aboutsummaryrefslogtreecommitdiff
path: root/src/modules/mathlib/CMSIS/DSP_Lib/Source/TransformFunctions/arm_cfft_radix2_f32.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/modules/mathlib/CMSIS/DSP_Lib/Source/TransformFunctions/arm_cfft_radix2_f32.c')
-rw-r--r--src/modules/mathlib/CMSIS/DSP_Lib/Source/TransformFunctions/arm_cfft_radix2_f32.c511
1 files changed, 0 insertions, 511 deletions
diff --git a/src/modules/mathlib/CMSIS/DSP_Lib/Source/TransformFunctions/arm_cfft_radix2_f32.c b/src/modules/mathlib/CMSIS/DSP_Lib/Source/TransformFunctions/arm_cfft_radix2_f32.c
deleted file mode 100644
index 274b69928..000000000
--- a/src/modules/mathlib/CMSIS/DSP_Lib/Source/TransformFunctions/arm_cfft_radix2_f32.c
+++ /dev/null
@@ -1,511 +0,0 @@
-/* ----------------------------------------------------------------------
-* Copyright (C) 2010 ARM Limited. All rights reserved.
-*
-* $Date: 15. February 2012
-* $Revision: V1.1.0
-*
-* Project: CMSIS DSP Library
-* Title: arm_cfft_radix2_f32.c
-*
-* Description: Radix-2 Decimation in Frequency CFFT & CIFFT Floating point processing function
-*
-*
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*
-* Version 1.1.0 2012/02/15
-* Updated with more optimizations, bug fixes and minor API changes.
-*
-* Version 1.0.3 2010/11/29
-* Initial version
-* -------------------------------------------------------------------- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupTransforms
- */
-
-/**
- * @defgroup Radix2_CFFT_CIFFT Radix-2 Complex FFT Functions
- *
- * \par
- * Complex Fast Fourier Transform(CFFT) and Complex Inverse Fast Fourier Transform(CIFFT) is an efficient algorithm to compute Discrete Fourier Transform(DFT) and Inverse Discrete Fourier Transform(IDFT).
- * Computational complexity of CFFT reduces drastically when compared to DFT.
- * \par
- * This set of functions implements CFFT/CIFFT
- * for Q15, Q31, and floating-point data types. The functions operates on in-place buffer which uses same buffer for input and output.
- * Complex input is stored in input buffer in an interleaved fashion.
- *
- * \par
- * The functions operate on blocks of input and output data and each call to the function processes
- * <code>2*fftLen</code> samples through the transform. <code>pSrc</code> points to In-place arrays containing <code>2*fftLen</code> values.
- * \par
- * The <code>pSrc</code> points to the array of in-place buffer of size <code>2*fftLen</code> and inputs and outputs are stored in an interleaved fashion as shown below.
- * <pre> {real[0], imag[0], real[1], imag[1],..} </pre>
- *
- * \par Lengths supported by the transform:
- * \par
- * Internally, the function utilize a radix-2 decimation in frequency(DIF) algorithm
- * and the size of the FFT supported are of the lengths [16, 32, 64, 128, 256, 512, 1024, 2048, 4096].
- *
- *
- * \par Algorithm:
- *
- * <b>Complex Fast Fourier Transform:</b>
- * \par
- * Input real and imaginary data:
- * <pre>
- * x(n) = xa + j * ya
- * x(n+N/2 ) = xb + j * yb
- * </pre>
- * where N is length of FFT
- * \par
- * Output real and imaginary data:
- * <pre>
- * X(2r) = xa'+ j * ya'
- * X(2r+1) = xb'+ j * yb'
- * </pre>
- * \par
- * Twiddle factors for radix-2 FFT:
- * <pre>
- * Wn = cosVal + j * (- sinVal)
- * </pre>
- *
- * \par
- * \image html CFFT_Radix2.gif "Radix-2 Decimation-in Frequency Complex Fast Fourier Transform"
- *
- * \par
- * Output from Radix-2 CFFT Results in Digit reversal order. Interchange middle two branches of every butterfly results in Bit reversed output.
- * \par
- * <b> Butterfly CFFT equations:</b>
- * <pre>
- * xa' = xa + xb
- * ya' = ya + yb
- * xb' = (xa-xb)* cosVal + (ya-yb) * sinVal
- * yb' = (ya-yb)* cosVal - (xa-xb) * sinVal
- * </pre>
- *
- *
- * <b>Complex Inverse Fast Fourier Transform:</b>
- * \par
- * CIFFT uses same twiddle factor table as CFFT with modifications in the design equation as shown below.
