aboutsummaryrefslogtreecommitdiff
path: root/src/modules/position_estimator_inav/position_estimator_inav_main.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/modules/position_estimator_inav/position_estimator_inav_main.c')
-rw-r--r--src/modules/position_estimator_inav/position_estimator_inav_main.c607
1 files changed, 411 insertions, 196 deletions
diff --git a/src/modules/position_estimator_inav/position_estimator_inav_main.c b/src/modules/position_estimator_inav/position_estimator_inav_main.c
index 1270ff5cf..0863ed0f2 100644
--- a/src/modules/position_estimator_inav/position_estimator_inav_main.c
+++ b/src/modules/position_estimator_inav/position_estimator_inav_main.c
@@ -71,15 +71,21 @@
#include "position_estimator_inav_params.h"
#include "inertial_filter.h"
+#define MIN_VALID_W 0.00001f
+
static bool thread_should_exit = false; /**< Deamon exit flag */
static bool thread_running = false; /**< Deamon status flag */
static int position_estimator_inav_task; /**< Handle of deamon task / thread */
static bool verbose_mode = false;
-static const hrt_abstime gps_timeout = 1000000; // GPS timeout = 1s
-static const hrt_abstime flow_timeout = 1000000; // optical flow timeout = 1s
+static const hrt_abstime gps_topic_timeout = 1000000; // GPS topic timeout = 1s
+static const hrt_abstime flow_topic_timeout = 1000000; // optical flow topic timeout = 1s
+static const hrt_abstime sonar_timeout = 150000; // sonar timeout = 150ms
+static const hrt_abstime sonar_valid_timeout = 1000000; // estimate sonar distance during this time after sonar loss
+static const hrt_abstime xy_src_timeout = 2000000; // estimate position during this time after position sources loss
static const uint32_t updates_counter_len = 1000000;
-static const uint32_t pub_interval = 4000; // limit publish rate to 250 Hz
+static const uint32_t pub_interval = 10000; // limit publish rate to 100 Hz
+static const float max_flow = 1.0f; // max flow value that can be used, rad/s
__EXPORT int position_estimator_inav_main(int argc, char *argv[]);
@@ -95,8 +101,7 @@ static void usage(const char *reason)
if (reason)
fprintf(stderr, "%s\n", reason);
- fprintf(stderr,
- "usage: position_estimator_inav {start|stop|status} [-v]\n\n");
+ fprintf(stderr, "usage: position_estimator_inav {start|stop|status} [-v]\n\n");
exit(1);
}
@@ -115,7 +120,7 @@ int position_estimator_inav_main(int argc, char *argv[])
if (!strcmp(argv[1], "start")) {
if (thread_running) {
- printf("position_estimator_inav already running\n");
+ warnx("already running");
/* this is not an error */
exit(0);
}
@@ -135,16 +140,23 @@ int position_estimator_inav_main(int argc, char *argv[])
}
if (!strcmp(argv[1], "stop")) {
- thread_should_exit = true;
+ if (thread_running) {
+ warnx("stop");
+ thread_should_exit = true;
+
+ } else {
+ warnx("app not started");
+ }
+
exit(0);
}
if (!strcmp(argv[1], "status")) {
if (thread_running) {
- printf("\tposition_estimator_inav is running\n");
+ warnx("app is running");
} else {
- printf("\tposition_estimator_inav not started\n");
+ warnx("app not started");
}
exit(0);
@@ -154,32 +166,90 @@ int position_estimator_inav_main(int argc, char *argv[])
exit(1);
}
+void write_debug_log(const char *msg, float dt, float x_est[3], float y_est[3], float z_est[3], float corr_acc[3], float corr_gps[3][2], float w_xy_gps_p, float w_xy_gps_v) {
+ FILE *f = fopen("/fs/microsd/inav.log", "a");
+ if (f) {
+ char *s = malloc(256);
+ snprintf(s, 256, "%llu %s\n\tdt=%.5f x_est=[%.5f %.5f %.5f] y_est=[%.5f %.5f %.5f] z_est=[%.5f %.5f %.5f]\n", hrt_absolute_time(), msg, dt, x_est[0], x_est[1], x_est[2], y_est[0], y_est[1], y_est[2], z_est[0], z_est[1], z_est[2]);
