aboutsummaryrefslogtreecommitdiff
path: root/src/modules/attitude_estimator_ekf/AttitudeEKF.m
diff options
context:
space:
mode:
Diffstat (limited to 'src/modules/attitude_estimator_ekf/AttitudeEKF.m')
-rw-r--r--src/modules/attitude_estimator_ekf/AttitudeEKF.m298
1 files changed, 298 insertions, 0 deletions
diff --git a/src/modules/attitude_estimator_ekf/AttitudeEKF.m b/src/modules/attitude_estimator_ekf/AttitudeEKF.m
new file mode 100644
index 000000000..fea1a773e
--- /dev/null
+++ b/src/modules/attitude_estimator_ekf/AttitudeEKF.m
@@ -0,0 +1,298 @@
+function [xa_apo,Pa_apo,Rot_matrix,eulerAngles,debugOutput]...
+ = AttitudeEKF(approx_prediction,use_inertia_matrix,zFlag,dt,z,q_rotSpeed,q_rotAcc,q_acc,q_mag,r_gyro,r_accel,r_mag,J)
+
+
+%LQG Postion Estimator and Controller
+% Observer:
+% x[n|n] = x[n|n-1] + M(y[n] - Cx[n|n-1] - Du[n])
+% x[n+1|n] = Ax[n|n] + Bu[n]
+%
+% $Author: Tobias Naegeli $ $Date: 2014 $ $Revision: 3 $
+%
+%
+% Arguments:
+% approx_prediction: if 1 then the exponential map is approximated with a
+% first order taylor approximation. has at the moment not a big influence
+% (just 1st or 2nd order approximation) we should change it to rodriquez
+% approximation.
+% use_inertia_matrix: set to true if you have the inertia matrix J for your
+% quadrotor
+% xa_apo_k: old state vectotr
+% zFlag: if sensor measurement is available [gyro, acc, mag]
+% dt: dt in s
+% z: measurements [gyro, acc, mag]
+% q_rotSpeed: process noise gyro
+% q_rotAcc: process noise gyro acceleration
+% q_acc: process noise acceleration
+% q_mag: process noise magnetometer
+% r_gyro: measurement noise gyro
+% r_accel: measurement noise accel
+% r_mag: measurement noise mag
+% J: moment of inertia matrix
+
+
+% Output:
+% xa_apo: updated state vectotr
+% Pa_apo: updated state covariance matrix
+% Rot_matrix: rotation matrix
+% eulerAngles: euler angles
+% debugOutput: not used
+
+
+%% model specific parameters
+
+
+
+% compute once the inverse of the Inertia
+persistent Ji;
+if isempty(Ji)
+ Ji=single(inv(J));
+end
+
+%% init
+persistent x_apo
+if(isempty(x_apo))
+ gyro_init=single([0;0;0]);
+ gyro_acc_init=single([0;0;0]);
+ acc_init=single([0;0;-9.81]);
+ mag_init=single([1;0;0]);
+ x_apo=single([gyro_init;gyro_acc_init;acc_init;mag_init]);
+
+end
+
+persistent P_apo
+if(isempty(P_apo))
+ % P_apo = single(eye(NSTATES) * 1000);
+ P_apo = single(200*ones(12));
+end
+
+debugOutput = single(zeros(4,1));
+
+%% copy the states
+wx= x_apo(1); % x body angular rate