- *
- * \par
- * <b> Modified Butterfly CIFFT equations:</b>
- * <pre>
- * xa' = xa + xb
- * ya' = ya + yb
- * xb' = (xa-xb)* cosVal - (ya-yb) * sinVal
- * yb' = (ya-yb)* cosVal + (xa-xb) * sinVal
- * </pre>
- *
- * \par Instance Structure
- * A separate instance structure must be defined for each Instance but the twiddle factors and bit reversal tables can be reused.
- * There are separate instance structure declarations for each of the 3 supported data types.
- *
- * \par Initialization Functions
- * There is also an associated initialization function for each data type.
- * The initialization function performs the following operations:
- * - Sets the values of the internal structure fields.
- * - Initializes twiddle factor table and bit reversal table pointers
- * \par
- * Use of the initialization function is optional.
- * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
- * To place an instance structure into a const data section, the instance structure must be manually initialized.
- * Manually initialize the instance structure as follows:
- * <pre>
- *arm_cfft_radix2_instance_f32 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor, onebyfftLen};
- *arm_cfft_radix2_instance_q31 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor};
- *arm_cfft_radix2_instance_q15 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor};
- * </pre>
- * \par
- * where <code>fftLen</code> length of CFFT/CIFFT; <code>ifftFlag</code> Flag for selection of CFFT or CIFFT(Set ifftFlag to calculate CIFFT otherwise calculates CFFT);
- * <code>bitReverseFlag</code> Flag for selection of output order(Set bitReverseFlag to output in normal order otherwise output in bit reversed order);
- * <code>pTwiddle</code>points to array of twiddle coefficients; <code>pBitRevTable</code> points to the array of bit reversal table.
- * <code>twidCoefModifier</code> modifier for twiddle factor table which supports all FFT lengths with same table;
- * <code>pBitRevTable</code> modifier for bit reversal table which supports all FFT lengths with same table.
- * <code>onebyfftLen</code> value of 1/fftLen to calculate CIFFT;
- *
- * \par Fixed-Point Behavior
- * Care must be taken when using the fixed-point versions of the CFFT/CIFFT function.
- * Refer to the function specific documentation below for usage guidelines.
- */
-
-
-/**
- * @addtogroup Radix2_CFFT_CIFFT
- * @{
- */
-
-/**
- * @details
- * @brief Processing function for the floating-point Radix-2 CFFT/CIFFT.
- * @param[in] *S points to an instance of the floating-point Radix-2 CFFT/CIFFT structure.
- * @param[in, out] *pSrc points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.
- * @return none.
- */
-
-void arm_cfft_radix2_f32(
- const arm_cfft_radix2_instance_f32 * S,
- float32_t * pSrc)
-{
-
- if(S->ifftFlag == 1u)
- {
- /* Complex IFFT radix-2 */
- arm_radix2_butterfly_inverse_f32(pSrc, S->fftLen, S->pTwiddle,
- S->twidCoefModifier, S->onebyfftLen);
- }
- else
- {
- /* Complex FFT radix-2 */
- arm_radix2_butterfly_f32(pSrc, S->fftLen, S->pTwiddle,
- S->twidCoefModifier);
- }
-
- if(S->bitReverseFlag == 1u)
- {
- /* Bit Reversal */
- arm_bitreversal_f32(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable);
- }
-
-}
-
-
-/**
- * @} end of Radix2_CFFT_CIFFT group
- */
-
-
-
-/* ----------------------------------------------------------------------
-** Internal helper function used by the FFTs
-** ------------------------------------------------------------------- */
-
-/*
- * @brief Core function for the floating-point CFFT butterfly process.
- * @param[in, out] *pSrc points to the in-place buffer of floating-point data type.
- * @param[in] fftLen length of the FFT.
- * @param[in] *pCoef points to the twiddle coefficient buffer.
- * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
- * @return none.