+ fputs(f, s);
+ snprintf(s, 256, "\tacc_corr=[%.5f %.5f %.5f] gps_pos_corr=[%.5f %.5f %.5f] gps_vel_corr=[%.5f %.5f %.5f] w_xy_gps_p=%.5f w_xy_gps_v=%.5f\n", corr_acc[0], corr_acc[1], corr_acc[2], corr_gps[0][0], corr_gps[1][0], corr_gps[2][0], corr_gps[0][1], corr_gps[1][1], corr_gps[2][1], w_xy_gps_p, w_xy_gps_v);
+ fputs(f, s);
+ free(s);
+ }
+ fclose(f);
+}
+
/****************************************************************************
* main
****************************************************************************/
int position_estimator_inav_thread_main(int argc, char *argv[])
{
- warnx("started.");
+ warnx("started");
int mavlink_fd;
mavlink_fd = open(MAVLINK_LOG_DEVICE, 0);
mavlink_log_info(mavlink_fd, "[inav] started");
- /* initialize values */
float x_est[3] = { 0.0f, 0.0f, 0.0f };
float y_est[3] = { 0.0f, 0.0f, 0.0f };
float z_est[3] = { 0.0f, 0.0f, 0.0f };
int baro_init_cnt = 0;
int baro_init_num = 200;
- float baro_alt0 = 0.0f; /* to determine while start up */
+ float baro_offset = 0.0f; // baro offset for reference altitude, initialized on start, then adjusted
+ float surface_offset = 0.0f; // ground level offset from reference altitude
+ float surface_offset_rate = 0.0f; // surface offset change rate
float alt_avg = 0.0f;
bool landed = true;
hrt_abstime landed_time = 0;
- bool flag_armed = false;
hrt_abstime accel_timestamp = 0;
hrt_abstime baro_timestamp = 0;
+ bool ref_inited = false;
+ hrt_abstime ref_init_start = 0;
+ const hrt_abstime ref_init_delay = 1000000; // wait for 1s after 3D fix
+
+ uint16_t accel_updates = 0;
+ uint16_t baro_updates = 0;
+ uint16_t gps_updates = 0;
+ uint16_t attitude_updates = 0;
+ uint16_t flow_updates = 0;
+
+ hrt_abstime updates_counter_start = hrt_absolute_time();
+ hrt_abstime pub_last = hrt_absolute_time();
+
+ hrt_abstime t_prev = 0;
+
+ /* acceleration in NED frame */
+ float accel_NED[3] = { 0.0f, 0.0f, -CONSTANTS_ONE_G };
+
+ /* store error when sensor updates, but correct on each time step to avoid jumps in estimated value */
+ float corr_acc[] = { 0.0f, 0.0f, 0.0f }; // N E D
+ float acc_bias[] = { 0.0f, 0.0f, 0.0f }; // body frame
+ float corr_baro = 0.0f; // D
+ float corr_gps[3][2] = {
+ { 0.0f, 0.0f }, // N (pos, vel)
+ { 0.0f, 0.0f }, // E (pos, vel)
+ { 0.0f, 0.0f }, // D (pos, vel)
+ };
+ float w_gps_xy = 1.0f;
+ float w_gps_z = 1.0f;
+ float corr_sonar = 0.0f;
+ float corr_sonar_filtered = 0.0f;
+
+ float corr_flow[] = { 0.0f, 0.0f }; // N E
+ float w_flow = 0.0f;
+
+ float sonar_prev = 0.0f;
+ hrt_abstime sonar_time = 0; // time of last sonar measurement (not filtered)
+ hrt_abstime sonar_valid_time = 0; // time of last sonar measurement used for correction (filtered)
+ hrt_abstime xy_src_time = 0; // time of last available position data
+
+ bool gps_valid = false; // GPS is valid
+ bool sonar_valid = false; // sonar is valid
+ bool flow_valid = false; // flow is valid
+ bool flow_accurate = false; // flow should be accurate (this flag not updated if flow_valid == false)
+
/* declare and safely initialize all structs */
struct actuator_controls_s actuator;
memset(&actuator, 0, sizeof(actuator));
@@ -247,75 +317,30 @@ int position_estimator_inav_thread_main(int argc, char *argv[])
/* mean calculation over several measurements */
if (baro_init_cnt < baro_init_num) {
- baro_alt0 += sensor.baro_alt_meter;
+ baro_offset += sensor.baro_alt_meter;
baro_init_cnt++;
} else {
wait_baro = false;
- baro_alt0 /= (float) baro_init_cnt;
- warnx("init baro: alt = %.3f", baro_alt0);
- mavlink_log_info(mavlink_fd, "[inav] init baro: alt = %.3f", baro_alt0);
