aboutsummaryrefslogtreecommitdiff
path: root/src/modules/commander/commander.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/modules/commander/commander.c')
-rw-r--r--src/modules/commander/commander.c2181
1 files changed, 2181 insertions, 0 deletions
diff --git a/src/modules/commander/commander.c b/src/modules/commander/commander.c
new file mode 100644
index 000000000..7c0a25f86
--- /dev/null
+++ b/src/modules/commander/commander.c
@@ -0,0 +1,2181 @@
+/****************************************************************************
+ *
+ * Copyright (C) 2012 PX4 Development Team. All rights reserved.
+ * Author: Petri Tanskanen <petri.tanskanen@inf.ethz.ch>
+ * Lorenz Meier <lm@inf.ethz.ch>
+ * Thomas Gubler <thomasgubler@student.ethz.ch>
+ * Julian Oes <joes@student.ethz.ch>
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * 3. Neither the name PX4 nor the names of its contributors may be
+ * used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+ * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+ * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+ * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+ * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
+ * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+ * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ *
+ ****************************************************************************/
+
+/**
+ * @file commander.c
+ * Main system state machine implementation.
+ *
+ * @author Petri Tanskanen <petri.tanskanen@inf.ethz.ch>
+ * @author Lorenz Meier <lm@inf.ethz.ch>
+ * @author Thomas Gubler <thomasgubler@student.ethz.ch>
+ * @author Julian Oes <joes@student.ethz.ch>
+ *
+ */
+
+#include "commander.h"
+
+#include <nuttx/config.h>
+#include <pthread.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <stdbool.h>
+#include <string.h>
+#include <unistd.h>
+#include <fcntl.h>
+#include <errno.h>
+#include <debug.h>
+#include <sys/prctl.h>
+#include <string.h>
+#include <drivers/drv_led.h>
+#include <drivers/drv_hrt.h>
+#include <drivers/drv_tone_alarm.h>
+#include "state_machine_helper.h"
+#include "systemlib/systemlib.h"
+#include <math.h>
+#include <poll.h>
+#include <uORB/uORB.h>
+#include <uORB/topics/sensor_combined.h>
+#include <uORB/topics/battery_status.h>
+#include <uORB/topics/manual_control_setpoint.h>
+#include <uORB/topics/offboard_control_setpoint.h>
+#include <uORB/topics/home_position.h>
+#include <uORB/topics/vehicle_global_position.h>
+#include <uORB/topics/vehicle_local_position.h>
+#include <uORB/topics/vehicle_gps_position.h>
+#include <uORB/topics/vehicle_command.h>
+#include <uORB/topics/subsystem_info.h>
+#include <uORB/topics/actuator_controls.h>
+#include <uORB/topics/parameter_update.h>
+#include <uORB/topics/differential_pressure.h>
+#include <mavlink/mavlink_log.h>
+
+#include <systemlib/param/param.h>
+#include <systemlib/systemlib.h>
+#include <systemlib/err.h>
+
+/* XXX MOVE CALIBRATION TO SENSORS APP THREAD */
+#include <drivers/drv_accel.h>
+#include <drivers/drv_gyro.h>
+#include <drivers/drv_mag.h>
+#include <drivers/drv_baro.h>
+
+#include "calibration_routines.h"
+
+
+PARAM_DEFINE_INT32(SYS_FAILSAVE_LL, 0); /**< Go into low-level failsafe after 0 ms */
+//PARAM_DEFINE_INT32(SYS_FAILSAVE_HL, 0); /**< Go into high-level failsafe after 0 ms */
+PARAM_DEFINE_FLOAT(TRIM_ROLL, 0.0f);
+PARAM_DEFINE_FLOAT(TRIM_PITCH, 0.0f);
+PARAM_DEFINE_FLOAT(TRIM_YAW, 0.0f);
+
+#include <systemlib/cpuload.h>
+extern struct system_load_s system_load;
+
+/* Decouple update interval and hysteris counters, all depends on intervals */
+#define COMMANDER_MONITORING_INTERVAL 50000
+#define COMMANDER_MONITORING_LOOPSPERMSEC (1/(COMMANDER_MONITORING_INTERVAL/1000.0f))
+#define LOW_VOLTAGE_BATTERY_COUNTER_LIMIT (LOW_VOLTAGE_BATTERY_HYSTERESIS_TIME_MS*COMMANDER_MONITORING_LOOPSPERMSEC)
+#define CRITICAL_VOLTAGE_BATTERY_COUNTER_LIMIT (CRITICAL_VOLTAGE_BATTERY_HYSTERESIS_TIME_MS*COMMANDER_MONITORING_LOOPSPERMSEC)
+
+#define STICK_ON_OFF_LIMIT 0.75f
+#define STICK_THRUST_RANGE 1.0f
+#define STICK_ON_OFF_HYSTERESIS_TIME_MS 1000
+#define STICK_ON_OFF_COUNTER_LIMIT (STICK_ON_OFF_HYSTERESIS_TIME_MS*COMMANDER_MONITORING_LOOPSPERMSEC)
+
+#define GPS_FIX_TYPE_2D 2
+#define GPS_FIX_TYPE_3D 3
+#define GPS_QUALITY_GOOD_HYSTERIS_TIME_MS 5000
+#define GPS_QUALITY_GOOD_COUNTER_LIMIT (GPS_QUALITY_GOOD_HYSTERIS_TIME_MS*COMMANDER_MONITORING_LOOPSPERMSEC)
+
+/* File descriptors */
+static int leds;
+static int buzzer;
+static int mavlink_fd;
+static bool commander_initialized = false;
+static struct vehicle_status_s current_status; /**< Main state machine */
+static orb_advert_t stat_pub;
+
+// static uint16_t nofix_counter = 0;
+// static uint16_t gotfix_counter = 0;
+
+static unsigned int failsafe_lowlevel_timeout_ms;
+
+static bool thread_should_exit = false; /**< daemon exit flag */
+static bool thread_running = false; /**< daemon status flag */
+static int daemon_task; /**< Handle of daemon task / thread */
+
+/* pthread loops */
+static void *orb_receive_loop(void *arg);
+
+__EXPORT int commander_main(int argc, char *argv[]);
+
+/**
+ * Mainloop of commander.
+ */
+int commander_thread_main(int argc, char *argv[]);
+
+static int buzzer_init(void);
+static void buzzer_deinit(void);
+static int led_init(void);
+static void led_deinit(void);
+static int led_toggle(int led);
+static int led_on(int led);
+static int led_off(int led);
+static void do_gyro_calibration(int status_pub, struct vehicle_status_s *status);
+static void do_mag_calibration(int status_pub, struct vehicle_status_s *status);
+static void do_rc_calibration(int status_pub, struct vehicle_status_s *status);
+static void do_accel_calibration(int status_pub, struct vehicle_status_s *status);
+static void handle_command(int status_pub, struct vehicle_status_s *current_status, struct vehicle_command_s *cmd);
+
+int trigger_audio_alarm(uint8_t old_mode, uint8_t old_state, uint8_t new_mode, uint8_t new_state);
+
+
+
+/**
+ * Print the correct usage.
+ */
+static void usage(const char *reason);
+
+/**
+ * Sort calibration values.
+ *
+ * Sorts the calibration values with bubble sort.
+ *
+ * @param a The array to sort
+ * @param n The number of entries in the array
+ */
+// static void cal_bsort(float a[], int n);
+
+static int buzzer_init()
+{
+ buzzer = open("/dev/tone_alarm", O_WRONLY);
+
+ if (buzzer < 0) {
+ warnx("Buzzer: open fail\n");
+ return ERROR;
+ }
+
+ return 0;
+}
+
+static void buzzer_deinit()
+{
+ close(buzzer);
+}
+
+
+static int led_init()
+{
+ leds = open(LED_DEVICE_PATH, 0);
+
+ if (leds < 0) {
+ warnx("LED: open fail\n");
+ return ERROR;
+ }
+
+ if (ioctl(leds, LED_ON, LED_BLUE) || ioctl(leds, LED_ON, LED_AMBER)) {
+ warnx("LED: ioctl fail\n");
+ return ERROR;
+ }
+
+ return 0;
+}
+
+static void led_deinit()
+{
+ close(leds);
+}
+
+static int led_toggle(int led)
+{
+ static int last_blue = LED_ON;
+ static int last_amber = LED_ON;
+
+ if (led == LED_BLUE) last_blue = (last_blue == LED_ON) ? LED_OFF : LED_ON;
+
+ if (led == LED_AMBER) last_amber = (last_amber == LED_ON) ? LED_OFF : LED_ON;
+
+ return ioctl(leds, ((led == LED_BLUE) ? last_blue : last_amber), led);
+}
+
+static int led_on(int led)
+{
+ return ioctl(leds, LED_ON, led);
+}
+
+static int led_off(int led)
+{
+ return ioctl(leds, LED_OFF, led);
+}
+
+enum AUDIO_PATTERN {
+ AUDIO_PATTERN_ERROR = 2,
+ AUDIO_PATTERN_NOTIFY_POSITIVE = 3,
+ AUDIO_PATTERN_NOTIFY_NEUTRAL = 4,
+ AUDIO_PATTERN_NOTIFY_NEGATIVE = 5,
+ AUDIO_PATTERN_NOTIFY_CHARGE = 6
+};
+
+int trigger_audio_alarm(uint8_t old_mode, uint8_t old_state, uint8_t new_mode, uint8_t new_state)
+{
+
+ /* Trigger alarm if going into any error state */
+ if (((new_state == SYSTEM_STATE_GROUND_ERROR) && (old_state != SYSTEM_STATE_GROUND_ERROR)) ||
+ ((new_state == SYSTEM_STATE_MISSION_ABORT) && (old_state != SYSTEM_STATE_MISSION_ABORT))) {
+ ioctl(buzzer, TONE_SET_ALARM, 0);
+ ioctl(buzzer, TONE_SET_ALARM, AUDIO_PATTERN_ERROR);
+ }
+
+ /* Trigger neutral on arming / disarming */
+ if (((new_state == SYSTEM_STATE_GROUND_READY) && (old_state != SYSTEM_STATE_GROUND_READY))) {
+ ioctl(buzzer, TONE_SET_ALARM, 0);
+ ioctl(buzzer, TONE_SET_ALARM, AUDIO_PATTERN_NOTIFY_NEUTRAL);
+ }
+
+ /* Trigger Tetris on being bored */
+
+ return 0;
+}
+
+void tune_confirm(void)
+{
+ ioctl(buzzer, TONE_SET_ALARM, 3);
+}
+
+void tune_error(void)
+{
+ ioctl(buzzer, TONE_SET_ALARM, 4);
+}
+
+void do_rc_calibration(int status_pub, struct vehicle_status_s *status)
+{
+ if (current_status.offboard_control_signal_lost) {
+ mavlink_log_critical(mavlink_fd, "TRIM CAL: ABORT. No RC signal.");