- */
-
-void arm_radix2_butterfly_f32(
- float32_t * pSrc,
- uint32_t fftLen,
- float32_t * pCoef,
- uint16_t twidCoefModifier)
-{
-
- int i, j, k, l;
- int n1, n2, ia;
- float32_t xt, yt, cosVal, sinVal;
-
-#ifndef ARM_MATH_CM0
-
- /* Initializations for the first stage */
- n2 = fftLen;
-
- n1 = n2;
- n2 = n2 >> 1;
- ia = 0;
-
- // loop for groups
- for (i = 0; i < n2; i++)
- {
- cosVal = pCoef[ia * 2];
- sinVal = pCoef[(ia * 2) + 1];
-
- /* Twiddle coefficients index modifier */
- ia = ia + twidCoefModifier;
-
- /* index calculation for the input as, */
- /* pSrc[i + 0], pSrc[i + fftLen/1] */
- l = i + n2;
-
- /* Butterfly implementation */
- xt = pSrc[2 * i] - pSrc[2 * l];
- pSrc[2 * i] = pSrc[2 * i] + pSrc[2 * l];
-
- yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
- pSrc[2 * i + 1] = pSrc[2 * l + 1] + pSrc[2 * i + 1];
-
- pSrc[2u * l] = xt * cosVal + yt * sinVal;
-
- pSrc[2u * l + 1u] = yt * cosVal - xt * sinVal;
-
- } // groups loop end
-
- twidCoefModifier = twidCoefModifier << 1u;
-
- // loop for stage
- for (k = fftLen / 2; k > 2; k = k >> 1)
- {
- n1 = n2;
- n2 = n2 >> 1;
- ia = 0;
-
- // loop for groups
- for (j = 0; j < n2; j++)
- {
- cosVal = pCoef[ia * 2];
- sinVal = pCoef[(ia * 2) + 1];
- ia = ia + twidCoefModifier;
-
- // loop for butterfly
- for (i = j; i < fftLen; i += n1)
- {
- l = i + n2;
- xt = pSrc[2 * i] - pSrc[2 * l];
- pSrc[2 * i] = pSrc[2 * i] + pSrc[2 * l];
-
- yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
- pSrc[2 * i + 1] = pSrc[2 * l + 1] + pSrc[2 * i + 1];
-
- pSrc[2u * l] = xt * cosVal + yt * sinVal;
-
- pSrc[2u * l + 1u] = yt * cosVal - xt * sinVal;
-
- } // butterfly loop end
-
- } // groups loop end
-
- twidCoefModifier = twidCoefModifier << 1u;
- } // stages loop end
-
- n1 = n2;
- n2 = n2 >> 1;
- ia = 0;
-
- cosVal = pCoef[ia * 2];
- sinVal = pCoef[(ia * 2) + 1];
- ia = ia + twidCoefModifier;
-
- // loop for butterfly
- for (i = 0; i < fftLen; i += n1)
- {
- l = i + n2;
- xt = pSrc[2 * i] - pSrc[2 * l];
- pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);
-
- yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
- pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);
-
- pSrc[2u * l] = xt;
-
- pSrc[2u * l + 1u] = yt;
-
- } // groups loop end
-
-#else
-
- //N = fftLen;
- n2 = fftLen;
-
- // loop for stage
- for (k = fftLen; k > 1; k = k >> 1)
- {
- n1 = n2;
- n2 = n2 >> 1;
- ia = 0;
-
- // loop for groups
- for (j = 0; j < n2; j++)
- {
- cosVal = pCoef[ia * 2];
- sinVal = pCoef[(ia * 2) + 1];
- ia = ia + twidCoefModifier;
-
- // loop for butterfly
- for (i = j; i < fftLen; i += n1)
- {
- l = i + n2;
- xt = pSrc[2 * i] - pSrc[2 * l];
- pSrc[2 * i] = pSrc[2 * i] + pSrc[2 * l];
-
- yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
- pSrc[2 * i + 1] = pSrc[2 * l + 1] + pSrc[2 * i + 1];
-
- pSrc[2 * l] = (cosVal * xt + sinVal * yt); // >> 15;
- pSrc[2 * l + 1] = (cosVal * yt - sinVal * xt); // >> 15;
-
- }
- }
- twidCoefModifier = twidCoefModifier << 1u;
- }
-
-#endif // #ifndef ARM_MATH_CM0
-
-}
-
-
-void arm_radix2_butterfly_inverse_f32(
- float32_t * pSrc,
- uint32_t fftLen,
- float32_t * pCoef,
- uint16_t twidCoefModifier,
- float32_t onebyfftLen)
-{
-
- int i, j, k, l;
- int n1, n2, ia;
- float32_t xt, yt, cosVal, sinVal;
-