+wy= x_apo(2); % y body angular rate
+wz= x_apo(3); % z body angular rate
+
+wax= x_apo(4); % x body angular acceleration
+way= x_apo(5); % y body angular acceleration
+waz= x_apo(6); % z body angular acceleration
+
+zex= x_apo(7); % x component gravity vector
+zey= x_apo(8); % y component gravity vector
+zez= x_apo(9); % z component gravity vector
+
+mux= x_apo(10); % x component magnetic field vector
+muy= x_apo(11); % y component magnetic field vector
+muz= x_apo(12); % z component magnetic field vector
+
+
+
+
+%% prediction section
+% compute the apriori state estimate from the previous aposteriori estimate
+%body angular accelerations
+if (use_inertia_matrix==1)
+ wak =[wax;way;waz]+Ji*(-cross([wax;way;waz],J*[wax;way;waz]))*dt;
+else
+ wak =[wax;way;waz];
+end
+
+%body angular rates
+wk =[wx; wy; wz] + dt*wak;
+
+%derivative of the prediction rotation matrix
+O=[0,-wz,wy;wz,0,-wx;-wy,wx,0]';
+
+%prediction of the earth z vector
+if (approx_prediction==1)
+ %e^(Odt)=I+dt*O+dt^2/2!O^2
+ % so we do a first order approximation of the exponential map
+ zek =(O*dt+single(eye(3)))*[zex;zey;zez];
+
+else
+ zek =(single(eye(3))+O*dt+dt^2/2*O^2)*[zex;zey;zez];
+ %zek =expm2(O*dt)*[zex;zey;zez]; not working because use double
+ %precision
+end
+
+
+
+%prediction of the magnetic vector
+if (approx_prediction==1)
+ %e^(Odt)=I+dt*O+dt^2/2!O^2
+ % so we do a first order approximation of the exponential map
+ muk =(O*dt+single(eye(3)))*[mux;muy;muz];
+else
+ muk =(single(eye(3))+O*dt+dt^2/2*O^2)*[mux;muy;muz];
+ %muk =expm2(O*dt)*[mux;muy;muz]; not working because use double
+ %precision
+end
+
+x_apr=[wk;wak;zek;muk];
+
+% compute the apriori error covariance estimate from the previous
+%aposteriori estimate
+
+EZ=[0,zez,-zey;
+ -zez,0,zex;
+ zey,-zex,0]';
+MA=[0,muz,-muy;
+ -muz,0,mux;
+ muy,-mux,0]';
+
+E=single(eye(3));
+Z=single(zeros(3));
+
+A_lin=[ Z, E, Z, Z
+ Z, Z, Z, Z
+ EZ, Z, O, Z
+ MA, Z, Z, O];
+
+A_lin=eye(12)+A_lin*dt;
+
+%process covariance matrix
+
+persistent Q
+if (isempty(Q))
+ Q=diag([ q_rotSpeed,q_rotSpeed,q_rotSpeed,...
+ q_rotAcc,q_rotAcc,q_rotAcc,...
+ q_acc,q_acc,q_acc,...
+ q_mag,q_mag,q_mag]);
+end
+
+P_apr=A_lin*P_apo*A_lin'+Q;
+
+
+%% update
+if zFlag(1)==1&&zFlag(2)==1&&zFlag(3)==1
+
+% R=[r_gyro,0,0,0,0,0,0,0,0;
+% 0,r_gyro,0,0,0,0,0,0,0;
+% 0,0,r_gyro,0,0,0,0,0,0;
+% 0,0,0,r_accel,0,0,0,0,0;
+% 0,0,0,0,r_accel,0,0,0,0;
+% 0,0,0,0,0,r_accel,0,0,0;
+% 0,0,0,0,0,0,r_mag,0,0;
+% 0,0,0,0,0,0,0,r_mag,0;
+% 0,0,0,0,0,0,0,0,r_mag];
