aboutsummaryrefslogtreecommitdiff
path: root/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_q15.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_q15.c')
-rw-r--r--src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_q15.c408
1 files changed, 0 insertions, 408 deletions
diff --git a/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_q15.c b/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_q15.c
deleted file mode 100644
index 484cd85e8..000000000
--- a/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_q15.c
+++ /dev/null
@@ -1,408 +0,0 @@
-/* ----------------------------------------------------------------------
-* Copyright (C) 2010 ARM Limited. All rights reserved.
-*
-* $Date: 15. February 2012
-* $Revision: V1.1.0
-*
-* Project: CMSIS DSP Library
-* Title: arm_biquad_cascade_df1_q15.c
-*
-* Description: Processing function for the
-* Q15 Biquad cascade DirectFormI(DF1) filter.
-*
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*
-* Version 1.1.0 2012/02/15
-* Updated with more optimizations, bug fixes and minor API changes.
-*
-* Version 1.0.10 2011/7/15
-* Big Endian support added and Merged M0 and M3/M4 Source code.
-*
-* Version 1.0.3 2010/11/29
-* Re-organized the CMSIS folders and updated documentation.
-*
-* Version 1.0.2 2010/11/11
-* Documentation updated.
-*
-* Version 1.0.1 2010/10/05
-* Production release and review comments incorporated.
-*
-* Version 1.0.0 2010/09/20
-* Production release and review comments incorporated.
-*
-* Version 0.0.5 2010/04/26
-* incorporated review comments and updated with latest CMSIS layer
-*
-* Version 0.0.3 2010/03/10
-* Initial version
-* -------------------------------------------------------------------- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @addtogroup BiquadCascadeDF1
- * @{
- */
-
-/**
- * @brief Processing function for the Q15 Biquad cascade filter.
- * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the location where the output result is written.
- * @param[in] blockSize number of samples to process per call.
- * @return none.
- *
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using a 64-bit internal accumulator.
- * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
- * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
- * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
- * The accumulator is then shifted by <code>postShift</code> bits to truncate the result to 1.15 format by discarding the low 16 bits.
- * Finally, the result is saturated to 1.15 format.
- *
- * \par
- * Refer to the function <code>arm_biquad_cascade_df1_fast_q15()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.
- */
-
-void arm_biquad_cascade_df1_q15(
- const arm_biquad_casd_df1_inst_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize)
-{
-
-
-#ifndef ARM_MATH_CM0
-
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
- q15_t *pIn = pSrc; /* Source pointer */
- q15_t *pOut = pDst; /* Destination pointer */
- q31_t in; /* Temporary variable to hold input value */
- q31_t out; /* Temporary variable to hold output value */
- q31_t b0; /* Temporary variable to hold bo value */
- q31_t b1, a1; /* Filter coefficients */
- q31_t state_in, state_out; /* Filter state variables */
- q31_t acc_l, acc_h;
- q63_t acc; /* Accumulator */
- int32_t lShift = (15 - (int32_t) S->postShift); /* Post shift */
- q15_t *pState = S->pState; /* State pointer */
- q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */
- int32_t uShift = (32 - lShift);
-
- do
- {
- /* Read the b0 and 0 coefficients using SIMD */
- b0 = *__SIMD32(pCoeffs)++;
-
- /* Read the b1 and b2 coefficients using SIMD */
- b1 = *__SIMD32(pCoeffs)++;
-
- /* Read the a1 and a2 coefficients using SIMD */
- a1 = *__SIMD32(pCoeffs)++;
-
- /* Read the input state values from the state buffer: x[n-1], x[n-2] */
- state_in = *__SIMD32(pState)++;
-
- /* Read the output state values from the state buffer: y[n-1], y[n-2] */
- state_out = *__SIMD32(pState)--;
-
- /* Apply loop unrolling and compute 2 output values simultaneously. */
- /* The variable acc hold output values that are being computed:
- *
- * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
- * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
- */
- sample = blockSize >> 1u;
-
- /* First part of the processing with loop unrolling. Compute 2 outputs at a time.