-#ifndef ARM_MATH_CM0
-
- //N = fftLen;
- n2 = fftLen;
-
- n1 = n2;
- n2 = n2 >> 1;
- ia = 0;
-
- // loop for groups
- for (i = 0; i < n2; i++)
- {
- cosVal = pCoef[ia * 2];
- sinVal = pCoef[(ia * 2) + 1];
- ia = ia + twidCoefModifier;
-
- l = i + n2;
- xt = pSrc[2 * i] - pSrc[2 * l];
- pSrc[2 * i] = pSrc[2 * i] + pSrc[2 * l];
-
- yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
- pSrc[2 * i + 1] = pSrc[2 * l + 1] + pSrc[2 * i + 1];
-
- pSrc[2u * l] = xt * cosVal - yt * sinVal;
-
- pSrc[2u * l + 1u] = yt * cosVal + xt * sinVal;
-
- } // groups loop end
-
- twidCoefModifier = twidCoefModifier << 1u;
-
- // loop for stage
- for (k = fftLen / 2; k > 2; k = k >> 1)
- {
- n1 = n2;
- n2 = n2 >> 1;
- ia = 0;
-
- // loop for groups
- for (j = 0; j < n2; j++)
- {
- cosVal = pCoef[ia * 2];
- sinVal = pCoef[(ia * 2) + 1];
- ia = ia + twidCoefModifier;
-
- // loop for butterfly
- for (i = j; i < fftLen; i += n1)
- {
- l = i + n2;
- xt = pSrc[2 * i] - pSrc[2 * l];
- pSrc[2 * i] = pSrc[2 * i] + pSrc[2 * l];
-
- yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
- pSrc[2 * i + 1] = pSrc[2 * l + 1] + pSrc[2 * i + 1];
-
- pSrc[2u * l] = xt * cosVal - yt * sinVal;
-
- pSrc[2u * l + 1u] = yt * cosVal + xt * sinVal;
-
- } // butterfly loop end
-
- } // groups loop end
-
- twidCoefModifier = twidCoefModifier << 1u;
- } // stages loop end
-
- n1 = n2;
- n2 = n2 >> 1;
- ia = 0;
-
- cosVal = pCoef[ia * 2];
- sinVal = pCoef[(ia * 2) + 1];
- ia = ia + twidCoefModifier;
-
- // loop for butterfly
- for (i = 0; i < fftLen; i += n1)
- {
- l = i + n2;
- xt = pSrc[2 * i] - pSrc[2 * l];
- pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) * onebyfftLen;
-
- yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
- pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) * onebyfftLen;
-
- pSrc[2u * l] = xt * onebyfftLen;
-
- pSrc[2u * l + 1u] = yt * onebyfftLen;
-
- } // butterfly loop end
-
-#else
-
- //N = fftLen;
- n2 = fftLen;
-
- // loop for stage
- for (k = fftLen; k > 2; k = k >> 1)
- {
- n1 = n2;
- n2 = n2 >> 1;
- ia = 0;
-
- // loop for groups
- for (j = 0; j < n2; j++)
- {
- cosVal = pCoef[ia * 2];
- sinVal = pCoef[(ia * 2) + 1];
- ia = ia + twidCoefModifier;
-
- // loop for butterfly
- for (i = j; i < fftLen; i += n1)
- {
- l = i + n2;
- xt = pSrc[2 * i] - pSrc[2 * l];
- pSrc[2 * i] = pSrc[2 * i] + pSrc[2 * l];
-
- yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
- pSrc[2 * i + 1] = pSrc[2 * l + 1] + pSrc[2 * i + 1];
-
- pSrc[2u * l] = xt * cosVal - yt * sinVal;
-
- pSrc[2u * l + 1u] = yt * cosVal + xt * sinVal;
-
- } // butterfly loop end
-
- } // groups loop end
-
- twidCoefModifier = twidCoefModifier << 1u;
- } // stages loop end
-
- n1 = n2;
- n2 = n2 >> 1;
- ia = 0;
-
- cosVal = pCoef[ia * 2];
- sinVal = pCoef[(ia * 2) + 1];
- ia = ia + twidCoefModifier;
-
- // loop for butterfly
- for (i = 0; i < fftLen; i += n1)
- {
- l = i + n2;
- xt = pSrc[2 * i] - pSrc[2 * l];
- pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) * onebyfftLen;
-
- yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
- pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) * onebyfftLen;
-
- pSrc[2u * l] = xt * onebyfftLen;
-
- pSrc[2u * l + 1u] = yt * onebyfftLen;
-
- } // butterfly loop end
-
-#endif // #ifndef ARM_MATH_CM0
-
-}