aboutsummaryrefslogtreecommitdiff
path: root/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_interpolate_q15.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_interpolate_q15.c')
-rw-r--r--src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_interpolate_q15.c503
1 files changed, 0 insertions, 503 deletions
diff --git a/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_interpolate_q15.c b/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_interpolate_q15.c
deleted file mode 100644
index d17d8d803..000000000
--- a/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_interpolate_q15.c
+++ /dev/null
@@ -1,503 +0,0 @@
-/*-----------------------------------------------------------------------------
-* Copyright (C) 2010 ARM Limited. All rights reserved.
-*
-* $Date: 15. February 2012
-* $Revision: V1.1.0
-*
-* Project: CMSIS DSP Library
-* Title: arm_fir_interpolate_q15.c
-*
-* Description: Q15 FIR interpolation.
-*
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*
-* Version 1.1.0 2012/02/15
-* Updated with more optimizations, bug fixes and minor API changes.
-*
-* Version 1.0.10 2011/7/15
-* Big Endian support added and Merged M0 and M3/M4 Source code.
-*
-* Version 1.0.3 2010/11/29
-* Re-organized the CMSIS folders and updated documentation.
-*
-* Version 1.0.2 2010/11/11
-* Documentation updated.
-*
-* Version 1.0.1 2010/10/05
-* Production release and review comments incorporated.
-*
-* Version 1.0.0 2010/09/20
-* Production release and review comments incorporated
-*
-* Version 0.0.7 2010/06/10
-* Misra-C changes done
-* ---------------------------------------------------------------------------*/
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @addtogroup FIR_Interpolate
- * @{
- */
-
-/**
- * @brief Processing function for the Q15 FIR interpolator.
- * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of input samples to process per call.
- * @return none.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using a 64-bit internal accumulator.
- * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
- * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
- * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
- * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
- * Lastly, the accumulator is saturated to yield a result in 1.15 format.
- */
-
-#ifndef ARM_MATH_CM0
-
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
-void arm_fir_interpolate_q15(
- const arm_fir_interpolate_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize)
-{
- q15_t *pState = S->pState; /* State pointer */
- q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- q15_t *pStateCurnt; /* Points to the current sample of the state */
- q15_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */
- q63_t sum0; /* Accumulators */
- q15_t x0, c0; /* Temporary variables to hold state and coefficient values */
- uint32_t i, blkCnt, j, tapCnt; /* Loop counters */
- uint16_t phaseLen = S->phaseLength; /* Length of each polyphase filter component */
- uint32_t blkCntN2;
- q63_t acc0, acc1;
- q15_t x1;
-
- /* S->pState buffer contains previous frame (phaseLen - 1) samples */
- /* pStateCurnt points to the location where the new input data should be written */
- pStateCurnt = S->pState + ((q31_t) phaseLen - 1);
-
- /* Initialise blkCnt */
- blkCnt = blockSize / 2;
- blkCntN2 = blockSize - (2 * blkCnt);
-
- /* Samples loop unrolled by 2 */
- while(blkCnt > 0u)
- {
- /* Copy new input sample into the state buffer */
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
-
- /* Address modifier index of coefficient buffer */
- j = 1u;
-
- /* Loop over the Interpolation factor. */
- i = (S->L);
-
- while(i > 0u)
- {
- /* Set accumulator to zero */
- acc0 = 0;
- acc1 = 0;
-
- /* Initialize state pointer */
- ptr1 = pState;
-
- /* Initialize coefficient pointer */
- ptr2 = pCoeffs + (S->L - j);
-
- /* Loop over the polyPhase length. Unroll by a factor of 4.
- ** Repeat until we've computed numTaps-(4*S->L) coefficients. */
- tapCnt = phaseLen >> 2u;
-
- x0 = *(ptr1++);
-
- while(tapCnt > 0u)
- {
-
- /* Read the input sample */
- x1 = *(ptr1++);
-
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Perform the multiply-accumulate */
- acc0 += (q63_t) x0 *c0;
- acc1 += (q63_t) x1 *c0;
-
-
- /* Read the coefficient */
- c0 = *(ptr2 + S->L);
-
- /* Read the input sample */
- x0 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- acc0 += (q63_t) x1 *c0;
- acc1 += (q63_t) x0 *c0;
-
-
- /* Read the coefficient */
- c0 = *(ptr2 + S->L * 2);
-
- /* Read the input sample */
- x1 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- acc0 += (q63_t) x0 *c0;
- acc1 += (q63_t) x1 *c0;
-
- /* Read the coefficient */
- c0 = *(ptr2 + S->L * 3);
-
- /* Read the input sample */
- x0 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- acc0 += (q63_t) x1 *c0;
- acc1 += (q63_t) x0 *c0;
-
-
- /* Upsampling is done by stuffing L-1 zeros between each sample.