+ return;
+ }
+
+ int sub_man = orb_subscribe(ORB_ID(manual_control_setpoint));
+ struct manual_control_setpoint_s sp;
+ orb_copy(ORB_ID(manual_control_setpoint), sub_man, &sp);
+
+ /* set parameters */
+
+ float p = sp.roll;
+ param_set(param_find("TRIM_ROLL"), &p);
+ p = sp.pitch;
+ param_set(param_find("TRIM_PITCH"), &p);
+ p = sp.yaw;
+ param_set(param_find("TRIM_YAW"), &p);
+
+ /* store to permanent storage */
+ /* auto-save to EEPROM */
+ int save_ret = param_save_default();
+
+ if (save_ret != 0) {
+ mavlink_log_critical(mavlink_fd, "TRIM CAL: WARN: auto-save of params failed");
+ }
+
+ mavlink_log_info(mavlink_fd, "trim calibration done");
+}
+
+void do_mag_calibration(int status_pub, struct vehicle_status_s *status)
+{
+
+ /* set to mag calibration mode */
+ status->flag_preflight_mag_calibration = true;
+ state_machine_publish(status_pub, status, mavlink_fd);
+
+ int sub_mag = orb_subscribe(ORB_ID(sensor_mag));
+ struct mag_report mag;
+
+ /* 45 seconds */
+ uint64_t calibration_interval = 45 * 1000 * 1000;
+
+ /* maximum 2000 values */
+ const unsigned int calibration_maxcount = 500;
+ unsigned int calibration_counter = 0;
+
+ /* limit update rate to get equally spaced measurements over time (in ms) */
+ orb_set_interval(sub_mag, (calibration_interval / 1000) / calibration_maxcount);
+
+ // XXX old cal
+ // * FLT_MIN is not the most negative float number,
+ // * but the smallest number by magnitude float can
+ // * represent. Use -FLT_MAX to initialize the most
+ // * negative number
+
+ // float mag_max[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};
+ // float mag_min[3] = {FLT_MAX, FLT_MAX, FLT_MAX};
+
+ int fd = open(MAG_DEVICE_PATH, O_RDONLY);
+
+ /* erase old calibration */
+ struct mag_scale mscale_null = {
+ 0.0f,
+ 1.0f,
+ 0.0f,
+ 1.0f,
+ 0.0f,
+ 1.0f,
+ };
+
+ if (OK != ioctl(fd, MAGIOCSSCALE, (long unsigned int)&mscale_null)) {
+ warn("WARNING: failed to set scale / offsets for mag");
+ mavlink_log_info(mavlink_fd, "failed to set scale / offsets for mag");
+ }
+
+ /* calibrate range */
+ if (OK != ioctl(fd, MAGIOCCALIBRATE, fd)) {
+ warnx("failed to calibrate scale");
+ }
+
+ close(fd);
+
+ /* calibrate offsets */
+
+ // uint64_t calibration_start = hrt_absolute_time();
+
+ uint64_t axis_deadline = hrt_absolute_time();
+ uint64_t calibration_deadline = hrt_absolute_time() + calibration_interval;
+
+ const char axislabels[3] = { 'X', 'Y', 'Z'};
+ int axis_index = -1;
+
+ float *x = (float *)malloc(sizeof(float) * calibration_maxcount);
+ float *y = (float *)malloc(sizeof(float) * calibration_maxcount);
+ float *z = (float *)malloc(sizeof(float) * calibration_maxcount);
+
+ if (x == NULL || y == NULL || z == NULL) {
+ warnx("mag cal failed: out of memory");
+ mavlink_log_info(mavlink_fd, "mag cal failed: out of memory");
+ warnx("x:%p y:%p z:%p\n", x, y, z);
+ return;
+ }
+
+ tune_confirm();
+ sleep(2);
+ tune_confirm();
+
+ while (hrt_absolute_time() < calibration_deadline &&
+ calibration_counter < calibration_maxcount) {
+
+ /* wait blocking for new data */
+ struct pollfd fds[1] = { { .fd = sub_mag, .events = POLLIN } };
+
+ /* user guidance */
+ if (hrt_absolute_time() >= axis_deadline &&
+ axis_index < 3) {
+
+ axis_index++;
+
+ char buf[50];
+ sprintf(buf, "Please rotate around %c", axislabels[axis_index]);
+ mavlink_log_info(mavlink_fd, buf);
+ tune_confirm();
+
+ axis_deadline += calibration_interval / 3;
+ }
+
+ if (!(axis_index < 3)) {
+ break;
+ }
+
+ // int axis_left = (int64_t)axis_deadline - (int64_t)hrt_absolute_time();
+
+ // if ((axis_left / 1000) == 0 && axis_left > 0) {
+ // char buf[50];
+ // sprintf(buf, "[cmd] %d seconds left for axis %c", axis_left, axislabels[axis_index]);
+ // mavlink_log_info(mavlink_fd, buf);
+ // }
+
+ int poll_ret = poll(fds, 1, 1000);
+
+ if (poll_ret) {
+ orb_copy(ORB_ID(sensor_mag), sub_mag, &mag);
+
+ x[calibration_counter] = mag.x;
+ y[calibration_counter] = mag.y;
+ z[calibration_counter] = mag.z;
+
+ /* get min/max values */
+
+ // if (mag.x < mag_min[0]) {
+ // mag_min[0] = mag.x;
+ // }
+ // else if (mag.x > mag_max[0]) {
+ // mag_max[0] = mag.x;
+ // }
+
+ // if (raw.magnetometer_ga[1] < mag_min[1]) {
+ // mag_min[1] = raw.magnetometer_ga[1];
+ // }
+ // else if (raw.magnetometer_ga[1] > mag_max[1]) {
+ // mag_max[1] = raw.magnetometer_ga[1];
+ // }
+
+ // if (raw.magnetometer_ga[2] < mag_min[2]) {
+ // mag_min[2] = raw.magnetometer_ga[2];
+ // }
+ // else if (raw.magnetometer_ga[2] > mag_max[2]) {
+ // mag_max[2] = raw.magnetometer_ga[2];
+ // }
+
+ calibration_counter++;
+
+ } else if (poll_ret == 0) {
+ /* any poll failure for 1s is a reason to abort */
+ mavlink_log_info(mavlink_fd, "mag cal canceled (timed out)");
+ break;
+ }
+ }
+
+ float sphere_x;
+ float sphere_y;
+ float sphere_z;
+ float sphere_radius;
+
+ sphere_fit_least_squares(x, y, z, calibration_counter, 100, 0.0f, &sphere_x, &sphere_y, &sphere_z, &sphere_radius);
+
+ free(x);
+ free(y);
+ free(z);
+
+ if (isfinite(sphere_x) && isfinite(sphere_y) && isfinite(sphere_z)) {
+
+ fd = open(MAG_DEVICE_PATH, 0);
+
+ struct mag_scale mscale;
+
+ if (OK != ioctl(fd, MAGIOCGSCALE, (long unsigned int)&mscale))
+ warn("WARNING: failed to get scale / offsets for mag");
+
+ mscale.x_offset = sphere_x;
+ mscale.y_offset = sphere_y;
+ mscale.z_offset = sphere_z;
+
+ if (OK != ioctl(fd, MAGIOCSSCALE, (long unsigned int)&mscale))
+ warn("WARNING: failed to set scale / offsets for mag");
+
+ close(fd);
+
+ /* announce and set new offset */
+
+ if (param_set(param_find("SENS_MAG_XOFF"), &(mscale.x_offset))) {
+ warnx("Setting X mag offset failed!\n");
+ }
+
+ if (param_set(param_find("SENS_MAG_YOFF"), &(mscale.y_offset))) {
+ warnx("Setting Y mag offset failed!\n");
+ }
+
+ if (param_set(param_find("SENS_MAG_ZOFF"), &(mscale.z_offset))) {
+ warnx("Setting Z mag offset failed!\n");
+ }
+
+ if (param_set(param_find("SENS_MAG_XSCALE"), &(mscale.x_scale))) {
+ warnx("Setting X mag scale failed!\n");
+ }
+
+ if (param_set(param_find("SENS_MAG_YSCALE"), &(mscale.y_scale))) {
+ warnx("Setting Y mag scale failed!\n");
+ }
+
+ if (param_set(param_find("SENS_MAG_ZSCALE"), &(mscale.z_scale))) {
+ warnx("Setting Z mag scale failed!\n");
+ }
+
+ /* auto-save to EEPROM */
+ int save_ret = param_save_default();
+
+ if (save_ret != 0) {
+ warn("WARNING: auto-save of params to storage failed");
+ mavlink_log_info(mavlink_fd, "FAILED storing calibration");
+ }
+
+ warnx("\tscale: %.6f %.6f %.6f\n \toffset: %.6f %.6f %.6f\nradius: %.6f GA\n",
+ (double)mscale.x_scale, (double)mscale.y_scale, (double)mscale.z_scale,
+ (double)mscale.x_offset, (double)mscale.y_offset, (double)mscale.z_offset, (double)sphere_radius);
+
+ char buf[52];
+ sprintf(buf, "mag off: x:%.2f y:%.2f z:%.2f Ga", (double)mscale.x_offset,
+ (double)mscale.y_offset, (double)mscale.z_offset);
+ mavlink_log_info(mavlink_fd, buf);
+
+ sprintf(buf, "mag scale: x:%.2f y:%.2f z:%.2f", (double)mscale.x_scale,
+ (double)mscale.y_scale, (double)mscale.z_scale);
+ mavlink_log_info(mavlink_fd, buf);
+
+ mavlink_log_info(mavlink_fd, "mag calibration done");
+
+ tune_confirm();
+ sleep(2);
+ tune_confirm();
+ sleep(2);
+ /* third beep by cal end routine */
+
+ } else {
+ mavlink_log_info(mavlink_fd, "mag calibration FAILED (NaN in sphere fit)");
+ }
+
+ /* disable calibration mode */
+ status->flag_preflight_mag_calibration = false;
+ state_machine_publish(status_pub, status, mavlink_fd);
+
+ close(sub_mag);
+}
+
+void do_gyro_calibration(int status_pub, struct vehicle_status_s *status)
+{
+ /* set to gyro calibration mode */
+ status->flag_preflight_gyro_calibration = true;
+ state_machine_publish(status_pub, status, mavlink_fd);
+
+ const int calibration_count = 5000;
+
+ int sub_sensor_combined = orb_subscribe(ORB_ID(sensor_combined));
+ struct sensor_combined_s raw;
+
+ int calibration_counter = 0;
+ float gyro_offset[3] = {0.0f, 0.0f, 0.0f};
+
+ /* set offsets to zero */
+ int fd = open(GYRO_DEVICE_PATH, 0);
+ struct gyro_scale gscale_null = {
+ 0.0f,
+ 1.0f,
+ 0.0f,
+ 1.0f,
+ 0.0f,
+ 1.0f,
+ };
+
+ if (OK != ioctl(fd, GYROIOCSSCALE, (long unsigned int)&gscale_null))
+ warn("WARNING: failed to set scale / offsets for gyro");
+
+ close(fd);
+
+ while (calibration_counter < calibration_count) {
+
+ /* wait blocking for new data */
+ struct pollfd fds[1] = { { .fd = sub_sensor_combined, .events = POLLIN } };
+
+ int poll_ret = poll(fds, 1, 1000);
+
+ if (poll_ret) {
+ orb_copy(ORB_ID(sensor_combined), sub_sensor_combined, &raw);
+ gyro_offset[0] += raw.gyro_rad_s[0];
