aboutsummaryrefslogtreecommitdiff
path: root/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_q7.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_q7.c')
-rw-r--r--src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_q7.c388
1 files changed, 0 insertions, 388 deletions
diff --git a/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_q7.c b/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_q7.c
deleted file mode 100644
index 624afa130..000000000
--- a/src/modules/mathlib/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_fir_q7.c
+++ /dev/null
@@ -1,388 +0,0 @@
-/* ----------------------------------------------------------------------
-* Copyright (C) 2010 ARM Limited. All rights reserved.
-*
-* $Date: 15. February 2012
-* $Revision: V1.1.0
-*
-* Project: CMSIS DSP Library
-* Title: arm_fir_q7.c
-*
-* Description: Q7 FIR filter processing function.
-*
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*
-* Version 1.1.0 2012/02/15
-* Updated with more optimizations, bug fixes and minor API changes.
-*
-* Version 1.0.10 2011/7/15
-* Big Endian support added and Merged M0 and M3/M4 Source code.
-*
-* Version 1.0.3 2010/11/29
-* Re-organized the CMSIS folders and updated documentation.
-*
-* Version 1.0.2 2010/11/11
-* Documentation updated.
-*
-* Version 1.0.1 2010/10/05
-* Production release and review comments incorporated.
-*
-* Version 1.0.0 2010/09/20
-* Production release and review comments incorporated.
-*
-* Version 0.0.5 2010/04/26
-* incorporated review comments and updated with latest CMSIS layer
-*
-* Version 0.0.3 2010/03/10
-* Initial version
-* -------------------------------------------------------------------- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @addtogroup FIR
- * @{
- */
-
-/**
- * @param[in] *S points to an instance of the Q7 FIR filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process per call.
- * @return none.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using a 32-bit internal accumulator.
- * Both coefficients and state variables are represented in 1.7 format and multiplications yield a 2.14 result.
- * The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format.
- * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
- * The accumulator is converted to 18.7 format by discarding the low 7 bits.
- * Finally, the result is truncated to 1.7 format.
- */
-
-void arm_fir_q7(
- const arm_fir_instance_q7 * S,
- q7_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize)
-{
-
-#ifndef ARM_MATH_CM0
-
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
- q7_t *pState = S->pState; /* State pointer */
- q7_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- q7_t *pStateCurnt; /* Points to the current sample of the state */
- q7_t x0, x1, x2, x3; /* Temporary variables to hold state */
- q7_t c0; /* Temporary variable to hold coefficient value */
- q7_t *px; /* Temporary pointer for state */
- q7_t *pb; /* Temporary pointer for coefficient buffer */
- q31_t acc0, acc1, acc2, acc3; /* Accumulators */
- uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
- uint32_t i, tapCnt, blkCnt; /* Loop counters */
-
- /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
- /* pStateCurnt points to the location where the new input data should be written */
- pStateCurnt = &(S->pState[(numTaps - 1u)]);
-
- /* Apply loop unrolling and compute 4 output values simultaneously.
- * The variables acc0 ... acc3 hold output values that are being computed:
- *
- * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
- * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
- * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
- * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
- */
- blkCnt = blockSize >> 2;
-
- /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
- ** a second loop below computes the remaining 1 to 3 samples. */
- while(blkCnt > 0u)
- {
- /* Copy four new input samples into the state buffer */
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
-
- /* Set all accumulators to zero */
- acc0 = 0;
- acc1 = 0;
- acc2 = 0;
- acc3 = 0;
-
- /* Initialize state pointer */
- px = pState;
-
- /* Initialize coefficient pointer */
- pb = pCoeffs;
-
- /* Read the first three samples from the state buffer:
- * x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
- x0 = *(px++);
- x1 = *(px++);
- x2 = *(px++);
-
- /* Loop unrolling. Process 4 taps at a time. */
- tapCnt = numTaps >> 2;
- i = tapCnt;
-
- while(i > 0u)
- {
- /* Read the b[numTaps] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-3] sample */
- x3 = *(px++);
-
- /* acc0 += b[numTaps] * x[n-numTaps] */
- acc0 += ((q15_t) x0 * c0);
-
- /* acc1 += b[numTaps] * x[n-numTaps-1] */
- acc1 += ((q15_t) x1 * c0);
-
- /* acc2 += b[numTaps] * x[n-numTaps-2] */
- acc2 += ((q15_t) x2 * c0);
-
- /* acc3 += b[numTaps] * x[n-numTaps-3] */
- acc3 += ((q15_t) x3 * c0);
-
- /* Read the b[numTaps-1] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-4] sample */