- ** a second loop below computes the remaining 1 sample. */
- while(sample > 0u)
- {
-
- /* Read the input */
- in = *__SIMD32(pIn)++;
-
- /* out = b0 * x[n] + 0 * 0 */
- out = __SMUAD(b0, in);
-
- /* acc += b1 * x[n-1] + b2 * x[n-2] + out */
- acc = __SMLALD(b1, state_in, out);
- /* acc += a1 * y[n-1] + a2 * y[n-2] */
- acc = __SMLALD(a1, state_out, acc);
-
- /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
- /* Calc lower part of acc */
- acc_l = acc & 0xffffffff;
-
- /* Calc upper part of acc */
- acc_h = (acc >> 32) & 0xffffffff;
-
- /* Apply shift for lower part of acc and upper part of acc */
- out = (uint32_t) acc_l >> lShift | acc_h << uShift;
-
- out = __SSAT(out, 16);
-
- /* Every time after the output is computed state should be updated. */
- /* The states should be updated as: */
- /* Xn2 = Xn1 */
- /* Xn1 = Xn */
- /* Yn2 = Yn1 */
- /* Yn1 = acc */
- /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
- /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- state_in = __PKHBT(in, state_in, 16);
- state_out = __PKHBT(out, state_out, 16);
-
-#else
-
- state_in = __PKHBT(state_in >> 16, (in >> 16), 16);
- state_out = __PKHBT(state_out >> 16, (out), 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* out = b0 * x[n] + 0 * 0 */
- out = __SMUADX(b0, in);
- /* acc += b1 * x[n-1] + b2 * x[n-2] + out */
- acc = __SMLALD(b1, state_in, out);
- /* acc += a1 * y[n-1] + a2 * y[n-2] */
- acc = __SMLALD(a1, state_out, acc);
-
- /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
- /* Calc lower part of acc */
- acc_l = acc & 0xffffffff;
-
- /* Calc upper part of acc */
- acc_h = (acc >> 32) & 0xffffffff;
-
- /* Apply shift for lower part of acc and upper part of acc */
- out = (uint32_t) acc_l >> lShift | acc_h << uShift;
-
- out = __SSAT(out, 16);
-
- /* Store the output in the destination buffer. */
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- *__SIMD32(pOut)++ = __PKHBT(state_out, out, 16);
-
-#else
-
- *__SIMD32(pOut)++ = __PKHBT(out, state_out >> 16, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Every time after the output is computed state should be updated. */
- /* The states should be updated as: */
- /* Xn2 = Xn1 */
- /* Xn1 = Xn */
- /* Yn2 = Yn1 */
- /* Yn1 = acc */
- /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
- /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
-#ifndef ARM_MATH_BIG_ENDIAN
-
- state_in = __PKHBT(in >> 16, state_in, 16);
- state_out = __PKHBT(out, state_out, 16);
-
-#else
-
- state_in = __PKHBT(state_in >> 16, in, 16);
- state_out = __PKHBT(state_out >> 16, out, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
-
- /* Decrement the loop counter */
- sample--;
-
- }
-
- /* If the blockSize is not a multiple of 2, compute any remaining output samples here.