- local_pos.ref_alt = baro_alt0;
- local_pos.ref_timestamp = hrt_absolute_time();
+ baro_offset /= (float) baro_init_cnt;
+ warnx("baro offs: %.2f", baro_offset);
+ mavlink_log_info(mavlink_fd, "[inav] baro offs: %.2f", baro_offset);
local_pos.z_valid = true;
local_pos.v_z_valid = true;
- local_pos.z_global = true;
+ global_pos.baro_valid = true;
}
}
}
}
}
- bool ref_xy_inited = false;
- hrt_abstime ref_xy_init_start = 0;
- const hrt_abstime ref_xy_init_delay = 5000000; // wait for 5s after 3D fix
-
- hrt_abstime t_prev = 0;
-
- uint16_t accel_updates = 0;
- uint16_t baro_updates = 0;
- uint16_t gps_updates = 0;
- uint16_t attitude_updates = 0;
- uint16_t flow_updates = 0;
-
- hrt_abstime updates_counter_start = hrt_absolute_time();
- hrt_abstime pub_last = hrt_absolute_time();
-
- /* acceleration in NED frame */
- float accel_NED[3] = { 0.0f, 0.0f, -CONSTANTS_ONE_G };
-
- /* store error when sensor updates, but correct on each time step to avoid jumps in estimated value */
- float accel_corr[] = { 0.0f, 0.0f, 0.0f }; // N E D
- float accel_bias[] = { 0.0f, 0.0f, 0.0f }; // body frame
- float baro_corr = 0.0f; // D
- float gps_corr[2][2] = {
- { 0.0f, 0.0f }, // N (pos, vel)
- { 0.0f, 0.0f }, // E (pos, vel)
- };
- float sonar_corr = 0.0f;
- float sonar_corr_filtered = 0.0f;
- float flow_corr[] = { 0.0f, 0.0f }; // X, Y
-
- float sonar_prev = 0.0f;
- hrt_abstime sonar_time = 0;
-
/* main loop */
- struct pollfd fds[7] = {
- { .fd = parameter_update_sub, .events = POLLIN },
- { .fd = actuator_sub, .events = POLLIN },
- { .fd = armed_sub, .events = POLLIN },
+ struct pollfd fds[1] = {
{ .fd = vehicle_attitude_sub, .events = POLLIN },
- { .fd = sensor_combined_sub, .events = POLLIN },
- { .fd = optical_flow_sub, .events = POLLIN },
- { .fd = vehicle_gps_position_sub, .events = POLLIN }
};
- if (!thread_should_exit) {
- warnx("main loop started.");
- }
-
while (!thread_should_exit) {
- int ret = poll(fds, 7, 10); // wait maximal this 10 ms = 100 Hz minimum rate
+ int ret = poll(fds, 1, 20); // wait maximal 20 ms = 50 Hz minimum rate
hrt_abstime t = hrt_absolute_time();
if (ret < 0) {
@@ -324,40 +349,49 @@ int position_estimator_inav_thread_main(int argc, char *argv[])
continue;
} else if (ret > 0) {
+ /* act on attitude updates */
+
+ /* vehicle attitude */
+ orb_copy(ORB_ID(vehicle_attitude), vehicle_attitude_sub, &att);
+ attitude_updates++;
+
+ bool updated;
+
/* parameter update */
- if (fds[0].revents & POLLIN) {
- /* read from param to clear updated flag */
+ orb_check(parameter_update_sub, &updated);
+
+ if (updated) {
struct parameter_update_s update;
- orb_copy(ORB_ID(parameter_update), parameter_update_sub,
- &update);
- /* update parameters */
+ orb_copy(ORB_ID(parameter_update), parameter_update_sub, &update);
parameters_update(&pos_inav_param_handles, &params);
}
/* actuator */
- if (fds[1].revents & POLLIN) {
+ orb_check(actuator_sub, &updated);
+
+ if (updated) {
orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_sub, &actuator);
}
/* armed */
- if (fds[2].revents & POLLIN) {
- orb_copy(ORB_ID(actuator_armed), armed_sub, &armed);
- }
+ orb_check(armed_sub, &updated);
- /* vehicle attitude */
- if (fds[3].revents & POLLIN) {
- orb_copy(ORB_ID(vehicle_attitude), vehicle_attitude_sub, &att);
- attitude_updates++;
+ if (updated) {
+ orb_copy(ORB_ID(actuator_armed), armed_sub, &armed);
}
/* sensor combined */
- if (fds[4].revents & POLLIN) {
+ orb_check(sensor_combined_sub, &updated);
+
+ if (updated) {
orb_copy(ORB_ID(sensor_combined), sensor_combined_sub, &sensor);
if (sensor.accelerometer_timestamp != accel_timestamp) {
