aboutsummaryrefslogtreecommitdiff
path: root/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_f32.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_f32.c')
-rw-r--r--src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_f32.c554
1 files changed, 0 insertions, 554 deletions
diff --git a/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_f32.c b/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_f32.c
deleted file mode 100644
index 7f951f86b..000000000
--- a/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_f32.c
+++ /dev/null
@@ -1,554 +0,0 @@
-/* ----------------------------------------------------------------------
-* Copyright (C) 2010 ARM Limited. All rights reserved.
-*
-* $Date: 15. February 2012
-* $Revision: V1.1.0
-*
-* Project: CMSIS DSP Library
-* Title: arm_fir_f32.c
-*
-* Description: Floating-point FIR filter processing function.
-*
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*
-* Version 1.1.0 2012/02/15
-* Updated with more optimizations, bug fixes and minor API changes.
-*
-* Version 1.0.2 2010/11/11
-* Documentation updated.
-*
-* Version 1.0.1 2010/10/05
-* Production release and review comments incorporated.
-*
-* Version 1.0.0 2010/09/20
-* Production release and review comments incorporated.
-*
-* Version 0.0.5 2010/04/26
-* incorporated review comments and updated with latest CMSIS layer
-*
-* Version 0.0.3 2010/03/10
-* Initial version
-* -------------------------------------------------------------------- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @defgroup FIR Finite Impulse Response (FIR) Filters
- *
- * This set of functions implements Finite Impulse Response (FIR) filters
- * for Q7, Q15, Q31, and floating-point data types. Fast versions of Q15 and Q31 are also provided.
- * The functions operate on blocks of input and output data and each call to the function processes
- * <code>blockSize</code> samples through the filter. <code>pSrc</code> and
- * <code>pDst</code> points to input and output arrays containing <code>blockSize</code> values.
- *
- * \par Algorithm:
- * The FIR filter algorithm is based upon a sequence of multiply-accumulate (MAC) operations.
- * Each filter coefficient <code>b[n]</code> is multiplied by a state variable which equals a previous input sample <code>x[n]</code>.
- * <pre>
- * y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1]
- * </pre>
- * \par
- * \image html FIR.gif "Finite Impulse Response filter"
- * \par
- * <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.
- * Coefficients are stored in time reversed order.
- * \par
- * <pre>
- * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
- * </pre>
- * \par
- * <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>.
- * Samples in the state buffer are stored in the following order.
- * \par
- * <pre>
- * {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]}
- * </pre>
- * \par
- * Note that the length of the state buffer exceeds the length of the coefficient array by <code>blockSize-1</code>.
- * The increased state buffer length allows circular addressing, which is traditionally used in the FIR filters,
- * to be avoided and yields a significant speed improvement.
- * The state variables are updated after each block of data is processed; the coefficients are untouched.
- * \par Instance Structure
- * The coefficients and state variables for a filter are stored together in an instance data structure.
- * A separate instance structure must be defined for each filter.
- * Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
- * There are separate instance structure declarations for each of the 4 supported data types.
- *
- * \par Initialization Functions
- * There is also an associated initialization function for each data type.
- * The initialization function performs the following operations:
- * - Sets the values of the internal structure fields.
- * - Zeros out the values in the state buffer.
- *
- * \par
- * Use of the initialization function is optional.
- * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
- * To place an instance structure into a const data section, the instance structure must be manually initialized.
- * Set the values in the state buffer to zeros before static initialization.
- * The code below statically initializes each of the 4 different data type filter instance structures
- * <pre>
- *arm_fir_instance_f32 S = {numTaps, pState, pCoeffs};
- *arm_fir_instance_q31 S = {numTaps, pState, pCoeffs};
- *arm_fir_instance_q15 S = {numTaps, pState, pCoeffs};
- *arm_fir_instance_q7 S = {numTaps, pState, pCoeffs};
- * </pre>
- *
- * where <code>numTaps</code> is the number of filter coefficients in the filter; <code>pState</code> is the address of the state buffer;
- * <code>pCoeffs</code> is the address of the coefficient buffer.
- *
- * \par Fixed-Point Behavior
- * Care must be taken when using the fixed-point versions of the FIR filter functions.
- * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
- * Refer to the function specific documentation below for usage guidelines.
- */
-
-/**
- * @addtogroup FIR
- * @{
- */
-
-/**
- *
- * @param[in] *S points to an instance of the floating-point FIR filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process per call.
- * @return none.