- ** No loop unrolling is used. */
-
- if((blockSize & 0x1u) != 0u)
- {
- /* Read the input */
- in = *pIn++;
-
- /* out = b0 * x[n] + 0 * 0 */
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- out = __SMUAD(b0, in);
-
-#else
-
- out = __SMUADX(b0, in);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* acc = b1 * x[n-1] + b2 * x[n-2] + out */
- acc = __SMLALD(b1, state_in, out);
- /* acc += a1 * y[n-1] + a2 * y[n-2] */
- acc = __SMLALD(a1, state_out, acc);
-
- /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
- /* Calc lower part of acc */
- acc_l = acc & 0xffffffff;
-
- /* Calc upper part of acc */
- acc_h = (acc >> 32) & 0xffffffff;
-
- /* Apply shift for lower part of acc and upper part of acc */
- out = (uint32_t) acc_l >> lShift | acc_h << uShift;
-
- out = __SSAT(out, 16);
-
- /* Store the output in the destination buffer. */
- *pOut++ = (q15_t) out;
-
- /* Every time after the output is computed state should be updated. */
- /* The states should be updated as: */
- /* Xn2 = Xn1 */
- /* Xn1 = Xn */
- /* Yn2 = Yn1 */
- /* Yn1 = acc */
- /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
- /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- state_in = __PKHBT(in, state_in, 16);
- state_out = __PKHBT(out, state_out, 16);
-
-#else
-
- state_in = __PKHBT(state_in >> 16, in, 16);
- state_out = __PKHBT(state_out >> 16, out, 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- }
-
- /* The first stage goes from the input wire to the output wire. */
- /* Subsequent numStages occur in-place in the output wire */
- pIn = pDst;
-
- /* Reset the output pointer */
- pOut = pDst;
-
- /* Store the updated state variables back into the state array */
- *__SIMD32(pState)++ = state_in;
- *__SIMD32(pState)++ = state_out;
-
-
- /* Decrement the loop counter */
- stage--;
-
- } while(stage > 0u);
-
-#else
-
- /* Run the below code for Cortex-M0 */
-
- q15_t *pIn = pSrc; /* Source pointer */
- q15_t *pOut = pDst; /* Destination pointer */
- q15_t b0, b1, b2, a1, a2; /* Filter coefficients */
- q15_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
- q15_t Xn; /* temporary input */
- q63_t acc; /* Accumulator */
- int32_t shift = (15 - (int32_t) S->postShift); /* Post shift */
- q15_t *pState = S->pState; /* State pointer */
- q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */
-
- do
- {
- /* Reading the coefficients */
- b0 = *pCoeffs++;
- b1 = *pCoeffs++;
- b2 = *pCoeffs++;
- a1 = *pCoeffs++;
- a2 = *pCoeffs++;
-
- /* Reading the state values */
- Xn1 = pState[0];
- Xn2 = pState[1];
- Yn1 = pState[2];
- Yn2 = pState[3];
-
- /* The variables acc holds the output value that is computed:
- * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
- */
-
- sample = blockSize;
-
- while(sample > 0u)
- {
- /* Read the input */
- Xn = *pIn++;
-
- /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
- /* acc = b0 * x[n] */
- acc = (q31_t) b0 *Xn;
-
- /* acc += b1 * x[n-1] */
- acc += (q31_t) b1 *Xn1;
- /* acc += b[2] * x[n-2] */
- acc += (q31_t) b2 *Xn2;
- /* acc += a1 * y[n-1] */
- acc += (q31_t) a1 *Yn1;
- /* acc += a2 * y[n-2] */
- acc += (q31_t) a2 *Yn2;
-
- /* The result is converted to 1.31 */
- acc = __SSAT((acc >> shift), 16);
-
- /* Every time after the output is computed state should be updated. */
- /* The states should be updated as: */
- /* Xn2 = Xn1 */
- /* Xn1 = Xn */
- /* Yn2 = Yn1 */
- /* Yn1 = acc */
- Xn2 = Xn1;
- Xn1 = Xn;
- Yn2 = Yn1;
- Yn1 = (q15_t) acc;
-
- /* Store the output in the destination buffer. */
- *pOut++ = (q15_t) acc;
-
- /* decrement the loop counter */
- sample--;
- }
-
- /* The first stage goes from the input buffer to the output buffer. */
- /* Subsequent stages occur in-place in the output buffer */
- pIn = pDst;
-
- /* Reset to destination pointer */
- pOut = pDst;
-
- /* Store the updated state variables back into the pState array */
- *pState++ = Xn1;
- *pState++ = Xn2;
- *pState++ = Yn1;
- *pState++ = Yn2;
-
- } while(--stage);
-
-#endif /* #ifndef ARM_MATH_CM0 */
-
-}
-
-
-/**
- * @} end of BiquadCascadeDF1 group
- */