if (att.R_valid) {
- /* correct accel bias, now only for Z */
- sensor.accelerometer_m_s2[2] -= accel_bias[2];
+ /* correct accel bias */
+ sensor.accelerometer_m_s2[0] -= acc_bias[0];
+ sensor.accelerometer_m_s2[1] -= acc_bias[1];
+ sensor.accelerometer_m_s2[2] -= acc_bias[2];
/* transform acceleration vector from body frame to NED frame */
for (int i = 0; i < 3; i++) {
@@ -368,12 +402,12 @@ int position_estimator_inav_thread_main(int argc, char *argv[])
}
}
- accel_corr[0] = accel_NED[0] - x_est[2];
- accel_corr[1] = accel_NED[1] - y_est[2];
- accel_corr[2] = accel_NED[2] + CONSTANTS_ONE_G - z_est[2];
+ corr_acc[0] = accel_NED[0] - x_est[2];
+ corr_acc[1] = accel_NED[1] - y_est[2];
+ corr_acc[2] = accel_NED[2] + CONSTANTS_ONE_G - z_est[2];
} else {
- memset(accel_corr, 0, sizeof(accel_corr));
+ memset(corr_acc, 0, sizeof(corr_acc));
}
accel_timestamp = sensor.accelerometer_timestamp;
@@ -381,180 +415,353 @@ int position_estimator_inav_thread_main(int argc, char *argv[])
}
if (sensor.baro_timestamp != baro_timestamp) {
- baro_corr = - sensor.baro_alt_meter - z_est[0];
+ corr_baro = baro_offset - sensor.baro_alt_meter - z_est[0];
baro_timestamp = sensor.baro_timestamp;
baro_updates++;
}
}
/* optical flow */
- if (fds[5].revents & POLLIN) {
+ orb_check(optical_flow_sub, &updated);
+
+ if (updated) {
orb_copy(ORB_ID(optical_flow), optical_flow_sub, &flow);
- if (flow.ground_distance_m > 0.31f && flow.ground_distance_m < 4.0f && (flow.ground_distance_m != sonar_prev || t - sonar_time < 150000)) {
- if (flow.ground_distance_m != sonar_prev) {
- sonar_time = t;
- sonar_prev = flow.ground_distance_m;
- sonar_corr = -flow.ground_distance_m - z_est[0];
- sonar_corr_filtered += (sonar_corr - sonar_corr_filtered) * params.sonar_filt;
-
- if (fabsf(sonar_corr) > params.sonar_err) {
- // correction is too large: spike or new ground level?
- if (fabsf(sonar_corr - sonar_corr_filtered) > params.sonar_err) {
- // spike detected, ignore
- sonar_corr = 0.0f;
-
- } else {
- // new ground level
- baro_alt0 += sonar_corr;
- mavlink_log_info(mavlink_fd, "[inav] new home: alt = %.3f", baro_alt0);
- local_pos.ref_alt = baro_alt0;
- local_pos.ref_timestamp = hrt_absolute_time();
- z_est[0] += sonar_corr;
- sonar_corr = 0.0f;
- sonar_corr_filtered = 0.0f;
- }
+ if (flow.ground_distance_m > 0.31f && flow.ground_distance_m < 4.0f && att.R[2][2] > 0.7 && flow.ground_distance_m != sonar_prev) {
+ sonar_time = t;
+ sonar_prev = flow.ground_distance_m;
+ corr_sonar = flow.ground_distance_m + surface_offset + z_est[0];
+ corr_sonar_filtered += (corr_sonar - corr_sonar_filtered) * params.sonar_filt;
+
+ if (fabsf(corr_sonar) > params.sonar_err) {
+ /* correction is too large: spike or new ground level? */
+ if (fabsf(corr_sonar - corr_sonar_filtered) > params.sonar_err) {
+ /* spike detected, ignore */
+ corr_sonar = 0.0f;
+ sonar_valid = false;
+
+ } else {
+ /* new ground level */
+ surface_offset -= corr_sonar;
+ surface_offset_rate = 0.0f;
+ corr_sonar = 0.0f;
+ corr_sonar_filtered = 0.0f;
+ sonar_valid_time = t;
+ sonar_valid = true;
+ local_pos.surface_bottom_timestamp = t;
+ mavlink_log_info(mavlink_fd, "[inav] new surface level: %.2f", surface_offset);
}
+
+ } else {
+ /* correction is ok, use it */
+ sonar_valid_time = t;
+ sonar_valid = true;
+ }
+ }
+
+ float flow_q = flow.quality / 255.0f;
+ float dist_bottom = - z_est[0] - surface_offset;
+
+ if (dist_bottom > 0.3f && flow_q > params.flow_q_min && (t < sonar_valid_time + sonar_valid_timeout) && att.R[2][2] > 0.7) {
+ /* distance to surface */
+ float flow_dist = dist_bottom / att.R[2][2];