+ gyro_offset[1] += raw.gyro_rad_s[1];
+ gyro_offset[2] += raw.gyro_rad_s[2];
+ calibration_counter++;
+
+ } else if (poll_ret == 0) {
+ /* any poll failure for 1s is a reason to abort */
+ mavlink_log_info(mavlink_fd, "gyro calibration aborted, retry");
+ return;
+ }
+ }
+
+ gyro_offset[0] = gyro_offset[0] / calibration_count;
+ gyro_offset[1] = gyro_offset[1] / calibration_count;
+ gyro_offset[2] = gyro_offset[2] / calibration_count;
+
+ /* exit gyro calibration mode */
+ status->flag_preflight_gyro_calibration = false;
+ state_machine_publish(status_pub, status, mavlink_fd);
+
+ if (isfinite(gyro_offset[0]) && isfinite(gyro_offset[1]) && isfinite(gyro_offset[2])) {
+
+ if (param_set(param_find("SENS_GYRO_XOFF"), &(gyro_offset[0]))
+ || param_set(param_find("SENS_GYRO_YOFF"), &(gyro_offset[1]))
+ || param_set(param_find("SENS_GYRO_ZOFF"), &(gyro_offset[2]))) {
+ mavlink_log_critical(mavlink_fd, "Setting gyro offsets failed!");
+ }
+
+ /* set offsets to actual value */
+ fd = open(GYRO_DEVICE_PATH, 0);
+ struct gyro_scale gscale = {
+ gyro_offset[0],
+ 1.0f,
+ gyro_offset[1],
+ 1.0f,
+ gyro_offset[2],
+ 1.0f,
+ };
+
+ if (OK != ioctl(fd, GYROIOCSSCALE, (long unsigned int)&gscale))
+ warn("WARNING: failed to set scale / offsets for gyro");
+
+ close(fd);
+
+ /* auto-save to EEPROM */
+ int save_ret = param_save_default();
+
+ if (save_ret != 0) {
+ warn("WARNING: auto-save of params to storage failed");
+ }
+
+ // char buf[50];
+ // sprintf(buf, "cal: x:%8.4f y:%8.4f z:%8.4f", (double)gyro_offset[0], (double)gyro_offset[1], (double)gyro_offset[2]);
+ // mavlink_log_info(mavlink_fd, buf);
+ mavlink_log_info(mavlink_fd, "gyro calibration done");
+
+ tune_confirm();
+ sleep(2);
+ tune_confirm();
+ sleep(2);
+ /* third beep by cal end routine */
+
+ } else {
+ mavlink_log_info(mavlink_fd, "gyro calibration FAILED (NaN)");
+ }
+
+ close(sub_sensor_combined);
+}
+
+void do_accel_calibration(int status_pub, struct vehicle_status_s *status)
+{
+ /* announce change */
+
+ mavlink_log_info(mavlink_fd, "keep it level and still");
+ /* set to accel calibration mode */
+ status->flag_preflight_accel_calibration = true;
+ state_machine_publish(status_pub, status, mavlink_fd);
+
+ const int calibration_count = 2500;
+
+ int sub_sensor_combined = orb_subscribe(ORB_ID(sensor_combined));
+ struct sensor_combined_s raw;
+
+ int calibration_counter = 0;
+ float accel_offset[3] = {0.0f, 0.0f, 0.0f};
+
+ int fd = open(ACCEL_DEVICE_PATH, 0);
+ struct accel_scale ascale_null = {
+ 0.0f,
+ 1.0f,
+ 0.0f,
+ 1.0f,
+ 0.0f,
+ 1.0f,
+ };
+
+ if (OK != ioctl(fd, ACCELIOCSSCALE, (long unsigned int)&ascale_null))
+ warn("WARNING: failed to set scale / offsets for accel");
+
+ close(fd);
+
+ while (calibration_counter < calibration_count) {
+
+ /* wait blocking for new data */
+ struct pollfd fds[1] = { { .fd = sub_sensor_combined, .events = POLLIN } };
+
+ int poll_ret = poll(fds, 1, 1000);
+
+ if (poll_ret) {
+ orb_copy(ORB_ID(sensor_combined), sub_sensor_combined, &raw);
+ accel_offset[0] += raw.accelerometer_m_s2[0];
+ accel_offset[1] += raw.accelerometer_m_s2[1];
+ accel_offset[2] += raw.accelerometer_m_s2[2];
+ calibration_counter++;
+
+ } else if (poll_ret == 0) {
+ /* any poll failure for 1s is a reason to abort */
+ mavlink_log_info(mavlink_fd, "acceleration calibration aborted");
+ return;
+ }
+ }
+
+ accel_offset[0] = accel_offset[0] / calibration_count;
+ accel_offset[1] = accel_offset[1] / calibration_count;
+ accel_offset[2] = accel_offset[2] / calibration_count;
+
+ if (isfinite(accel_offset[0]) && isfinite(accel_offset[1]) && isfinite(accel_offset[2])) {
+
+ /* add the removed length from x / y to z, since we induce a scaling issue else */
+ float total_len = sqrtf(accel_offset[0] * accel_offset[0] + accel_offset[1] * accel_offset[1] + accel_offset[2] * accel_offset[2]);
+
+ /* if length is correct, zero results here */
+ accel_offset[2] = accel_offset[2] + total_len;
+
+ float scale = 9.80665f / total_len;
+
+ if (param_set(param_find("SENS_ACC_XOFF"), &(accel_offset[0]))
+ || param_set(param_find("SENS_ACC_YOFF"), &(accel_offset[1]))
+ || param_set(param_find("SENS_ACC_ZOFF"), &(accel_offset[2]))
+ || param_set(param_find("SENS_ACC_XSCALE"), &(scale))
+ || param_set(param_find("SENS_ACC_YSCALE"), &(scale))
+ || param_set(param_find("SENS_ACC_ZSCALE"), &(scale))) {
+ mavlink_log_critical(mavlink_fd, "Setting offs or scale failed!");
+ }
+
+ fd = open(ACCEL_DEVICE_PATH, 0);
+ struct accel_scale ascale = {
+ accel_offset[0],
+ scale,
+ accel_offset[1],
+ scale,
+ accel_offset[2],
+ scale,
+ };
+
+ if (OK != ioctl(fd, ACCELIOCSSCALE, (long unsigned int)&ascale))
+ warn("WARNING: failed to set scale / offsets for accel");
+
+ close(fd);
+
+ /* auto-save to EEPROM */
+ int save_ret = param_save_default();
+
+ if (save_ret != 0) {
+ warn("WARNING: auto-save of params to storage failed");
+ }
+
+ //char buf[50];
+ //sprintf(buf, "[cmd] accel cal: x:%8.4f y:%8.4f z:%8.4f\n", (double)accel_offset[0], (double)accel_offset[1], (double)accel_offset[2]);
+ //mavlink_log_info(mavlink_fd, buf);
+ mavlink_log_info(mavlink_fd, "accel calibration done");
+
+ tune_confirm();
+ sleep(2);
+ tune_confirm();
+ sleep(2);
+ /* third beep by cal end routine */
+
+ } else {
+ mavlink_log_info(mavlink_fd, "accel calibration FAILED (NaN)");
+ }
+
+ /* exit accel calibration mode */
+ status->flag_preflight_accel_calibration = false;
+ state_machine_publish(status_pub, status, mavlink_fd);
+
+ close(sub_sensor_combined);
+}
+
+void do_airspeed_calibration(int status_pub, struct vehicle_status_s *status)
+{
+ /* announce change */
+
+ mavlink_log_info(mavlink_fd, "keep it still");
+ /* set to accel calibration mode */
+ status->flag_preflight_airspeed_calibration = true;
+ state_machine_publish(status_pub, status, mavlink_fd);
+
+ const int calibration_count = 2500;
+
+ int sub_differential_pressure = orb_subscribe(ORB_ID(differential_pressure));
+ struct differential_pressure_s differential_pressure;
+
+ int calibration_counter = 0;
+ float airspeed_offset = 0.0f;
+
+ while (calibration_counter < calibration_count) {
+
+ /* wait blocking for new data */
+ struct pollfd fds[1] = { { .fd = sub_differential_pressure, .events = POLLIN } };
+
+ int poll_ret = poll(fds, 1, 1000);
+
+ if (poll_ret) {
+ orb_copy(ORB_ID(differential_pressure), sub_differential_pressure, &differential_pressure);
+ airspeed_offset += differential_pressure.voltage;
+ calibration_counter++;
+
+ } else if (poll_ret == 0) {
+ /* any poll failure for 1s is a reason to abort */
+ mavlink_log_info(mavlink_fd, "airspeed calibration aborted");
+ return;
+ }
+ }
+
+ airspeed_offset = airspeed_offset / calibration_count;
+
+ if (isfinite(airspeed_offset)) {
+
+ if (param_set(param_find("SENS_VAIR_OFF"), &(airspeed_offset))) {
+ mavlink_log_critical(mavlink_fd, "Setting offs failed!");
+ }
+
+ /* auto-save to EEPROM */
+ int save_ret = param_save_default();
+
+ if (save_ret != 0) {
+ warn("WARNING: auto-save of params to storage failed");
+ }
+
+ //char buf[50];
+ //sprintf(buf, "[cmd] accel cal: x:%8.4f y:%8.4f z:%8.4f\n", (double)accel_offset[0], (double)accel_offset[1], (double)accel_offset[2]);
+ //mavlink_log_info(mavlink_fd, buf);
+ mavlink_log_info(mavlink_fd, "airspeed calibration done");
+
+ tune_confirm();
+ sleep(2);
+ tune_confirm();
+ sleep(2);
+ /* third beep by cal end routine */
+
+ } else {
+ mavlink_log_info(mavlink_fd, "airspeed calibration FAILED (NaN)");
+ }
+
+ /* exit airspeed calibration mode */
+ status->flag_preflight_airspeed_calibration = false;
+ state_machine_publish(status_pub, status, mavlink_fd);
+
+ close(sub_differential_pressure);
+}
+
+
+
+void handle_command(int status_pub, struct vehicle_status_s *current_vehicle_status, struct vehicle_command_s *cmd)
+{
+ /* result of the command */
+ uint8_t result = VEHICLE_CMD_RESULT_UNSUPPORTED;
+
+ /* announce command handling */
+ tune_confirm();
+
+
+ /* supported command handling start */
+
+ /* request to set different system mode */
+ switch (cmd->command) {
+ case VEHICLE_CMD_DO_SET_MODE: {
+ if (OK == update_state_machine_mode_request(status_pub, current_vehicle_status, mavlink_fd, (uint8_t)cmd->param1)) {
+ result = VEHICLE_CMD_RESULT_ACCEPTED;
+
+ } else {
+ result = VEHICLE_CMD_RESULT_DENIED;
+ }
+ }
+ break;
+
+ case VEHICLE_CMD_COMPONENT_ARM_DISARM: {
+ /* request to arm */
+ if ((int)cmd->param1 == 1) {
+ if (OK == update_state_machine_mode_request(status_pub, current_vehicle_status, mavlink_fd, VEHICLE_MODE_FLAG_SAFETY_ARMED)) {
+ result = VEHICLE_CMD_RESULT_ACCEPTED;
+