- * So instead of multiplying zeros with coefficients,
- * Increment the coefficient pointer by interpolation factor times. */
- ptr2 += 4 * S->L;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */
- tapCnt = phaseLen % 0x4u;
-
- while(tapCnt > 0u)
- {
-
- /* Read the input sample */
- x1 = *(ptr1++);
-
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Perform the multiply-accumulate */
- acc0 += (q63_t) x0 *c0;
- acc1 += (q63_t) x1 *c0;
-
- /* Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* update states for next sample processing */
- x0 = x1;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* The result is in the accumulator, store in the destination buffer. */
- *pDst = (q15_t) (__SSAT((acc0 >> 15), 16));
- *(pDst + S->L) = (q15_t) (__SSAT((acc1 >> 15), 16));
-
- pDst++;
-
- /* Increment the address modifier index of coefficient buffer */
- j++;
-
- /* Decrement the loop counter */
- i--;
- }
-
- /* Advance the state pointer by 1
- * to process the next group of interpolation factor number samples */
- pState = pState + 2;
-
- pDst += S->L;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* If the blockSize is not a multiple of 2, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = blkCntN2;
-
- /* Loop over the blockSize. */
- while(blkCnt > 0u)
- {
- /* Copy new input sample into the state buffer */
- *pStateCurnt++ = *pSrc++;
-
- /* Address modifier index of coefficient buffer */
- j = 1u;
-
- /* Loop over the Interpolation factor. */
- i = S->L;
- while(i > 0u)
- {
- /* Set accumulator to zero */
- sum0 = 0;
-
- /* Initialize state pointer */
- ptr1 = pState;
-
- /* Initialize coefficient pointer */
- ptr2 = pCoeffs + (S->L - j);
-
- /* Loop over the polyPhase length. Unroll by a factor of 4.
- ** Repeat until we've computed numTaps-(4*S->L) coefficients. */
- tapCnt = phaseLen >> 2;
- while(tapCnt > 0u)
- {
-
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Upsampling is done by stuffing L-1 zeros between each sample.
- * So instead of multiplying zeros with coefficients,
- * Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* Read the input sample */
- x0 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- sum0 += (q63_t) x0 *c0;
-
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* Read the input sample */
- x0 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- sum0 += (q63_t) x0 *c0;
-
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* Read the input sample */
- x0 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- sum0 += (q63_t) x0 *c0;
-
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* Read the input sample */
- x0 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- sum0 += (q63_t) x0 *c0;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */
- tapCnt = phaseLen & 0x3u;
-
- while(tapCnt > 0u)
- {
- /* Read the coefficient */
- c0 = *(ptr2);
-
- /* Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* Read the input sample */
- x0 = *(ptr1++);
-
- /* Perform the multiply-accumulate */
- sum0 += (q63_t) x0 *c0;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* The result is in the accumulator, store in the destination buffer. */
- *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16));
-
- j++;
-
- /* Decrement the loop counter */
- i--;
- }
-
- /* Advance the state pointer by 1
- * to process the next group of interpolation factor number samples */
- pState = pState + 1;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
-
- /* Processing is complete.
- ** Now copy the last phaseLen - 1 samples to the satrt of the state buffer.
- ** This prepares the state buffer for the next function call. */
-
- /* Points to the start of the state buffer */
- pStateCurnt = S->pState;
-
- i = ((uint32_t) phaseLen - 1u) >> 2u;
-
- /* copy data */
- while(i > 0u)
- {
-#ifndef UNALIGNED_SUPPORT_DISABLE
-
- *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
- *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
-
-#else
-
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
-
-#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
-
- /* Decrement the loop counter */
- i--;
- }
-
- i = ((uint32_t) phaseLen - 1u) % 0x04u;
-
- while(i > 0u)
- {
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- i--;
- }
-}
-
-#else
-
- /* Run the below code for Cortex-M0 */
-
-void arm_fir_interpolate_q15(
- const arm_fir_interpolate_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize)
-{
- q15_t *pState = S->pState; /* State pointer */
- q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- q15_t *pStateCurnt; /* Points to the current sample of the state */
- q15_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */
- q63_t sum; /* Accumulator */
- q15_t x0, c0; /* Temporary variables to hold state and coefficient values */
- uint32_t i, blkCnt, tapCnt; /* Loop counters */
- uint16_t phaseLen = S->phaseLength; /* Length of each polyphase filter component */
-
-
- /* S->pState buffer contains previous frame (phaseLen - 1) samples */
- /* pStateCurnt points to the location where the new input data should be written */
- pStateCurnt = S->pState + (phaseLen - 1u);
-
- /* Total number of intput samples */
- blkCnt = blockSize;
-
- /* Loop over the blockSize. */
- while(blkCnt > 0u)
- {
- /* Copy new input sample into the state buffer */
- *pStateCurnt++ = *pSrc++;
-
- /* Loop over the Interpolation factor. */
- i = S->L;
-
- while(i > 0u)
- {
- /* Set accumulator to zero */
- sum = 0;
-
- /* Initialize state pointer */
- ptr1 = pState;
-
- /* Initialize coefficient pointer */
- ptr2 = pCoeffs + (i - 1u);
-
- /* Loop over the polyPhase length */
- tapCnt = (uint32_t) phaseLen;
-
- while(tapCnt > 0u)
- {
- /* Read the coefficient */
- c0 = *ptr2;
-
- /* Increment the coefficient pointer by interpolation factor times. */
- ptr2 += S->L;
-
- /* Read the input sample */
- x0 = *ptr1++;
-
- /* Perform the multiply-accumulate */
- sum += ((q31_t) x0 * c0);
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* Store the result after converting to 1.15 format in the destination buffer */
- *pDst++ = (q15_t) (__SSAT((sum >> 15), 16));
-
- /* Decrement the loop counter */
- i--;
- }
-
- /* Advance the state pointer by 1
- * to process the next group of interpolation factor number samples */
- pState = pState + 1;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* Processing is complete.
- ** Now copy the last phaseLen - 1 samples to the start of the state buffer.
- ** This prepares the state buffer for the next function call. */
-
- /* Points to the start of the state buffer */
- pStateCurnt = S->pState;
-
- i = (uint32_t) phaseLen - 1u;
-
- while(i > 0u)
- {
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- i--;
- }
-
-}
-
-#endif /* #ifndef ARM_MATH_CM0 */
-
-
- /**
- * @} end of FIR_Interpolate group
- */