- *
- */
-
-#ifndef ARM_MATH_CM0
-
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
-void arm_fir_f32(
- const arm_fir_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize)
-{
- float32_t *pState = S->pState; /* State pointer */
- float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- float32_t *pStateCurnt; /* Points to the current sample of the state */
- float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
- float32_t acc0, acc1, acc2, acc3, acc4, acc5, acc6, acc7; /* Accumulators */
- float32_t x0, x1, x2, x3, x4, x5, x6, x7, c0; /* Temporary variables to hold state and coefficient values */
- uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
- uint32_t i, tapCnt, blkCnt; /* Loop counters */
-
- /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
- /* pStateCurnt points to the location where the new input data should be written */
- pStateCurnt = &(S->pState[(numTaps - 1u)]);
-
- /* Apply loop unrolling and compute 4 output values simultaneously.
- * The variables acc0 ... acc3 hold output values that are being computed:
- *
- * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
- * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
- * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
- * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
- */
- blkCnt = blockSize >> 3;
-
- /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
- ** a second loop below computes the remaining 1 to 3 samples. */
- while(blkCnt > 0u)
- {
- /* Copy four new input samples into the state buffer */
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
-
- /* Set all accumulators to zero */
- acc0 = 0.0f;
- acc1 = 0.0f;
- acc2 = 0.0f;
- acc3 = 0.0f;
- acc4 = 0.0f;
- acc5 = 0.0f;
- acc6 = 0.0f;
- acc7 = 0.0f;
-
- /* Initialize state pointer */
- px = pState;
-
- /* Initialize coeff pointer */
- pb = (pCoeffs);
-
- /* Read the first three samples from the state buffer: x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
- x0 = *px++;
- x1 = *px++;
- x2 = *px++;
- x3 = *px++;
- x4 = *px++;
- x5 = *px++;
- x6 = *px++;
-
- /* Loop unrolling. Process 4 taps at a time. */
- tapCnt = numTaps >> 3u;
-
- /* Loop over the number of taps. Unroll by a factor of 4.
- ** Repeat until we've computed numTaps-4 coefficients. */
- while(tapCnt > 0u)
- {
- /* Read the b[numTaps-1] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-3] sample */
- x7 = *(px++);
-
- /* acc0 += b[numTaps-1] * x[n-numTaps] */
- acc0 += x0 * c0;
-
- /* acc1 += b[numTaps-1] * x[n-numTaps-1] */
- acc1 += x1 * c0;
-
- /* acc2 += b[numTaps-1] * x[n-numTaps-2] */
- acc2 += x2 * c0;
-
- /* acc3 += b[numTaps-1] * x[n-numTaps-3] */
- acc3 += x3 * c0;
-
- /* acc4 += b[numTaps-1] * x[n-numTaps-4] */
- acc4 += x4 * c0;
-
- /* acc1 += b[numTaps-1] * x[n-numTaps-5] */
- acc5 += x5 * c0;
-
- /* acc2 += b[numTaps-1] * x[n-numTaps-6] */
- acc6 += x6 * c0;
-
- /* acc3 += b[numTaps-1] * x[n-numTaps-7] */
- acc7 += x7 * c0;
-
- /* Read the b[numTaps-2] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-4] sample */
- x0 = *(px++);
-
- /* Perform the multiply-accumulate */
- acc0 += x1 * c0;
- acc1 += x2 * c0;
- acc2 += x3 * c0;
- acc3 += x4 * c0;
- acc4 += x5 * c0;
- acc5 += x6 * c0;
- acc6 += x7 * c0;
- acc7 += x0 * c0;
-
- /* Read the b[numTaps-3] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-5] sample */
- x1 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += x2 * c0;
- acc1 += x3 * c0;
- acc2 += x4 * c0;
- acc3 += x5 * c0;
- acc4 += x6 * c0;
- acc5 += x7 * c0;
- acc6 += x0 * c0;
- acc7 += x1 * c0;
-
- /* Read the b[numTaps-4] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-6] sample */
- x2 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += x3 * c0;
- acc1 += x4 * c0;
- acc2 += x5 * c0;
- acc3 += x6 * c0;
- acc4 += x7 * c0;
- acc5 += x0 * c0;
- acc6 += x1 * c0;
- acc7 += x2 * c0;
-
- /* Read the b[numTaps-4] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-6] sample */
- x3 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += x4 * c0;
- acc1 += x5 * c0;
- acc2 += x6 * c0;
- acc3 += x7 * c0;
- acc4 += x0 * c0;
- acc5 += x1 * c0;
- acc6 += x2 * c0;
- acc7 += x3 * c0;
-
- /* Read the b[numTaps-4] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-6] sample */
- x4 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += x5 * c0;
- acc1 += x6 * c0;
- acc2 += x7 * c0;
- acc3 += x0 * c0;
- acc4 += x1 * c0;
- acc5 += x2 * c0;
- acc6 += x3 * c0;
- acc7 += x4 * c0;
-
- /* Read the b[numTaps-4] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-6] sample */