+ R_v=[r_gyro,r_gyro,r_gyro,r_accel,r_accel,r_accel,r_mag,r_mag,r_mag];
+ %observation matrix
+ %[zw;ze;zmk];
+ H_k=[ E, Z, Z, Z;
+ Z, Z, E, Z;
+ Z, Z, Z, E];
+
+ y_k=z(1:9)-H_k*x_apr;
+
+
+ %S_k=H_k*P_apr*H_k'+R;
+ S_k=H_k*P_apr*H_k';
+ S_k(1:9+1:end) = S_k(1:9+1:end) + R_v;
+ K_k=(P_apr*H_k'/(S_k));
+
+
+ x_apo=x_apr+K_k*y_k;
+ P_apo=(eye(12)-K_k*H_k)*P_apr;
+else
+ if zFlag(1)==1&&zFlag(2)==0&&zFlag(3)==0
+
+ R=[r_gyro,0,0;
+ 0,r_gyro,0;
+ 0,0,r_gyro];
+ R_v=[r_gyro,r_gyro,r_gyro];
+ %observation matrix
+
+ H_k=[ E, Z, Z, Z];
+
+ y_k=z(1:3)-H_k(1:3,1:12)*x_apr;
+
+ % S_k=H_k(1:3,1:12)*P_apr*H_k(1:3,1:12)'+R(1:3,1:3);
+ S_k=H_k(1:3,1:12)*P_apr*H_k(1:3,1:12)';
+ S_k(1:3+1:end) = S_k(1:3+1:end) + R_v;
+ K_k=(P_apr*H_k(1:3,1:12)'/(S_k));
+
+
+ x_apo=x_apr+K_k*y_k;
+ P_apo=(eye(12)-K_k*H_k(1:3,1:12))*P_apr;
+ else
+ if zFlag(1)==1&&zFlag(2)==1&&zFlag(3)==0
+
+% R=[r_gyro,0,0,0,0,0;
+% 0,r_gyro,0,0,0,0;
+% 0,0,r_gyro,0,0,0;
+% 0,0,0,r_accel,0,0;
+% 0,0,0,0,r_accel,0;
+% 0,0,0,0,0,r_accel];
+
+ R_v=[r_gyro,r_gyro,r_gyro,r_accel,r_accel,r_accel];
+ %observation matrix
+
+ H_k=[ E, Z, Z, Z;
+ Z, Z, E, Z];
+
+ y_k=z(1:6)-H_k(1:6,1:12)*x_apr;
+
+ % S_k=H_k(1:6,1:12)*P_apr*H_k(1:6,1:12)'+R(1:6,1:6);
+ S_k=H_k(1:6,1:12)*P_apr*H_k(1:6,1:12)';
+ S_k(1:6+1:end) = S_k(1:6+1:end) + R_v;
+ K_k=(P_apr*H_k(1:6,1:12)'/(S_k));
+
+
+ x_apo=x_apr+K_k*y_k;
+ P_apo=(eye(12)-K_k*H_k(1:6,1:12))*P_apr;
+ else
+ if zFlag(1)==1&&zFlag(2)==0&&zFlag(3)==1
+% R=[r_gyro,0,0,0,0,0;
+% 0,r_gyro,0,0,0,0;
+% 0,0,r_gyro,0,0,0;
+% 0,0,0,r_mag,0,0;
+% 0,0,0,0,r_mag,0;
+% 0,0,0,0,0,r_mag];
+ R_v=[r_gyro,r_gyro,r_gyro,r_mag,r_mag,r_mag];
+ %observation matrix
+
+ H_k=[ E, Z, Z, Z;
+ Z, Z, Z, E];
+
+ y_k=[z(1:3);z(7:9)]-H_k(1:6,1:12)*x_apr;
+
+ %S_k=H_k(1:6,1:12)*P_apr*H_k(1:6,1:12)'+R(1:6,1:6);
+ S_k=H_k(1:6,1:12)*P_apr*H_k(1:6,1:12)';
+ S_k(1:6+1:end) = S_k(1:6+1:end) + R_v;
+ K_k=(P_apr*H_k(1:6,1:12)'/(S_k));
+
+
+ x_apo=x_apr+K_k*y_k;
+ P_apo=(eye(12)-K_k*H_k(1:6,1:12))*P_apr;
+ else
+ x_apo=x_apr;
+ P_apo=P_apr;
+ end
+ end
+ end
+end
+
+
+
+%% euler anglels extraction
+z_n_b = -x_apo(7:9)./norm(x_apo(7:9));
+m_n_b = x_apo(10:12)./norm(x_apo(10:12));
+
+y_n_b=cross(z_n_b,m_n_b);
+y_n_b=y_n_b./norm(y_n_b);
+
+x_n_b=(cross(y_n_b,z_n_b));
+x_n_b=x_n_b./norm(x_n_b);
+
+
+xa_apo=x_apo;
+Pa_apo=P_apo;
+% rotation matrix from earth to body system
+Rot_matrix=[x_n_b,y_n_b,z_n_b];
+
+
+phi=atan2(Rot_matrix(2,3),Rot_matrix(3,3));
+theta=-asin(Rot_matrix(1,3));
+psi=atan2(Rot_matrix(1,2),Rot_matrix(1,1));
+eulerAngles=[phi;theta;psi];
+