+ /* check if flow if too large for accurate measurements */
+ /* calculate estimated velocity in body frame */
+ float body_v_est[2] = { 0.0f, 0.0f };
+
+ for (int i = 0; i < 2; i++) {
+ body_v_est[i] = att.R[0][i] * x_est[1] + att.R[1][i] * y_est[1] + att.R[2][i] * z_est[1];
}
+ /* set this flag if flow should be accurate according to current velocity and attitude rate estimate */
+ flow_accurate = fabsf(body_v_est[1] / flow_dist - att.rollspeed) < max_flow &&
+ fabsf(body_v_est[0] / flow_dist + att.pitchspeed) < max_flow;
+
+ /* convert raw flow to angular flow */
+ float flow_ang[2];
+ flow_ang[0] = flow.flow_raw_x * params.flow_k;
+ flow_ang[1] = flow.flow_raw_y * params.flow_k;
+ /* flow measurements vector */
+ float flow_m[3];
+ flow_m[0] = -flow_ang[0] * flow_dist;
+ flow_m[1] = -flow_ang[1] * flow_dist;
+ flow_m[2] = z_est[1];
+ /* velocity in NED */
+ float flow_v[2] = { 0.0f, 0.0f };
+
+ /* project measurements vector to NED basis, skip Z component */
+ for (int i = 0; i < 2; i++) {
+ for (int j = 0; j < 3; j++) {
+ flow_v[i] += att.R[i][j] * flow_m[j];
+ }
+ }
+
+ /* velocity correction */
+ corr_flow[0] = flow_v[0] - x_est[1];
+ corr_flow[1] = flow_v[1] - y_est[1];
+ /* adjust correction weight */
+ float flow_q_weight = (flow_q - params.flow_q_min) / (1.0f - params.flow_q_min);
+ w_flow = att.R[2][2] * flow_q_weight / fmaxf(1.0f, flow_dist);
+
+ /* if flow is not accurate, reduce weight for it */
+ // TODO make this more fuzzy
+ if (!flow_accurate)
+ w_flow *= 0.05f;
+
+ flow_valid = true;
+
} else {
- sonar_corr = 0.0f;
+ w_flow = 0.0f;
+ flow_valid = false;
}
flow_updates++;
}
/* vehicle GPS position */
- if (fds[6].revents & POLLIN) {
+ orb_check(vehicle_gps_position_sub, &updated);
+
+ if (updated) {
orb_copy(ORB_ID(vehicle_gps_position), vehicle_gps_position_sub, &gps);
- if (gps.fix_type >= 3 && t < gps.timestamp_position + gps_timeout) {
+ if (gps.fix_type >= 3) {
+ /* hysteresis for GPS quality */
+ if (gps_valid) {
+ if (gps.eph_m > 10.0f || gps.epv_m > 20.0f) {
+ gps_valid = false;
+ mavlink_log_info(mavlink_fd, "[inav] GPS signal lost");
+ }
+
+ } else {
+ if (gps.eph_m < 5.0f && gps.epv_m < 10.0f) {
+ gps_valid = true;
+ mavlink_log_info(mavlink_fd, "[inav] GPS signal found");
+ }
+ }
+
+ } else {
+ gps_valid = false;
+ }
+
+ if (gps_valid) {
/* initialize reference position if needed */
- if (!ref_xy_inited) {
- /* require EPH < 10m */
- if (gps.eph_m < 10.0f) {
- if (ref_xy_init_start == 0) {
- ref_xy_init_start = t;
-
- } else if (t > ref_xy_init_start + ref_xy_init_delay) {
- ref_xy_inited = true;
- /* reference GPS position */
- double lat = gps.lat * 1e-7;
- double lon = gps.lon * 1e-7;
-
- local_pos.ref_lat = gps.lat;
- local_pos.ref_lon = gps.lon;
- local_pos.ref_timestamp = t;
-
- /* initialize projection */
- map_projection_init(lat, lon);
- warnx("init GPS: lat = %.10f, lon = %.10f", lat, lon);
- mavlink_log_info(mavlink_fd, "[inav] init GPS: %.7f, %.7f", lat, lon);
- }
- } else {
- ref_xy_init_start = 0;
+ if (!ref_inited) {
+ if (ref_init_start == 0) {
+ ref_init_start = t;
+
+ } else if (t > ref_init_start + ref_init_delay) {
+ ref_inited = true;
+ /* reference GPS position */
+ double lat = gps.lat * 1e-7;
+ double lon = gps.lon * 1e-7;
+ float alt = gps.alt * 1e-3;
+
+ local_pos.ref_lat = gps.lat;
+ local_pos.ref_lon = gps.lon;
+ local_pos.ref_alt = alt + z_est[0];
+ local_pos.ref_timestamp = t;
+
+ /* initialize projection */
+ map_projection_init(lat, lon);
+ warnx("init ref: lat=%.7f, lon=%.7f, alt=%.2f", lat, lon, alt);
+ mavlink_log_info(mavlink_fd, "[inav] init ref: lat=%.7f, lon=%.7f, alt=%.2f", lat, lon, alt);
