte time EKF
+ // continuous prediction equations
+ // for discrete time EKF
// http://en.wikipedia.org/wiki/Extended_Kalman_filter
- P = P + (F * P + P * F.transpose() + G * V * G.transpose()) * dt;
+ P = P + (F * P + P * F.transposed() + G * V * G.transposed()) * dt;
return ret_ok;
}
@@ -577,13 +570,14 @@ int KalmanNav::correctAtt()
// compensate roll and pitch, but not yaw
// XXX take the vectors out of the C_nb matrix to avoid singularities
- math::Dcm C_rp(math::EulerAngles(phi, theta, 0.0f));//C_nb.transpose();
+ math::Matrix<3,3> C_rp;
+ C_rp.from_euler(phi, theta, 0.0f);//C_nb.transposed();
// mag measurement
- Vector3 magBody(_sensors.magnetometer_ga);
+ Vector<3> magBody(_sensors.magnetometer_ga);
// transform to earth frame
- Vector3 magNav = C_rp * magBody;
+ Vector<3> magNav = C_rp * magBody;
// calculate error between estimate and measurement
// apply declination correction for true heading as well.
@@ -592,12 +586,12 @@ int KalmanNav::correctAtt()
if (yMag < -M_PI_F) yMag += 2*M_PI_F;
// accel measurement
- Vector3 zAccel(_sensors.accelerometer_m_s2);
- float accelMag = zAccel.norm();
- zAccel = zAccel.unit();
+ Vector<3> zAccel(_sensors.accelerometer_m_s2);
+ float accelMag = zAccel.length();
+ zAccel.normalize();
// ignore accel correction when accel mag not close to g
- Matrix RAttAdjust = RAtt;
+ Matrix<4,4> RAttAdjust = RAtt;
bool ignoreAccel = fabsf(accelMag - _g.get()) > 1.1f;
@@ -611,14 +605,10 @@ int KalmanNav::correctAtt()
}
// accel predicted measurement
- Vector3 zAccelHat = (C_nb.transpose() * Vector3(0, 0, -_g.get())).unit();
+ Vector<3> zAccelHat = (C_nb.transposed() * Vector<3>(0, 0, -_g.get())).normalized();
// calculate residual
- Vector y(4);
- y(0) = yMag;
- y(1) = zAccel(0) - zAccelHat(0);
- y(2) = zAccel(1) - zAccelHat(1);
- y(3) = zAccel(2) - zAccelHat(2);
+ Vector<4> y(yMag, zAccel(0) - zAccelHat(0), zAccel(1) - zAccelHat(1), zAccel(2) - zAccelHat(2));
// HMag
HAtt(0, 2) = 1;
@@ -632,17 +622,17 @@ int KalmanNav::correctAtt()
// compute correction
// http://en.wikipedia.org/wiki/Extended_Kalman_filter
- Matrix S = HAtt * P * HAtt.transpose() + RAttAdjust; // residual covariance
- Matrix K = P * HAtt.transpose() * S.inverse();
- Vector xCorrect = K * y;
+ Matrix<4, 4> S = HAtt * P * HAtt.transposed() + RAttAdjust; // residual covariance
+ Matrix<9, 4> K = P * HAtt.transposed() * S.inversed();
+ Vector<9> xCorrect = K * y;
// check correciton is sane
- for (size_t i = 0; i < xCorrect.getRows(); i++) {
+ for (size_t i = 0; i < xCorrect.get_size(); i++) {
float val = xCorrect(i);
if (isnan(val) || isinf(val)) {
// abort correction and return
- warnx("numerical failure in att correction\n");
+ warnx("numerical failure in att correction");
// reset P matrix to P0
P = P0;
return ret_error;
@@ -669,7 +659,7 @@ int KalmanNav::correctAtt()
P = P - K * HAtt * P;
// fault detection
- float beta = y.dot(S.inverse() * y);
+ float beta = y * (S.inversed() * y);
if (beta > _faultAtt.get()) {
warnx("fault in attitude: beta = %8.4f", (double)beta);
@@ -678,7 +668,7 @@ int KalmanNav::correctAtt()
// update quaternions from euler
// angle correction
- q = Quaternion(EulerAngles(phi, theta, psi));
+ q.from_euler(phi, theta, psi);
return ret_ok;
}
@@ -688,7 +678,7 @@ int KalmanNav::correctPos()
using namespace math;
// residual
- Vector y(6);
+ Vector<6> y;
y(0) = _gps.vel_n_m_s - vN;
y(1) = _gps.vel_e_m_s - vE;
y(2) = double(_gps.lat) - double(lat) * 1.0e7 * M_RAD_TO_DEG;
@@ -698,17 +688,17 @@ int KalmanNav::correctPos()
// compute correction
// http://en.wikipedia.org/wiki/Extended_Kalman_filter
- Matrix S = HPos * P * HPos.transpose() + RPos; // residual covariance
- Matrix K = P * HPos.transpose() * S.inverse();
- Vector xCorrect = K * y;
+ Matrix<6,6> S = HPos * P * HPos.transposed() + RPos; // residual covariance
+ Matrix<9,6> K = P * HPos.transposed() * S.inversed();
+ Vector<9> xCorrect = K * y;
// check correction is sane
- for (size_t i = 0; i < xCorrect.getRows(); i++) {
+ for (size_t i = 0; i < xCorrect.get_size(); i++) {
float val = xCorrect(i);
if (!isfinite(val)) {
// abort correction and return
- warnx("numerical failure in gps correction\n");
+ warnx("numerical failure in gps correction");
// fallback to GPS
vN = _gps.vel_n_m_s;
vE = _gps.vel_e_m_s;
@@ -735,7 +725,7 @@ int KalmanNav::correctPos()
P = P - K * HPos * P;
// fault detetcion
- float beta = y.dot(S.inverse() * y);
+ float beta = y * (S.inversed() * y);
static int counter = 0;
if (beta > _faultPos.get() && (counter % 10 == 0)) {