+ } else {
+ result = VEHICLE_CMD_RESULT_DENIED;
+ }
+
+ /* request to disarm */
+
+ } else if ((int)cmd->param1 == 0) {
+ if (OK == update_state_machine_mode_request(status_pub, current_vehicle_status, mavlink_fd, VEHICLE_MODE_FLAG_SAFETY_ARMED)) {
+ result = VEHICLE_CMD_RESULT_ACCEPTED;
+
+ } else {
+ result = VEHICLE_CMD_RESULT_DENIED;
+ }
+ }
+ }
+ break;
+
+ /* request for an autopilot reboot */
+ case VEHICLE_CMD_PREFLIGHT_REBOOT_SHUTDOWN: {
+ if ((int)cmd->param1 == 1) {
+ if (OK == do_state_update(status_pub, current_vehicle_status, mavlink_fd, SYSTEM_STATE_REBOOT)) {
+ /* SPECIAL CASE: SYSTEM WILL NEVER RETURN HERE */
+ result = VEHICLE_CMD_RESULT_ACCEPTED;
+
+ } else {
+ /* system may return here */
+ result = VEHICLE_CMD_RESULT_DENIED;
+ }
+ }
+ }
+ break;
+
+// /* request to land */
+// case VEHICLE_CMD_NAV_LAND:
+// {
+// //TODO: add check if landing possible
+// //TODO: add landing maneuver
+//
+// if (0 == update_state_machine_custom_mode_request(status_pub, current_vehicle_status, SYSTEM_STATE_ARMED)) {
+// result = VEHICLE_CMD_RESULT_ACCEPTED;
+// } }
+// break;
+//
+// /* request to takeoff */
+// case VEHICLE_CMD_NAV_TAKEOFF:
+// {
+// //TODO: add check if takeoff possible
+// //TODO: add takeoff maneuver
+//
+// if (0 == update_state_machine_custom_mode_request(status_pub, current_vehicle_status, SYSTEM_STATE_AUTO)) {
+// result = VEHICLE_CMD_RESULT_ACCEPTED;
+// }
+// }
+// break;
+//
+ /* preflight calibration */
+ case VEHICLE_CMD_PREFLIGHT_CALIBRATION: {
+ bool handled = false;
+
+ /* gyro calibration */
+ if ((int)(cmd->param1) == 1) {
+ /* transition to calibration state */
+ do_state_update(status_pub, &current_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT);
+
+ if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) {
+ mavlink_log_info(mavlink_fd, "starting gyro cal");
+ tune_confirm();
+ do_gyro_calibration(status_pub, &current_status);
+ mavlink_log_info(mavlink_fd, "finished gyro cal");
+ tune_confirm();
+ do_state_update(status_pub, &current_status, mavlink_fd, SYSTEM_STATE_STANDBY);
+ result = VEHICLE_CMD_RESULT_ACCEPTED;
+
+ } else {
+ mavlink_log_critical(mavlink_fd, "REJECTING gyro cal");
+ result = VEHICLE_CMD_RESULT_DENIED;
+ }
+
+ handled = true;
+ }
+
+ /* magnetometer calibration */
+ if ((int)(cmd->param2) == 1) {
+ /* transition to calibration state */
+ do_state_update(status_pub, &current_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT);
+
+ if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) {
+ mavlink_log_info(mavlink_fd, "starting mag cal");
+ tune_confirm();
+ do_mag_calibration(status_pub, &current_status);
+ mavlink_log_info(mavlink_fd, "finished mag cal");
+ tune_confirm();
+ do_state_update(status_pub, &current_status, mavlink_fd, SYSTEM_STATE_STANDBY);
+ result = VEHICLE_CMD_RESULT_ACCEPTED;
+
+ } else {
+ mavlink_log_critical(mavlink_fd, "REJECTING mag cal");
+ result = VEHICLE_CMD_RESULT_DENIED;
+ }
+
+ handled = true;
+ }
+
+ /* zero-altitude pressure calibration */
+ if ((int)(cmd->param3) == 1) {
+ /* transition to calibration state */
+ do_state_update(status_pub, &current_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT);
+
+ if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) {
+ mavlink_log_info(mavlink_fd, "zero altitude cal. not implemented");
+ tune_confirm();
+
+ } else {
+ mavlink_log_critical(mavlink_fd, "REJECTING altitude calibration");
+ result = VEHICLE_CMD_RESULT_DENIED;
+ }
+
+ handled = true;
+ }
+
+ /* trim calibration */
+ if ((int)(cmd->param4) == 1) {
+ /* transition to calibration state */
+ do_state_update(status_pub, &current_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT);
+
+ if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) {
+ mavlink_log_info(mavlink_fd, "starting trim cal");
+ tune_confirm();
+ do_rc_calibration(status_pub, &current_status);
+ mavlink_log_info(mavlink_fd, "finished trim cal");
+ tune_confirm();
+ do_state_update(status_pub, &current_status, mavlink_fd, SYSTEM_STATE_STANDBY);
+ result = VEHICLE_CMD_RESULT_ACCEPTED;
+
+ } else {
+ mavlink_log_critical(mavlink_fd, "REJECTING trim cal");
+ result = VEHICLE_CMD_RESULT_DENIED;
+ }
+
+ handled = true;
+ }
+
+ /* accel calibration */
+ if ((int)(cmd->param5) == 1) {
+ /* transition to calibration state */
+ do_state_update(status_pub, &current_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT);
+
+ if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) {
+ mavlink_log_info(mavlink_fd, "CMD starting accel cal");
+ tune_confirm();
+ do_accel_calibration(status_pub, &current_status);
+ tune_confirm();
+ mavlink_log_info(mavlink_fd, "CMD finished accel cal");
+ do_state_update(status_pub, &current_status, mavlink_fd, SYSTEM_STATE_STANDBY);
+ result = VEHICLE_CMD_RESULT_ACCEPTED;
+
+ } else {
+ mavlink_log_critical(mavlink_fd, "REJECTING accel cal");
+ result = VEHICLE_CMD_RESULT_DENIED;
+ }
+
+ handled = true;
+ }
+
+ /* airspeed calibration */
+ if ((int)(cmd->param6) == 1) { //xxx: this is not defined by the mavlink protocol
+ /* transition to calibration state */
+ do_state_update(status_pub, &current_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT);
+
+ if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) {
+ mavlink_log_info(mavlink_fd, "CMD starting airspeed cal");
+ tune_confirm();
+ do_airspeed_calibration(status_pub, &current_status);
+ tune_confirm();
+ mavlink_log_info(mavlink_fd, "CMD finished airspeed cal");
+ do_state_update(status_pub, &current_status, mavlink_fd, SYSTEM_STATE_STANDBY);
+ result = VEHICLE_CMD_RESULT_ACCEPTED;
+
+ } else {
+ mavlink_log_critical(mavlink_fd, "REJECTING airspeed cal");
+ result = VEHICLE_CMD_RESULT_DENIED;
+ }
+
+ handled = true;
+ }
+
+ /* none found */
+ if (!handled) {
+ //warnx("refusing unsupported calibration request\n");
+ mavlink_log_critical(mavlink_fd, "CMD refusing unsup. calib. request");
+ result = VEHICLE_CMD_RESULT_UNSUPPORTED;
+ }
+ }
+ break;
+
+ case VEHICLE_CMD_PREFLIGHT_STORAGE: {
+ if (current_status.flag_system_armed &&
+ ((current_status.system_type == VEHICLE_TYPE_QUADROTOR) ||
+ (current_status.system_type == VEHICLE_TYPE_HEXAROTOR) ||
+ (current_status.system_type == VEHICLE_TYPE_OCTOROTOR))) {
+ /* do not perform expensive memory tasks on multirotors in flight */
+ // XXX this is over-safe, as soon as cmd is in low prio thread this can be allowed
+ mavlink_log_info(mavlink_fd, "REJECTING save cmd while multicopter armed");
+
+ } else {
+
+ // XXX move this to LOW PRIO THREAD of commander app
+ /* Read all parameters from EEPROM to RAM */
+
+ if (((int)(cmd->param1)) == 0) {
+
+ /* read all parameters from EEPROM to RAM */
+ int read_ret = param_load_default();
+
+ if (read_ret == OK) {
+ //warnx("[mavlink pm] Loaded EEPROM params in RAM\n");
+ mavlink_log_info(mavlink_fd, "OK loading params from");
+ mavlink_log_info(mavlink_fd, param_get_default_file());
+ result = VEHICLE_CMD_RESULT_ACCEPTED;
+
+ } else if (read_ret == 1) {
+ mavlink_log_info(mavlink_fd, "OK no changes in");
+ mavlink_log_info(mavlink_fd, param_get_default_file());
+ result = VEHICLE_CMD_RESULT_ACCEPTED;
+
+ } else {
+ if (read_ret < -1) {
+ mavlink_log_info(mavlink_fd, "ERR loading params from");
+ mavlink_log_info(mavlink_fd, param_get_default_file());
+
+ } else {
+ mavlink_log_info(mavlink_fd, "ERR no param file named");
+ mavlink_log_info(mavlink_fd, param_get_default_file());
+ }
+
+ result = VEHICLE_CMD_RESULT_FAILED;
+ }
+
+ } else if (((int)(cmd->param1)) == 1) {
+
+ /* write all parameters from RAM to EEPROM */
+ int write_ret = param_save_default();
+
+ if (write_ret == OK) {
+ mavlink_log_info(mavlink_fd, "OK saved param file");
+ mavlink_log_info(mavlink_fd, param_get_default_file());
+ result = VEHICLE_CMD_RESULT_ACCEPTED;
+
+ } else {
+ if (write_ret < -1) {
+ mavlink_log_info(mavlink_fd, "ERR params file does not exit:");
+ mavlink_log_info(mavlink_fd, param_get_default_file());
+
+ } else {
+ mavlink_log_info(mavlink_fd, "ERR writing params to");
+ mavlink_log_info(mavlink_fd, param_get_default_file());
+ }
+
+ result = VEHICLE_CMD_RESULT_FAILED;
+ }
+
+ } else {
+ mavlink_log_info(mavlink_fd, "[pm] refusing unsupp. STOR request");
+ result = VEHICLE_CMD_RESULT_UNSUPPORTED;
+ }
+ }
+ }
+ break;
+
+ default: {
+ mavlink_log_critical(mavlink_fd, "[cmd] refusing unsupported command");
+ result = VEHICLE_CMD_RESULT_UNSUPPORTED;
+ /* announce command rejection */
+ ioctl(buzzer, TONE_SET_ALARM, 4);
+ }
+ break;
+ }
+
+ /* supported command handling stop */
+ if (result == VEHICLE_CMD_RESULT_FAILED ||