}
}
- if (ref_xy_inited) {
+ if (ref_inited) {
/* project GPS lat lon to plane */
float gps_proj[2];
map_projection_project(gps.lat * 1e-7, gps.lon * 1e-7, &(gps_proj[0]), &(gps_proj[1]));
/* calculate correction for position */
- gps_corr[0][0] = gps_proj[0] - x_est[0];
- gps_corr[1][0] = gps_proj[1] - y_est[0];
+ corr_gps[0][0] = gps_proj[0] - x_est[0];
+ corr_gps[1][0] = gps_proj[1] - y_est[0];
+ corr_gps[2][0] = local_pos.ref_alt - gps.alt * 1e-3 - z_est[0];
/* calculate correction for velocity */
if (gps.vel_ned_valid) {
- gps_corr[0][1] = gps.vel_n_m_s - x_est[1];
- gps_corr[1][1] = gps.vel_e_m_s - y_est[1];
+ corr_gps[0][1] = gps.vel_n_m_s - x_est[1];
+ corr_gps[1][1] = gps.vel_e_m_s - y_est[1];
+ corr_gps[2][1] = gps.vel_d_m_s - z_est[1];
} else {
- gps_corr[0][1] = 0.0f;
- gps_corr[1][1] = 0.0f;
+ corr_gps[0][1] = 0.0f;
+ corr_gps[1][1] = 0.0f;
+ corr_gps[2][1] = 0.0f;
}
+
+ w_gps_xy = 2.0f / fmaxf(2.0f, gps.eph_m);
+ w_gps_z = 4.0f / fmaxf(4.0f, gps.epv_m);
}
} else {
/* no GPS lock */
- memset(gps_corr, 0, sizeof(gps_corr));
- ref_xy_init_start = 0;
+ memset(corr_gps, 0, sizeof(corr_gps));
+ ref_init_start = 0;
}
gps_updates++;
}
}
- /* end of poll return value check */
+ /* check for timeout on FLOW topic */
+ if ((flow_valid || sonar_valid) && t > flow.timestamp + flow_topic_timeout) {
+ flow_valid = false;
+ sonar_valid = false;
+ warnx("FLOW timeout");
+ mavlink_log_info(mavlink_fd, "[inav] FLOW timeout");
+ }
+
+ /* check for timeout on GPS topic */
+ if (gps_valid && t > gps.timestamp_position + gps_topic_timeout) {
+ gps_valid = false;
+ warnx("GPS timeout");
+ mavlink_log_info(mavlink_fd, "[inav] GPS timeout");
+ }
+
+ /* check for sonar measurement timeout */
+ if (sonar_valid && t > sonar_time + sonar_timeout) {
+ corr_sonar = 0.0f;
+ sonar_valid = false;
+ }
float dt = t_prev > 0 ? (t - t_prev) / 1000000.0f : 0.0f;
+ dt = fmaxf(fminf(0.02, dt), 0.005);
t_prev = t;
- /* reset ground level on arm */
- if (armed.armed && !flag_armed) {
- baro_alt0 -= z_est[0];
- z_est[0] = 0.0f;
- local_pos.ref_alt = baro_alt0;
- local_pos.ref_timestamp = hrt_absolute_time();
- mavlink_log_info(mavlink_fd, "[inav] new home on arm: alt = %.3f", baro_alt0);
+ /* use GPS if it's valid and reference position initialized */
+ bool use_gps_xy = ref_inited && gps_valid && params.w_xy_gps_p > MIN_VALID_W;
+ bool use_gps_z = ref_inited && gps_valid && params.w_z_gps_p > MIN_VALID_W;
+ /* use flow if it's valid and (accurate or no GPS available) */
+ bool use_flow = flow_valid && (flow_accurate || !use_gps_xy);
+
+ /* try to estimate position during some time after position sources lost */
+ if (use_gps_xy || use_flow) {
+ xy_src_time = t;
+ }
+
+ bool can_estimate_xy = (t < xy_src_time + xy_src_timeout);
+
+ bool dist_bottom_valid = (t < sonar_valid_time + sonar_valid_timeout);
+
+ if (dist_bottom_valid) {
+ /* surface distance prediction */
+ surface_offset += surface_offset_rate * dt;
+
+ /* surface distance correction */
+ if (sonar_valid) {
+ surface_offset_rate -= corr_sonar * 0.5f * params.w_z_sonar * params.w_z_sonar * dt;
+ surface_offset -= corr_sonar * params.w_z_sonar * dt;
+ }
+ }
+
+ float w_xy_gps_p = params.w_xy_gps_p * w_gps_xy;
+ float w_xy_gps_v = params.w_xy_gps_v * w_gps_xy;
+ float w_z_gps_p = params.w_z_gps_p * w_gps_z;
+
+ /* reduce GPS weight if optical flow is good */
+ if (use_flow && flow_accurate) {
+ w_xy_gps_p *= params.w_gps_flow;
+ w_xy_gps_v *= params.w_gps_flow;
+ }
+
+ /* baro offset correction */
+ if (use_gps_z) {
+ float offs_corr = corr_gps[2][0] * w_z_gps_p * dt;
+ baro_offset += offs_corr;