- x5 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += x6 * c0;
- acc1 += x7 * c0;
- acc2 += x0 * c0;
- acc3 += x1 * c0;
- acc4 += x2 * c0;
- acc5 += x3 * c0;
- acc6 += x4 * c0;
- acc7 += x5 * c0;
-
- /* Read the b[numTaps-4] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-6] sample */
- x6 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += x7 * c0;
- acc1 += x0 * c0;
- acc2 += x1 * c0;
- acc3 += x2 * c0;
- acc4 += x3 * c0;
- acc5 += x4 * c0;
- acc6 += x5 * c0;
- acc7 += x6 * c0;
-
- tapCnt--;
- }
-
- /* If the filter length is not a multiple of 4, compute the remaining filter taps */
- tapCnt = numTaps % 0x8u;
-
- while(tapCnt > 0u)
- {
- /* Read coefficients */
- c0 = *(pb++);
-
- /* Fetch 1 state variable */
- x7 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += x0 * c0;
- acc1 += x1 * c0;
- acc2 += x2 * c0;
- acc3 += x3 * c0;
- acc4 += x4 * c0;
- acc5 += x5 * c0;
- acc6 += x6 * c0;
- acc7 += x7 * c0;
-
- /* Reuse the present sample states for next sample */
- x0 = x1;
- x1 = x2;
- x2 = x3;
- x3 = x4;
- x4 = x5;
- x5 = x6;
- x6 = x7;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* Advance the state pointer by 4 to process the next group of 4 samples */
- pState = pState + 8;
-
- /* The results in the 4 accumulators, store in the destination buffer. */
- *pDst++ = acc0;
- *pDst++ = acc1;
- *pDst++ = acc2;
- *pDst++ = acc3;
- *pDst++ = acc4;
- *pDst++ = acc5;
- *pDst++ = acc6;
- *pDst++ = acc7;
-
- blkCnt--;
- }
-
- /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = blockSize % 0x8u;
-
- while(blkCnt > 0u)
- {
- /* Copy one sample at a time into state buffer */
- *pStateCurnt++ = *pSrc++;
-
- /* Set the accumulator to zero */
- acc0 = 0.0f;
-
- /* Initialize state pointer */
- px = pState;
-
- /* Initialize Coefficient pointer */
- pb = (pCoeffs);
-
- i = numTaps;
-
- /* Perform the multiply-accumulates */
- do
- {
- acc0 += *px++ * *pb++;
- i--;
-
- } while(i > 0u);
-
- /* The result is store in the destination buffer. */
- *pDst++ = acc0;
-
- /* Advance state pointer by 1 for the next sample */
- pState = pState + 1;
-
- blkCnt--;
- }
-
- /* Processing is complete.
- ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
- ** This prepares the state buffer for the next function call. */
-
- /* Points to the start of the state buffer */
- pStateCurnt = S->pState;
-
- tapCnt = (numTaps - 1u) >> 2u;
-
- /* copy data */
- while(tapCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* Calculate remaining number of copies */
- tapCnt = (numTaps - 1u) % 0x4u;
-
- /* Copy the remaining q31_t data */
- while(tapCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-}
-
-#else
-
-void arm_fir_f32(
- const arm_fir_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize)
-{
- float32_t *pState = S->pState; /* State pointer */
- float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- float32_t *pStateCurnt; /* Points to the current sample of the state */
- float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
- uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
- uint32_t i, tapCnt, blkCnt; /* Loop counters */
-
- /* Run the below code for Cortex-M0 */
-
- float32_t acc;
-
- /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
- /* pStateCurnt points to the location where the new input data should be written */
- pStateCurnt = &(S->pState[(numTaps - 1u)]);
-
- /* Initialize blkCnt with blockSize */
- blkCnt = blockSize;
-
- while(blkCnt > 0u)
- {
- /* Copy one sample at a time into state buffer */
- *pStateCurnt++ = *pSrc++;
-
- /* Set the accumulator to zero */
- acc = 0.0f;
-
- /* Initialize state pointer */
- px = pState;
-
- /* Initialize Coefficient pointer */
- pb = pCoeffs;
-
- i = numTaps;
-
- /* Perform the multiply-accumulates */
- do
- {
- /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
- acc += *px++ * *pb++;
- i--;
-
- } while(i > 0u);
-
- /* The result is store in the destination buffer. */
- *pDst++ = acc;
-
- /* Advance state pointer by 1 for the next sample */
- pState = pState + 1;
-
- blkCnt--;
- }
-
- /* Processing is complete.
- ** Now copy the last numTaps - 1 samples to the starting of the state buffer.
- ** This prepares the state buffer for the next function call. */
-
- /* Points to the start of the state buffer */
- pStateCurnt = S->pState;
-
- /* Copy numTaps number of values */
- tapCnt = numTaps - 1u;
-
- /* Copy data */
- while(tapCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
-}
-
-#endif /* #ifndef ARM_MATH_CM0 */
-
-/**
- * @} end of FIR group
- */