+ result == VEHICLE_CMD_RESULT_DENIED ||
+ result == VEHICLE_CMD_RESULT_UNSUPPORTED) {
+ ioctl(buzzer, TONE_SET_ALARM, 5);
+
+ } else if (result == VEHICLE_CMD_RESULT_ACCEPTED) {
+ tune_confirm();
+ }
+
+ /* send any requested ACKs */
+ if (cmd->confirmation > 0) {
+ /* send acknowledge command */
+ // XXX TODO
+ }
+
+}
+
+static void *orb_receive_loop(void *arg) //handles status information coming from subsystems (present, enabled, health), these values do not indicate the quality (variance) of the signal
+{
+ /* Set thread name */
+ prctl(PR_SET_NAME, "commander orb rcv", getpid());
+
+ /* Subscribe to command topic */
+ int subsys_sub = orb_subscribe(ORB_ID(subsystem_info));
+ struct subsystem_info_s info;
+
+ struct vehicle_status_s *vstatus = (struct vehicle_status_s *)arg;
+
+ while (!thread_should_exit) {
+ struct pollfd fds[1] = { { .fd = subsys_sub, .events = POLLIN } };
+
+ if (poll(fds, 1, 5000) == 0) {
+ /* timeout, but this is no problem, silently ignore */
+ } else {
+ /* got command */
+ orb_copy(ORB_ID(subsystem_info), subsys_sub, &info);
+
+ warnx("Subsys changed: %d\n", (int)info.subsystem_type);
+
+ /* mark / unmark as present */
+ if (info.present) {
+ vstatus->onboard_control_sensors_present |= info.subsystem_type;
+
+ } else {
+ vstatus->onboard_control_sensors_present &= ~info.subsystem_type;
+ }
+
+ /* mark / unmark as enabled */
+ if (info.enabled) {
+ vstatus->onboard_control_sensors_enabled |= info.subsystem_type;
+
+ } else {
+ vstatus->onboard_control_sensors_enabled &= ~info.subsystem_type;
+ }
+
+ /* mark / unmark as ok */
+ if (info.ok) {
+ vstatus->onboard_control_sensors_health |= info.subsystem_type;
+
+ } else {
+ vstatus->onboard_control_sensors_health &= ~info.subsystem_type;
+ }
+ }
+ }
+
+ close(subsys_sub);
+
+ return NULL;
+}
+
+/*
+ * Provides a coarse estimate of remaining battery power.
+ *
+ * The estimate is very basic and based on decharging voltage curves.
+ *
+ * @return the estimated remaining capacity in 0..1
+ */
+float battery_remaining_estimate_voltage(float voltage);
+
+PARAM_DEFINE_FLOAT(BAT_V_EMPTY, 3.2f);
+PARAM_DEFINE_FLOAT(BAT_V_FULL, 4.05f);
+PARAM_DEFINE_FLOAT(BAT_N_CELLS, 3);
+
+float battery_remaining_estimate_voltage(float voltage)
+{
+ float ret = 0;
+ static param_t bat_volt_empty;
+ static param_t bat_volt_full;
+ static param_t bat_n_cells;
+ static bool initialized = false;
+ static unsigned int counter = 0;
+ static float ncells = 3;
+ // XXX change cells to int (and param to INT32)
+
+ if (!initialized) {
+ bat_volt_empty = param_find("BAT_V_EMPTY");
+ bat_volt_full = param_find("BAT_V_FULL");
+ bat_n_cells = param_find("BAT_N_CELLS");
+ initialized = true;
+ }
+
+ static float chemistry_voltage_empty = 3.2f;
+ static float chemistry_voltage_full = 4.05f;
+
+ if (counter % 100 == 0) {
+ param_get(bat_volt_empty, &chemistry_voltage_empty);
+ param_get(bat_volt_full, &chemistry_voltage_full);
+ param_get(bat_n_cells, &ncells);
+ }
+
+ counter++;
+
+ ret = (voltage - ncells * chemistry_voltage_empty) / (ncells * (chemistry_voltage_full - chemistry_voltage_empty));
+
+ /* limit to sane values */
+ ret = (ret < 0) ? 0 : ret;
+ ret = (ret > 1) ? 1 : ret;
+ return ret;
+}
+
+static void
+usage(const char *reason)
+{
+ if (reason)
+ fprintf(stderr, "%s\n", reason);
+
+ fprintf(stderr, "usage: daemon {start|stop|status} [-p <additional params>]\n\n");
+ exit(1);
+}
+
+/**
+ * The daemon app only briefly exists to start
+ * the background job. The stack size assigned in the
+ * Makefile does only apply to this management task.
+ *
+ * The actual stack size should be set in the call
+ * to task_create().
+ */
+int commander_main(int argc, char *argv[])
+{
+ if (argc < 1)
+ usage("missing command");
+
+ if (!strcmp(argv[1], "start")) {
+
+ if (thread_running) {
+ warnx("commander already running\n");
+ /* this is not an error */
+ exit(0);
+ }
+
+ thread_should_exit = false;
+ daemon_task = task_spawn("commander",
+ SCHED_DEFAULT,
+ SCHED_PRIORITY_MAX - 40,
+ 3000,
+ commander_thread_main,
+ (argv) ? (const char **)&argv[2] : (const char **)NULL);
+ exit(0);
+ }
+
+ if (!strcmp(argv[1], "stop")) {
+ thread_should_exit = true;
+ exit(0);
+ }
+
+ if (!strcmp(argv[1], "status")) {
+ if (thread_running) {
+ warnx("\tcommander is running\n");
+
+ } else {
+ warnx("\tcommander not started\n");
+ }
+
+ exit(0);
+ }
+
+ usage("unrecognized command");
+ exit(1);
+}
+
+int commander_thread_main(int argc, char *argv[])
+{
+ /* not yet initialized */
+ commander_initialized = false;
+ bool home_position_set = false;
+
+ /* set parameters */
+ failsafe_lowlevel_timeout_ms = 0;
+ param_get(param_find("SYS_FAILSAVE_LL"), &failsafe_lowlevel_timeout_ms);
+
+ param_t _param_sys_type = param_find("MAV_TYPE");
+ param_t _param_system_id = param_find("MAV_SYS_ID");
+ param_t _param_component_id = param_find("MAV_COMP_ID");
+
+ /* welcome user */
+ warnx("I am in command now!\n");
+
+ /* pthreads for command and subsystem info handling */
+ // pthread_t command_handling_thread;
+ pthread_t subsystem_info_thread;
+
+ /* initialize */
+ if (led_init() != 0) {
+ warnx("ERROR: Failed to initialize leds\n");
+ }
+
+ if (buzzer_init() != 0) {
+ warnx("ERROR: Failed to initialize buzzer\n");
+ }
+
+ mavlink_fd = open(MAVLINK_LOG_DEVICE, 0);
+
+ if (mavlink_fd < 0) {
+ warnx("ERROR: Failed to open MAVLink log stream, start mavlink app first.\n");
+ }
+
+ /* make sure we are in preflight state */
+ memset(&current_status, 0, sizeof(current_status));
+ current_status.state_machine = SYSTEM_STATE_PREFLIGHT;
+ current_status.flag_system_armed = false;
+ /* neither manual nor offboard control commands have been received */
+ current_status.offboard_control_signal_found_once = false;
+ current_status.rc_signal_found_once = false;
+ /* mark all signals lost as long as they haven't been found */
+ current_status.rc_signal_lost = true;
+ current_status.offboard_control_signal_lost = true;
+ /* allow manual override initially */
+ current_status.flag_external_manual_override_ok = true;
+ /* flag position info as bad, do not allow auto mode */
+ current_status.flag_vector_flight_mode_ok = false;
+ /* set battery warning flag */
+ current_status.battery_warning = VEHICLE_BATTERY_WARNING_NONE;
+
+ /* advertise to ORB */
+ stat_pub = orb_advertise(ORB_ID(vehicle_status), &current_status);
+ /* publish current state machine */
+ state_machine_publish(stat_pub, &current_status, mavlink_fd);
+
+ /* home position */
+ orb_advert_t home_pub = -1;
+ struct home_position_s home;
+ memset(&home, 0, sizeof(home));
+
+ if (stat_pub < 0) {
+ warnx("ERROR: orb_advertise for topic vehicle_status failed (uorb app running?).\n");
+ warnx("exiting.");
+ exit(ERROR);
+ }
+
+ mavlink_log_info(mavlink_fd, "system is running");
+
+ /* create pthreads */
+ pthread_attr_t subsystem_info_attr;
+ pthread_attr_init(&subsystem_info_attr);
+ pthread_attr_setstacksize(&subsystem_info_attr, 2048);
+ pthread_create(&subsystem_info_thread, &subsystem_info_attr, orb_receive_loop, &current_status);
+
+ /* Start monitoring loop */
+ uint16_t counter = 0;
+ uint8_t flight_env;
+
+ /* Initialize to 0.0V */
+ float battery_voltage = 0.0f;
+ bool battery_voltage_valid = false;
+ bool low_battery_voltage_actions_done = false;
+ bool critical_battery_voltage_actions_done = false;
+ uint8_t low_voltage_counter = 0;
+ uint16_t critical_voltage_counter = 0;
+ int16_t mode_switch_rc_value;
+ float bat_remain = 1.0f;
+
+ uint16_t stick_off_counter = 0;
+ uint16_t stick_on_counter = 0;
+
+ /* Subscribe to manual control data */
+ int sp_man_sub = orb_subscribe(ORB_ID(manual_control_setpoint));
+ struct manual_control_setpoint_s sp_man;
+ memset(&sp_man, 0, sizeof(sp_man));
+
+ /* Subscribe to offboard control data */
+ int sp_offboard_sub = orb_subscribe(ORB_ID(offboard_control_setpoint));
+ struct offboard_control_setpoint_s sp_offboard;
+ memset(&sp_offboard, 0, sizeof(sp_offboard));
+
+ int global_position_sub = orb_subscribe(ORB_ID(vehicle_global_position));
+ struct vehicle_global_position_s global_position;
+ memset(&global_position, 0, sizeof(global_position));
+ uint64_t last_global_position_time = 0;
+
+ int local_position_sub = orb_subscribe(ORB_ID(vehicle_local_position));
+ struct vehicle_local_position_s local_position;
+ memset(&local_position, 0, sizeof(local_position));
+ uint64_t last_local_position_time = 0;
+
+ /*
+ * The home position is set based on GPS only, to prevent a dependency between
+ * position estimator and commander. RAW GPS is more than good enough for a
+ * non-flying vehicle.