+ corr_baro += offs_corr;
}
- /* accel bias correction, now only for Z
- * not strictly correct, but stable and works */
- accel_bias[2] += (accel_NED[2] + CONSTANTS_ONE_G) * params.w_acc_bias * dt;
+ /* accelerometer bias correction */
+ float accel_bias_corr[3] = { 0.0f, 0.0f, 0.0f };
+
+ if (use_gps_xy) {
+ accel_bias_corr[0] -= corr_gps[0][0] * w_xy_gps_p * w_xy_gps_p;
+ accel_bias_corr[0] -= corr_gps[0][1] * w_xy_gps_v;
+ accel_bias_corr[1] -= corr_gps[1][0] * w_xy_gps_p * w_xy_gps_p;
+ accel_bias_corr[1] -= corr_gps[1][1] * w_xy_gps_v;
+ }
+
+ if (use_gps_z) {
+ accel_bias_corr[2] -= corr_gps[2][0] * w_z_gps_p * w_z_gps_p;
+ }
+
+ if (use_flow) {
+ accel_bias_corr[0] -= corr_flow[0] * params.w_xy_flow;
+ accel_bias_corr[1] -= corr_flow[1] * params.w_xy_flow;
+ }
+
+ accel_bias_corr[2] -= corr_baro * params.w_z_baro * params.w_z_baro;
+
+ /* transform error vector from NED frame to body frame */
+ for (int i = 0; i < 3; i++) {
+ float c = 0.0f;
+
+ for (int j = 0; j < 3; j++) {
+ c += att.R[j][i] * accel_bias_corr[j];
+ }
+
+ acc_bias[i] += c * params.w_acc_bias * dt;
+ }
/* inertial filter prediction for altitude */
inertial_filter_predict(dt, z_est);
/* inertial filter correction for altitude */
- baro_alt0 += sonar_corr * params.w_alt_sonar * dt;
- inertial_filter_correct(baro_corr + baro_alt0, dt, z_est, 0, params.w_alt_baro);
- inertial_filter_correct(sonar_corr, dt, z_est, 0, params.w_alt_sonar);
- inertial_filter_correct(accel_corr[2], dt, z_est, 2, params.w_alt_acc);
-
- bool gps_valid = ref_xy_inited && gps.fix_type >= 3 && t < gps.timestamp_position + gps_timeout;
- bool flow_valid = false; // TODO implement opt flow
-
- /* try to estimate xy even if no absolute position source available,
- * if using optical flow velocity will be correct in this case */
- bool can_estimate_xy = gps_valid || flow_valid;
+ inertial_filter_correct(corr_baro, dt, z_est, 0, params.w_z_baro);
+ inertial_filter_correct(corr_gps[2][0], dt, z_est, 0, w_z_gps_p);
+ inertial_filter_correct(corr_acc[2], dt, z_est, 2, params.w_z_acc);
if (can_estimate_xy) {
/* inertial filter prediction for position */
inertial_filter_predict(dt, x_est);
inertial_filter_predict(dt, y_est);
+ if (!isfinite(x_est[0]) || !isfinite(y_est[0])) {
+ write_debug_log("BAD ESTIMATE AFTER PREDICTION", dt, x_est, y_est, z_est, corr_acc, corr_gps, w_xy_gps_p, w_xy_gps_v);
+ thread_should_exit = true;
+ }
+
/* inertial filter correction for position */
- inertial_filter_correct(accel_corr[0], dt, x_est, 2, params.w_pos_acc);
- inertial_filter_correct(accel_corr[1], dt, y_est, 2, params.w_pos_acc);
+ inertial_filter_correct(corr_acc[0], dt, x_est, 2, params.w_xy_acc);
+ inertial_filter_correct(corr_acc[1], dt, y_est, 2, params.w_xy_acc);
- if (gps_valid) {
- inertial_filter_correct(gps_corr[0][0], dt, x_est, 0, params.w_pos_gps_p);
- inertial_filter_correct(gps_corr[1][0], dt, y_est, 0, params.w_pos_gps_p);
+ if (use_flow) {
+ inertial_filter_correct(corr_flow[0], dt, x_est, 1, params.w_xy_flow * w_flow);
+ inertial_filter_correct(corr_flow[1], dt, y_est, 1, params.w_xy_flow * w_flow);
+ }
- if (gps.vel_ned_valid && t < gps.timestamp_velocity + gps_timeout) {
- inertial_filter_correct(gps_corr[0][1], dt, x_est, 1, params.w_pos_gps_v);
- inertial_filter_correct(gps_corr[1][1], dt, y_est, 1, params.w_pos_gps_v);
+ if (use_gps_xy) {
+ inertial_filter_correct(corr_gps[0][0], dt, x_est, 0, w_xy_gps_p);
+ inertial_filter_correct(corr_gps[1][0], dt, y_est, 0, w_xy_gps_p);
+
+ if (gps.vel_ned_valid && t < gps.timestamp_velocity + gps_topic_timeout) {
+ inertial_filter_correct(corr_gps[0][1], dt, x_est, 1, w_xy_gps_v);