- x0 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += ((q15_t) x1 * c0);
- acc1 += ((q15_t) x2 * c0);
- acc2 += ((q15_t) x3 * c0);
- acc3 += ((q15_t) x0 * c0);
-
- /* Read the b[numTaps-2] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-5] sample */
- x1 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += ((q15_t) x2 * c0);
- acc1 += ((q15_t) x3 * c0);
- acc2 += ((q15_t) x0 * c0);
- acc3 += ((q15_t) x1 * c0);
- /* Read the b[numTaps-3] coefficients */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-6] sample */
- x2 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += ((q15_t) x3 * c0);
- acc1 += ((q15_t) x0 * c0);
- acc2 += ((q15_t) x1 * c0);
- acc3 += ((q15_t) x2 * c0);
- i--;
- }
-
- /* If the filter length is not a multiple of 4, compute the remaining filter taps */
-
- i = numTaps - (tapCnt * 4u);
- while(i > 0u)
- {
- /* Read coefficients */
- c0 = *(pb++);
-
- /* Fetch 1 state variable */
- x3 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += ((q15_t) x0 * c0);
- acc1 += ((q15_t) x1 * c0);
- acc2 += ((q15_t) x2 * c0);
- acc3 += ((q15_t) x3 * c0);
-
- /* Reuse the present sample states for next sample */
- x0 = x1;
- x1 = x2;
- x2 = x3;
-
- /* Decrement the loop counter */
- i--;
- }
-
- /* Advance the state pointer by 4 to process the next group of 4 samples */
- pState = pState + 4;
-
- /* The results in the 4 accumulators are in 2.62 format. Convert to 1.31
- ** Then store the 4 outputs in the destination buffer. */
- acc0 = __SSAT((acc0 >> 7u), 8);
- *pDst++ = acc0;
- acc1 = __SSAT((acc1 >> 7u), 8);
- *pDst++ = acc1;
- acc2 = __SSAT((acc2 >> 7u), 8);
- *pDst++ = acc2;
- acc3 = __SSAT((acc3 >> 7u), 8);
- *pDst++ = acc3;
-
- /* Decrement the samples loop counter */
- blkCnt--;
- }
-
-
- /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = blockSize % 4u;
-
- while(blkCnt > 0u)
- {
- /* Copy one sample at a time into state buffer */
- *pStateCurnt++ = *pSrc++;
-
- /* Set the accumulator to zero */
- acc0 = 0;
-
- /* Initialize state pointer */
- px = pState;
-
- /* Initialize Coefficient pointer */
- pb = (pCoeffs);
-
- i = numTaps;
-
- /* Perform the multiply-accumulates */
- do
- {
- acc0 += (q15_t) * (px++) * (*(pb++));
- i--;
- } while(i > 0u);
-
- /* The result is in 2.14 format. Convert to 1.7
- ** Then store the output in the destination buffer. */
- *pDst++ = __SSAT((acc0 >> 7u), 8);
-
- /* Advance state pointer by 1 for the next sample */
- pState = pState + 1;
-
- /* Decrement the samples loop counter */
- blkCnt--;
- }
-
- /* Processing is complete.
- ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
- ** This prepares the state buffer for the next function call. */
-
- /* Points to the start of the state buffer */
- pStateCurnt = S->pState;
-
- tapCnt = (numTaps - 1u) >> 2u;
-
- /* copy data */
- while(tapCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* Calculate remaining number of copies */
- tapCnt = (numTaps - 1u) % 0x4u;
-
- /* Copy the remaining q31_t data */
- while(tapCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
-#else
-
-/* Run the below code for Cortex-M0 */
-
- uint32_t numTaps = S->numTaps; /* Number of taps in the filter */
- uint32_t i, blkCnt; /* Loop counters */
- q7_t *pState = S->pState; /* State pointer */
- q7_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- q7_t *px, *pb; /* Temporary pointers to state and coeff */
- q31_t acc = 0; /* Accumlator */
- q7_t *pStateCurnt; /* Points to the current sample of the state */
-
-
- /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
- /* pStateCurnt points to the location where the new input data should be written */
- pStateCurnt = S->pState + (numTaps - 1u);
-
- /* Initialize blkCnt with blockSize */
- blkCnt = blockSize;
-
- /* Perform filtering upto BlockSize - BlockSize%4 */
- while(blkCnt > 0u)
- {
- /* Copy one sample at a time into state buffer */
- *pStateCurnt++ = *pSrc++;
-
- /* Set accumulator to zero */
- acc = 0;
-
- /* Initialize state pointer of type q7 */
- px = pState;
-
- /* Initialize coeff pointer of type q7 */
- pb = pCoeffs;
-
-
- i = numTaps;
-
- while(i > 0u)
- {
- /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
- acc += (q15_t) * px++ * *pb++;
- i--;
- }
-
- /* Store the 1.7 format filter output in destination buffer */
- *pDst++ = (q7_t) __SSAT((acc >> 7), 8);
-
- /* Advance the state pointer by 1 to process the next sample */
- pState = pState + 1;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* Processing is complete.
- ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
- ** This prepares the state buffer for the next function call. */
-
-
- /* Points to the start of the state buffer */
- pStateCurnt = S->pState;
-
-
- /* Copy numTaps number of values */
- i = (numTaps - 1u);
-
- /* Copy q7_t data */
- while(i > 0u)
- {
- *pStateCurnt++ = *pState++;
- i--;
- }
-
-#endif /* #ifndef ARM_MATH_CM0 */
-
-}
-
-/**
- * @} end of FIR group
- */