+ */
+ int gps_sub = orb_subscribe(ORB_ID(vehicle_gps_position));
+ struct vehicle_gps_position_s gps_position;
+ memset(&gps_position, 0, sizeof(gps_position));
+
+ int sensor_sub = orb_subscribe(ORB_ID(sensor_combined));
+ struct sensor_combined_s sensors;
+ memset(&sensors, 0, sizeof(sensors));
+
+ int differential_pressure_sub = orb_subscribe(ORB_ID(differential_pressure));
+ struct differential_pressure_s differential_pressure;
+ memset(&differential_pressure, 0, sizeof(differential_pressure));
+ uint64_t last_differential_pressure_time = 0;
+
+ /* Subscribe to command topic */
+ int cmd_sub = orb_subscribe(ORB_ID(vehicle_command));
+ struct vehicle_command_s cmd;
+ memset(&cmd, 0, sizeof(cmd));
+
+ /* Subscribe to parameters changed topic */
+ int param_changed_sub = orb_subscribe(ORB_ID(parameter_update));
+ struct parameter_update_s param_changed;
+ memset(&param_changed, 0, sizeof(param_changed));
+
+ /* subscribe to battery topic */
+ int battery_sub = orb_subscribe(ORB_ID(battery_status));
+ struct battery_status_s battery;
+ memset(&battery, 0, sizeof(battery));
+ battery.voltage_v = 0.0f;
+
+ // uint8_t vehicle_state_previous = current_status.state_machine;
+ float voltage_previous = 0.0f;
+
+ uint64_t last_idle_time = 0;
+
+ /* now initialized */
+ commander_initialized = true;
+ thread_running = true;
+
+ uint64_t start_time = hrt_absolute_time();
+ uint64_t failsave_ll_start_time = 0;
+
+ bool state_changed = true;
+ bool param_init_forced = true;
+
+ while (!thread_should_exit) {
+
+ /* Get current values */
+ bool new_data;
+ orb_check(sp_man_sub, &new_data);
+
+ if (new_data) {
+ orb_copy(ORB_ID(manual_control_setpoint), sp_man_sub, &sp_man);
+ }
+
+ orb_check(sp_offboard_sub, &new_data);
+
+ if (new_data) {
+ orb_copy(ORB_ID(offboard_control_setpoint), sp_offboard_sub, &sp_offboard);
+ }
+
+ orb_check(sensor_sub, &new_data);
+
+ if (new_data) {
+ orb_copy(ORB_ID(sensor_combined), sensor_sub, &sensors);
+ }
+
+ orb_check(differential_pressure_sub, &new_data);
+
+ if (new_data) {
+ orb_copy(ORB_ID(differential_pressure), differential_pressure_sub, &differential_pressure);
+ last_differential_pressure_time = differential_pressure.timestamp;
+ }
+
+ orb_check(cmd_sub, &new_data);
+
+ if (new_data) {
+ /* got command */
+ orb_copy(ORB_ID(vehicle_command), cmd_sub, &cmd);
+
+ /* handle it */
+ handle_command(stat_pub, &current_status, &cmd);
+ }
+
+ /* update parameters */
+ orb_check(param_changed_sub, &new_data);
+
+ if (new_data || param_init_forced) {
+ param_init_forced = false;
+ /* parameters changed */
+ orb_copy(ORB_ID(parameter_update), param_changed_sub, &param_changed);
+
+
+ /* update parameters */
+ if (!current_status.flag_system_armed) {
+ if (param_get(_param_sys_type, &(current_status.system_type)) != OK) {
+ warnx("failed setting new system type");
+ }
+
+ /* disable manual override for all systems that rely on electronic stabilization */
+ if (current_status.system_type == VEHICLE_TYPE_QUADROTOR ||
+ current_status.system_type == VEHICLE_TYPE_HEXAROTOR ||
+ current_status.system_type == VEHICLE_TYPE_OCTOROTOR) {
+ current_status.flag_external_manual_override_ok = false;
+
+ } else {
+ current_status.flag_external_manual_override_ok = true;
+ }
+
+ /* check and update system / component ID */
+ param_get(_param_system_id, &(current_status.system_id));
+ param_get(_param_component_id, &(current_status.component_id));
+
+ }
+ }
+
+ /* update global position estimate */
+ orb_check(global_position_sub, &new_data);
+
+ if (new_data) {
+ /* position changed */
+ orb_copy(ORB_ID(vehicle_global_position), global_position_sub, &global_position);
+ last_global_position_time = global_position.timestamp;
+ }
+
+ /* update local position estimate */
+ orb_check(local_position_sub, &new_data);
+
+ if (new_data) {
+ /* position changed */
+ orb_copy(ORB_ID(vehicle_local_position), local_position_sub, &local_position);
+ last_local_position_time = local_position.timestamp;
+ }
+
+ /* update battery status */
+ orb_check(battery_sub, &new_data);
+ if (new_data) {
+ orb_copy(ORB_ID(battery_status), battery_sub, &battery);
+ battery_voltage = battery.voltage_v;
+ battery_voltage_valid = true;
+
+ /*
+ * Only update battery voltage estimate if system has
+ * been running for two and a half seconds.
+ */
+ if (hrt_absolute_time() - start_time > 2500000) {
+ bat_remain = battery_remaining_estimate_voltage(battery_voltage);
+ }
+ }
+
+ /* Slow but important 8 Hz checks */
+ if (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 8) == 0) {
+ /* toggle activity (blue) led at 1 Hz in standby, 10 Hz in armed mode */
+ if ((current_status.state_machine == SYSTEM_STATE_GROUND_READY ||
+ current_status.state_machine == SYSTEM_STATE_AUTO ||
+ current_status.state_machine == SYSTEM_STATE_MANUAL)) {
+ /* armed */
+ led_toggle(LED_BLUE);
+
+ } else if (counter % (1000000 / COMMANDER_MONITORING_INTERVAL) == 0) {
+ /* not armed */
+ led_toggle(LED_BLUE);
+ }
+
+ /* toggle error led at 5 Hz in HIL mode */
+ if (current_status.flag_hil_enabled) {
+ /* hil enabled */
+ led_toggle(LED_AMBER);
+
+ } else if (bat_remain < 0.3f && (low_voltage_counter > LOW_VOLTAGE_BATTERY_COUNTER_LIMIT)) {
+ /* toggle error (red) at 5 Hz on low battery or error */
+ led_toggle(LED_AMBER);
+
+ } else {
+ // /* Constant error indication in standby mode without GPS */
+ // if (!current_status.gps_valid) {
+ // led_on(LED_AMBER);
+
+ // } else {
+ // led_off(LED_AMBER);
+ // }
+ }
+
+ if (counter % (1000000 / COMMANDER_MONITORING_INTERVAL) == 0) {
+ /* compute system load */
+ uint64_t interval_runtime = system_load.tasks[0].total_runtime - last_idle_time;
+
+ if (last_idle_time > 0)
+ current_status.load = 1000 - (interval_runtime / 1000); //system load is time spent in non-idle
+
+ last_idle_time = system_load.tasks[0].total_runtime;
+ }
+ }
+
+ // // XXX Export patterns and threshold to parameters
+ /* Trigger audio event for low battery */
+ if (bat_remain < 0.1f && battery_voltage_valid && (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 4) == 0)) {
+ /* For less than 10%, start be really annoying at 5 Hz */
+ ioctl(buzzer, TONE_SET_ALARM, 0);
+ ioctl(buzzer, TONE_SET_ALARM, 3);
+
+ } else if (bat_remain < 0.1f && battery_voltage_valid && (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 4) == 2)) {
+ ioctl(buzzer, TONE_SET_ALARM, 0);
+
+ } else if (bat_remain < 0.2f && battery_voltage_valid && (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 2) == 0)) {
+ /* For less than 20%, start be slightly annoying at 1 Hz */
+ ioctl(buzzer, TONE_SET_ALARM, 0);
+ tune_confirm();
+
+ } else if (bat_remain < 0.2f && battery_voltage_valid && (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 2) == 2)) {
+ ioctl(buzzer, TONE_SET_ALARM, 0);
+ }
+
+ /* Check battery voltage */
+ /* write to sys_status */
+ if (battery_voltage_valid) {
+ current_status.voltage_battery = battery_voltage;
+
+ } else {
+ current_status.voltage_battery = 0.0f;
+ }
+
+ /* if battery voltage is getting lower, warn using buzzer, etc. */
+ if (battery_voltage_valid && (bat_remain < 0.15f /* XXX MAGIC NUMBER */) && (false == low_battery_voltage_actions_done)) { //TODO: add filter, or call emergency after n measurements < VOLTAGE_BATTERY_MINIMAL_MILLIVOLTS
+
+ if (low_voltage_counter > LOW_VOLTAGE_BATTERY_COUNTER_LIMIT) {
+ low_battery_voltage_actions_done = true;
+ mavlink_log_critical(mavlink_fd, "[cmd] WARNING! LOW BATTERY!");
+ current_status.battery_warning = VEHICLE_BATTERY_WARNING_WARNING;
+ }
+
+ low_voltage_counter++;
+ }
+
+ /* Critical, this is rather an emergency, kill signal to sdlog and change state machine */
+ else if (battery_voltage_valid && (bat_remain < 0.1f /* XXX MAGIC NUMBER */) && (false == critical_battery_voltage_actions_done && true == low_battery_voltage_actions_done)) {
+ if (critical_voltage_counter > CRITICAL_VOLTAGE_BATTERY_COUNTER_LIMIT) {
+ critical_battery_voltage_actions_done = true;
+ mavlink_log_critical(mavlink_fd, "[cmd] EMERGENCY! CRITICAL BATTERY!");
+ current_status.battery_warning = VEHICLE_BATTERY_WARNING_ALERT;
+ state_machine_emergency(stat_pub, &current_status, mavlink_fd);
+ }
+
+ critical_voltage_counter++;
+
+ } else {
+ low_voltage_counter = 0;
+ critical_voltage_counter = 0;
+ }
+
+ /* End battery voltage check */
+
+
+ /*
+ * Check for valid position information.