+ inertial_filter_correct(corr_gps[1][1], dt, y_est, 1, w_xy_gps_v);
}
}
+
+ if (!isfinite(x_est[0]) || !isfinite(y_est[0])) {
+ write_debug_log("BAD ESTIMATE AFTER CORRECTION", dt, x_est, y_est, z_est, corr_acc, corr_gps, w_xy_gps_p, w_xy_gps_v);
+ thread_should_exit = true;
+ }
}
/* detect land */
- alt_avg += (z_est[0] - alt_avg) * dt / params.land_t;
- float alt_disp = z_est[0] - alt_avg;
- alt_disp = alt_disp * alt_disp;
+ alt_avg += (- z_est[0] - alt_avg) * dt / params.land_t;
+ float alt_disp2 = - z_est[0] - alt_avg;
+ alt_disp2 = alt_disp2 * alt_disp2;
float land_disp2 = params.land_disp * params.land_disp;
/* get actual thrust output */
float thrust = armed.armed ? actuator.control[3] : 0.0f;
if (landed) {
- if (alt_disp > land_disp2 && thrust > params.land_thr) {
+ if (alt_disp2 > land_disp2 && thrust > params.land_thr) {
landed = false;
landed_time = 0;
}
} else {
- if (alt_disp < land_disp2 && thrust < params.land_thr) {
+ if (alt_disp2 < land_disp2 && thrust < params.land_thr) {
if (landed_time == 0) {
landed_time = t; // land detected first time
@@ -593,10 +800,10 @@ int position_estimator_inav_thread_main(int argc, char *argv[])
if (t > pub_last + pub_interval) {
pub_last = t;
/* publish local position */
- local_pos.timestamp = t;
- local_pos.xy_valid = can_estimate_xy && gps_valid;
+ local_pos.xy_valid = can_estimate_xy && use_gps_xy;
local_pos.v_xy_valid = can_estimate_xy;
- local_pos.xy_global = local_pos.xy_valid && gps_valid; // will make sense when local position sources (e.g. vicon) will be implemented
+ local_pos.xy_global = local_pos.xy_valid && use_gps_xy;
+ local_pos.z_global = local_pos.z_valid && use_gps_z;
local_pos.x = x_est[0];
local_pos.vx = x_est[1];
local_pos.y = y_est[0];
@@ -605,48 +812,56 @@ int position_estimator_inav_thread_main(int argc, char *argv[])
local_pos.vz = z_est[1];
local_pos.landed = landed;
local_pos.yaw = att.yaw;
+ local_pos.dist_bottom_valid = dist_bottom_valid;
+
+ if (local_pos.dist_bottom_valid) {
+ local_pos.dist_bottom = -z_est[0] - surface_offset;
+ local_pos.dist_bottom_rate = -z_est[1] - surface_offset_rate;
+ }
+
+ local_pos.timestamp = t;
orb_publish(ORB_ID(vehicle_local_position), vehicle_local_position_pub, &local_pos);
/* publish global position */
- global_pos.valid = local_pos.xy_global;
+ global_pos.global_valid = local_pos.xy_global;
if (local_pos.xy_global) {
double est_lat, est_lon;
map_projection_reproject(local_pos.x, local_pos.y, &est_lat, &est_lon);
- global_pos.lat = (int32_t)(est_lat * 1e7);
- global_pos.lon = (int32_t)(est_lon * 1e7);
+ global_pos.lat = est_lat;
+ global_pos.lon = est_lon;
global_pos.time_gps_usec = gps.time_gps_usec;
}
/* set valid values even if position is not valid */
if (local_pos.v_xy_valid) {
- global_pos.vx = local_pos.vx;
- global_pos.vy = local_pos.vy;
- }
-
- if (local_pos.z_valid) {
- global_pos.relative_alt = -local_pos.z;
+ global_pos.vel_n = local_pos.vx;
+ global_pos.vel_e = local_pos.vy;
}
if (local_pos.z_global) {
global_pos.alt = local_pos.ref_alt - local_pos.z;
}
+ if (local_pos.z_valid) {
+ global_pos.baro_alt = baro_offset - local_pos.z;
+ }
+
if (local_pos.v_z_valid) {
- global_pos.vz = local_pos.vz;
+ global_pos.vel_d = local_pos.vz;
}
+
global_pos.yaw = local_pos.yaw;
global_pos.timestamp = t;
orb_publish(ORB_ID(vehicle_global_position), vehicle_global_position_pub, &global_pos);
}
- flag_armed = armed.armed;
}
- warnx("exiting.");
- mavlink_log_info(mavlink_fd, "[inav] exiting");
+ warnx("stopped");
+ mavlink_log_info(mavlink_fd, "[inav] stopped");
thread_running = false;
return 0;
}