+ *
+ * If the system has a valid position source from an onboard
+ * position estimator, it is safe to operate it autonomously.
+ * The flag_vector_flight_mode_ok flag indicates that a minimum
+ * set of position measurements is available.
+ */
+
+ /* store current state to reason later about a state change */
+ bool vector_flight_mode_ok = current_status.flag_vector_flight_mode_ok;
+ bool global_pos_valid = current_status.flag_global_position_valid;
+ bool local_pos_valid = current_status.flag_local_position_valid;
+ bool airspeed_valid = current_status.flag_airspeed_valid;
+
+ /* check for global or local position updates, set a timeout of 2s */
+ if (hrt_absolute_time() - last_global_position_time < 2000000) {
+ current_status.flag_global_position_valid = true;
+ // XXX check for controller status and home position as well
+
+ } else {
+ current_status.flag_global_position_valid = false;
+ }
+
+ if (hrt_absolute_time() - last_local_position_time < 2000000) {
+ current_status.flag_local_position_valid = true;
+ // XXX check for controller status and home position as well
+
+ } else {
+ current_status.flag_local_position_valid = false;
+ }
+
+ /* Check for valid airspeed/differential pressure measurements */
+ if (hrt_absolute_time() - last_differential_pressure_time < 2000000) {
+ current_status.flag_airspeed_valid = true;
+
+ } else {
+ current_status.flag_airspeed_valid = false;
+ }
+
+ /*
+ * Consolidate global position and local position valid flags
+ * for vector flight mode.
+ */
+ if (current_status.flag_local_position_valid ||
+ current_status.flag_global_position_valid) {
+ current_status.flag_vector_flight_mode_ok = true;
+
+ } else {
+ current_status.flag_vector_flight_mode_ok = false;
+ }
+
+ /* consolidate state change, flag as changed if required */
+ if (vector_flight_mode_ok != current_status.flag_vector_flight_mode_ok ||
+ global_pos_valid != current_status.flag_global_position_valid ||
+ local_pos_valid != current_status.flag_local_position_valid ||
+ airspeed_valid != current_status.flag_airspeed_valid) {
+ state_changed = true;
+ }
+
+ /*
+ * Mark the position of the first position lock as return to launch (RTL)
+ * position. The MAV will return here on command or emergency.
+ *
+ * Conditions:
+ *
+ * 1) The system aquired position lock just now
+ * 2) The system has not aquired position lock before
+ * 3) The system is not armed (on the ground)
+ */
+ if (!current_status.flag_valid_launch_position &&
+ !vector_flight_mode_ok && current_status.flag_vector_flight_mode_ok &&
+ !current_status.flag_system_armed) {
+ /* first time a valid position, store it and emit it */
+
+ // XXX implement storage and publication of RTL position
+ current_status.flag_valid_launch_position = true;
+ current_status.flag_auto_flight_mode_ok = true;
+ state_changed = true;
+ }
+
+ if (orb_check(ORB_ID(vehicle_gps_position), &new_data)) {
+
+ orb_copy(ORB_ID(vehicle_gps_position), gps_sub, &gps_position);
+
+ /* check for first, long-term and valid GPS lock -> set home position */
+ float hdop_m = gps_position.eph_m;
+ float vdop_m = gps_position.epv_m;
+
+ /* check if gps fix is ok */
+ // XXX magic number
+ float hdop_threshold_m = 4.0f;
+ float vdop_threshold_m = 8.0f;
+
+ /*
+ * If horizontal dilution of precision (hdop / eph)
+ * and vertical diluation of precision (vdop / epv)
+ * are below a certain threshold (e.g. 4 m), AND
+ * home position is not yet set AND the last GPS
+ * GPS measurement is not older than two seconds AND
+ * the system is currently not armed, set home
+ * position to the current position.
+ */
+
+ if (gps_position.fix_type == GPS_FIX_TYPE_3D
+ && (hdop_m < hdop_threshold_m)
+ && (vdop_m < vdop_threshold_m)
+ && !home_position_set
+ && (hrt_absolute_time() - gps_position.timestamp_position < 2000000)
+ && !current_status.flag_system_armed) {
+ warnx("setting home position");
+
+ /* copy position data to uORB home message, store it locally as well */
+ home.lat = gps_position.lat;
+ home.lon = gps_position.lon;
+ home.alt = gps_position.alt;
+
+ home.eph_m = gps_position.eph_m;
+ home.epv_m = gps_position.epv_m;
+
+ home.s_variance_m_s = gps_position.s_variance_m_s;
+ home.p_variance_m = gps_position.p_variance_m;
+
+ /* announce new home position */
+ if (home_pub > 0) {
+ orb_publish(ORB_ID(home_position), home_pub, &home);
+ } else {
+ home_pub = orb_advertise(ORB_ID(home_position), &home);
+ }
+
+ /* mark home position as set */
+ home_position_set = true;
+ tune_confirm();
+ }
+ }
+
+ /* ignore RC signals if in offboard control mode */
+ if (!current_status.offboard_control_signal_found_once && sp_man.timestamp != 0) {
+ /* Start RC state check */
+
+ if ((hrt_absolute_time() - sp_man.timestamp) < 100000) {
+
+ // /*
+ // * Check if manual control modes have to be switched
+ // */
+ // if (!isfinite(sp_man.manual_mode_switch)) {
+ // warnx("man mode sw not finite\n");
+
+ // /* this switch is not properly mapped, set default */
+ // if ((current_status.system_type == VEHICLE_TYPE_QUADROTOR) ||
+ // (current_status.system_type == VEHICLE_TYPE_HEXAROTOR) ||
+ // (current_status.system_type == VEHICLE_TYPE_OCTOROTOR)) {
+
+ // /* assuming a rotary wing, fall back to SAS */
+ // current_status.manual_control_mode = VEHICLE_MANUAL_CONTROL_MODE_SAS;
+ // current_status.flag_control_attitude_enabled = true;
+ // current_status.flag_control_rates_enabled = true;
+ // } else {
+
+ // /* assuming a fixed wing, fall back to direct pass-through */
+ // current_status.manual_control_mode = VEHICLE_MANUAL_CONTROL_MODE_DIRECT;
+ // current_status.flag_control_attitude_enabled = false;
+ // current_status.flag_control_rates_enabled = false;
+ // }
+
+ // } else if (sp_man.manual_mode_switch < -STICK_ON_OFF_LIMIT) {
+
+ // /* bottom stick position, set direct mode for vehicles supporting it */
+ // if ((current_status.system_type == VEHICLE_TYPE_QUADROTOR) ||
+ // (current_status.system_type == VEHICLE_TYPE_HEXAROTOR) ||
+ // (current_status.system_type == VEHICLE_TYPE_OCTOROTOR)) {
+
+ // /* assuming a rotary wing, fall back to SAS */
+ // current_status.manual_control_mode = VEHICLE_MANUAL_CONTROL_MODE_SAS;
+ // current_status.flag_control_attitude_enabled = true;
+ // current_status.flag_control_rates_enabled = true;
+ // } else {
+
+ // /* assuming a fixed wing, set to direct pass-through as requested */
+ // current_status.manual_control_mode = VEHICLE_MANUAL_CONTROL_MODE_DIRECT;
+ // current_status.flag_control_attitude_enabled = false;
+ // current_status.flag_control_rates_enabled = false;
+ // }
+
+ // } else if (sp_man.manual_mode_switch > STICK_ON_OFF_LIMIT) {
+
+ // /* top stick position, set SAS for all vehicle types */
+ // current_status.manual_control_mode = VEHICLE_MANUAL_CONTROL_MODE_SAS;
+ // current_status.flag_control_attitude_enabled = true;
+ // current_status.flag_control_rates_enabled = true;
+
+ // } else {
+ // /* center stick position, set rate control */
+ // current_status.manual_control_mode = VEHICLE_MANUAL_CONTROL_MODE_RATES;
+ // current_status.flag_control_attitude_enabled = false;
+ // current_status.flag_control_rates_enabled = true;
+ // }
+
+ // warnx("man ctrl mode: %d\n", (int)current_status.manual_control_mode);
+
+ /*
+ * Check if manual stability control modes have to be switched
+ */
+ if (!isfinite(sp_man.manual_sas_switch)) {
+
+ /* this switch is not properly mapped, set default */
+ current_status.manual_sas_mode = VEHICLE_MANUAL_SAS_MODE_ROLL_PITCH_ABS_YAW_ABS;
+
+ } else if (sp_man.manual_sas_switch < -STICK_ON_OFF_LIMIT) {
+
+ /* bottom stick position, set altitude hold */
+ current_status.manual_sas_mode = VEHICLE_MANUAL_SAS_MODE_ALTITUDE;
+
+ } else if (sp_man.manual_sas_switch > STICK_ON_OFF_LIMIT) {
+
+ /* top stick position */
+ current_status.manual_sas_mode = VEHICLE_MANUAL_SAS_MODE_SIMPLE;
+
+ } else {
+ /* center stick position, set default */
+ current_status.manual_sas_mode = VEHICLE_MANUAL_SAS_MODE_ROLL_PITCH_ABS_YAW_ABS;
+ }
+
+ /*
+ * Check if left stick is in lower left position --> switch to standby state.
+ * Do this only for multirotors, not for fixed wing aircraft.
+ */
+ if (((current_status.system_type == VEHICLE_TYPE_QUADROTOR) ||
+ (current_status.system_type == VEHICLE_TYPE_HEXAROTOR) ||
+ (current_status.system_type == VEHICLE_TYPE_OCTOROTOR)
+ ) &&
+ ((sp_man.yaw < -STICK_ON_OFF_LIMIT)) &&
+ (sp_man.throttle < STICK_THRUST_RANGE * 0.2f)) {
+ if (stick_off_counter > STICK_ON_OFF_COUNTER_LIMIT) {
+ update_state_machine_disarm(stat_pub, &current_status, mavlink_fd);
+ stick_on_counter = 0;
+
+ } else {
+ stick_off_counter++;
+ stick_on_counter = 0;
+ }
+ }
+
+ /* check if left stick is in lower right position --> arm */
+ if (sp_man.yaw > STICK_ON_OFF_LIMIT && sp_man.throttle < STICK_THRUST_RANGE * 0.2f) {
+ if (stick_on_counter > STICK_ON_OFF_COUNTER_LIMIT) {
+ update_state_machine_arm(stat_pub, &current_status, mavlink_fd);
+ stick_on_counter = 0;
+
+ } else {
+ stick_on_counter++;
+ stick_off_counter = 0;
+ }
+ }
+
+ /* check manual override switch - switch to manual or auto mode */
+ if (sp_man.manual_override_switch > STICK_ON_OFF_LIMIT) {
+ /* enable manual override */
+ update_state_machine_mode_manual(stat_pub, &current_status, mavlink_fd);
+
+ } else if (sp_man.manual_override_switch < -STICK_ON_OFF_LIMIT) {
+ // /* check auto mode switch for correct mode */
+ // if (sp_man.auto_mode_switch > STICK_ON_OFF_LIMIT) {
+ // /* enable guided mode */
+ // update_state_machine_mode_guided(stat_pub, &current_status, mavlink_fd);
+
+ // } else if (sp_man.auto_mode_switch < -STICK_ON_OFF_LIMIT) {
+ // XXX hardcode to auto for now
+ update_state_machine_mode_auto(stat_pub, &current_status, mavlink_fd);
+
+ // }
+
+ } else {
+ /* center stick position, set SAS for all vehicle types */
+ update_state_machine_mode_stabilized(stat_pub, &current_status, mavlink_fd);
+ }
+
+ /* handle the case where RC signal was regained */
+ if (!current_status.rc_signal_found_once) {
+ current_status.rc_signal_found_once = true;
+ mavlink_log_critical(mavlink_fd, "DETECTED RC SIGNAL FIRST TIME.");
+
+ } else {
+ if (current_status.rc_signal_lost) mavlink_log_critical(mavlink_fd, "[cmd] RECOVERY - RC SIGNAL GAINED!");
+ }
+
+ current_status.rc_signal_cutting_off = false;
+ current_status.rc_signal_lost = false;
+ current_status.rc_signal_lost_interval = 0;
+
+ } else {
+ static uint64_t last_print_time = 0;
+
+ /* print error message for first RC glitch and then every 5 s / 5000 ms) */
+ if (!current_status.rc_signal_cutting_off || ((hrt_absolute_time() - last_print_time) > 5000000)) {
+ /* only complain if the offboard control is NOT active */
+ current_status.rc_signal_cutting_off = true;
+ mavlink_log_critical(mavlink_fd, "CRITICAL - NO REMOTE SIGNAL!");
+ last_print_time = hrt_absolute_time();
+ }
+
+ /* flag as lost and update interval since when the signal was lost (to initiate RTL after some time) */
+ current_status.rc_signal_lost_interval = hrt_absolute_time() - sp_man.timestamp;
+
+ /* if the RC signal is gone for a full second, consider it lost */
+ if (current_status.rc_signal_lost_interval > 1000000) {
+ current_status.rc_signal_lost = true;
+ current_status.failsave_lowlevel = true;
+ state_changed = true;
+ }
+
+ // if (hrt_absolute_time() - current_status.failsave_ll_start_time > failsafe_lowlevel_timeout_ms*1000) {
+ // publish_armed_status(&current_status);
+ // }
+ }
+ }
+
+
+
+
+ /* End mode switch */
+
+ /* END RC state check */
+
+
+ /* State machine update for offboard control */
+ if (!current_status.rc_signal_found_once && sp_offboard.timestamp != 0) {
+ if ((hrt_absolute_time() - sp_offboard.timestamp) < 5000000) {
+
+ /* decide about attitude control flag, enable in att/pos/vel */
+ bool attitude_ctrl_enabled = (sp_offboard.mode == OFFBOARD_CONTROL_MODE_DIRECT_ATTITUDE ||
+ sp_offboard.mode == OFFBOARD_CONTROL_MODE_DIRECT_VELOCITY ||
+ sp_offboard.mode == OFFBOARD_CONTROL_MODE_DIRECT_POSITION);
+
+ /* decide about rate control flag, enable it always XXX (for now) */
+ bool rates_ctrl_enabled = true;
+
+ /* set up control mode */
+ if (current_status.flag_control_attitude_enabled != attitude_ctrl_enabled) {
+ current_status.flag_control_attitude_enabled = attitude_ctrl_enabled;
+ state_changed = true;
+ }
+
+ if (current_status.flag_control_rates_enabled != rates_ctrl_enabled) {
+ current_status.flag_control_rates_enabled = rates_ctrl_enabled;
+ state_changed = true;
+ }
+
+ /* handle the case where offboard control signal was regained */
+ if (!current_status.offboard_control_signal_found_once) {
+ current_status.offboard_control_signal_found_once = true;
+ /* enable offboard control, disable manual input */
+ current_status.flag_control_manual_enabled = false;
+ current_status.flag_control_offboard_enabled = true;
+ state_changed = true;
+ tune_confirm();
+
+ mavlink_log_critical(mavlink_fd, "DETECTED OFFBOARD SIGNAL FIRST");
+
+ } else {
+ if (current_status.offboard_control_signal_lost) {
+ mavlink_log_critical(mavlink_fd, "RECOVERY OFFBOARD CONTROL");
+ state_changed = true;
+ tune_confirm();
+ }
+ }
+
+ current_status.offboard_control_signal_weak = false;
+ current_status.offboard_control_signal_lost = false;
+ current_status.offboard_control_signal_lost_interval = 0;
+
+ /* arm / disarm on request */
+ if (sp_offboard.armed && !current_status.flag_system_armed) {
+ update_state_machine_arm(stat_pub, &current_status, mavlink_fd);
+ /* switch to stabilized mode = takeoff */
+ update_state_machine_mode_stabilized(stat_pub, &current_status, mavlink_fd);
+
+ } else if (!sp_offboard.armed && current_status.flag_system_armed) {
+ update_state_machine_disarm(stat_pub, &current_status, mavlink_fd);
+ }
+
+ } else {
+ static uint64_t last_print_time = 0;
+
+ /* print error message for first RC glitch and then every 5 s / 5000 ms) */
+ if (!current_status.offboard_control_signal_weak || ((hrt_absolute_time() - last_print_time) > 5000000)) {
+ current_status.offboard_control_signal_weak = true;
+ mavlink_log_critical(mavlink_fd, "CRIT:NO OFFBOARD CONTROL!");
+ last_print_time = hrt_absolute_time();
+ }
+
+ /* flag as lost and update interval since when the signal was lost (to initiate RTL after some time) */
+ current_status.offboard_control_signal_lost_interval = hrt_absolute_time() - sp_offboard.timestamp;
+
+ /* if the signal is gone for 0.1 seconds, consider it lost */
+ if (current_status.offboard_control_signal_lost_interval > 100000) {
+ current_status.offboard_control_signal_lost = true;
+ current_status.failsave_lowlevel_start_time = hrt_absolute_time();
+ tune_confirm();
+
+ /* kill motors after timeout */
+ if (hrt_absolute_time() - current_status.failsave_lowlevel_start_time > failsafe_lowlevel_timeout_ms * 1000) {
+ current_status.failsave_lowlevel = true;
+ state_changed = true;
+ }
+ }
+ }
+ }
+
+
+ current_status.counter++;
+ current_status.timestamp = hrt_absolute_time();
+
+
+ /* If full run came back clean, transition to standby */
+ if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT &&
+ current_status.flag_preflight_gyro_calibration == false &&
+ current_status.flag_preflight_mag_calibration == false &&
+ current_status.flag_preflight_accel_calibration == false) {
+ /* All ok, no calibration going on, go to standby */
+ do_state_update(stat_pub, &current_status, mavlink_fd, SYSTEM_STATE_STANDBY);
+ }
+
+ /* publish at least with 1 Hz */
+ if (counter % (1000000 / COMMANDER_MONITORING_INTERVAL) == 0 || state_changed) {
+ publish_armed_status(&current_status);
+ orb_publish(ORB_ID(vehicle_status), stat_pub, &current_status);
+ state_changed = false;
+ }
+
+ /* Store old modes to detect and act on state transitions */
+ voltage_previous = current_status.voltage_battery;
+
+ fflush(stdout);
+ counter++;
+ usleep(COMMANDER_MONITORING_INTERVAL);
+ }
+
+ /* wait for threads to complete */
+ // pthread_join(command_handling_thread, NULL);
+ pthread_join(subsystem_info_thread, NULL);
+
+ /* close fds */
+ led_deinit();
+ buzzer_deinit();
+ close(sp_man_sub);
+ close(sp_offboard_sub);
+ close(global_position_sub);
+ close(sensor_sub);
+ close(cmd_sub);
+
+ warnx("exiting..\n");
+ fflush(stdout);
+
+ thread_running = false;
+
+ return 0;
+}