aboutsummaryrefslogtreecommitdiff
path: root/ROMFS/logging/logconv.m
blob: 5ea2aeb95a95f7e7ea496a5624264415f9f28b27 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
% This Matlab Script can be used to import the binary logged values of the
% PX4FMU into data that can be plotted and analyzed.

% Clear everything
clc
clear all
close all

% Set the path to your sysvector.bin file here
filePath = 'sysvector.bin';

% Work around a Matlab bug (not related to PX4)
% where timestamps from 1.1.1970 do not allow to
% read the file's size
if ismac
    system('touch -t 201212121212.12 sysvector.bin');
end

%%%%%%%%%%%%%%%%%%%%%%%
% SYSTEM VECTOR
%
% //All measurements in NED frame
%
% uint64_t timestamp; //[us]
% float gyro[3]; //[rad/s]
% float accel[3]; //[m/s^2]
% float mag[3]; //[gauss] 
% float baro; //pressure [millibar]
% float baro_alt; //altitude above MSL [meter]
% float baro_temp; //[degree celcius]
% float control[4]; //roll, pitch, yaw [-1..1], thrust [0..1]
% float actuators[8]; //motor 1-8, in motor units (PWM: 1000-2000,AR.Drone: 0-512)
% float vbat; //battery voltage in [volt]
% float bat_current - current drawn from battery at this time instant
% float bat_discharged - discharged energy in mAh
% float adc[3]; //remaining auxiliary ADC ports [volt]
% float local_position[3]; //tangent plane mapping into x,y,z [m]
% int32_t gps_raw_position[3]; //latitude [degrees] north, longitude [degrees] east, altitude above MSL [millimeter]
% float attitude[3]; //pitch, roll, yaw [rad]
% float rotMatrix[9]; //unitvectors
% float actuator_control[4]; //unitvector
% float optical_flow[4]; //roll, pitch, yaw [-1..1], thrust [0..1]
% float diff_pressure; - pressure difference in millibar
% float ind_airspeed;
% float true_airspeed;

% Definition of the logged values
logFormat{1} = struct('name', 'timestamp',             'bytes', 8, 'array', 1, 'precision', 'uint64',  'machineformat', 'ieee-le.l64');
logFormat{2} = struct('name', 'gyro',                  'bytes', 4, 'array', 3, 'precision', 'float',   'machineformat', 'ieee-le');
logFormat{3} = struct('name', 'accel',                 'bytes', 4, 'array', 3, 'precision', 'float',   'machineformat', 'ieee-le');
logFormat{4} = struct('name', 'mag',                   'bytes', 4, 'array', 3, 'precision', 'float',   'machineformat', 'ieee-le');
logFormat{5} = struct('name', 'baro',                  'bytes', 4, 'array', 1, 'precision', 'float',   'machineformat', 'ieee-le');
logFormat{6} = struct('name', 'baro_alt',              'bytes', 4, 'array', 1, 'precision', 'float',   'machineformat', 'ieee-le');
logFormat{7} = struct('name', 'baro_temp',             'bytes', 4, 'array', 1, 'precision', 'float',   'machineformat', 'ieee-le');
logFormat{8} = struct('name', 'control',               'bytes', 4, 'array', 4, 'precision', 'float',   'machineformat', 'ieee-le');
logFormat{9} = struct('name', 'actuators',             'bytes', 4, 'array', 8, 'precision', 'float',   'machineformat', 'ieee-le');
logFormat{10} = struct('name', 'vbat',                 'bytes', 4, 'array', 1, 'precision', 'float',   'machineformat', 'ieee-le');
logFormat{11} = struct('name', 'bat_current',          'bytes', 4, 'array', 1, 'precision', 'float',   'machineformat', 'ieee-le');
logFormat{12} = struct('name', 'bat_discharged',       'bytes', 4, 'array', 1, 'precision', 'float',   'machineformat', 'ieee-le');
logFormat{13} = struct('name', 'adc',                  'bytes', 4, 'array', 3, 'precision', 'float',   'machineformat', 'ieee-le');
logFormat{14} = struct('name', 'local_position',       'bytes', 4, 'array', 3, 'precision', 'float',   'machineformat', 'ieee-le');
logFormat{15} = struct('name', 'gps_raw_position',     'bytes', 4, 'array', 3, 'precision', 'uint32',  'machineformat', 'ieee-le');
logFormat{16} = struct('name', 'attitude',             'bytes', 4, 'array', 3, 'precision', 'float',   'machineformat', 'ieee-le');
logFormat{17} = struct('name', 'rot_matrix',           'bytes', 4, 'array', 9, 'precision', 'float',   'machineformat', 'ieee-le');
logFormat{18} = struct('name', 'vicon_position',       'bytes', 4, 'array', 6, 'precision', 'float',   'machineformat', 'ieee-le');
logFormat{19} = struct('name', 'actuator_control',     'bytes', 4, 'array', 4, 'precision', 'float',   'machineformat', 'ieee-le');
logFormat{20} = struct('name', 'optical_flow',         'bytes', 4, 'array', 6, 'precision', 'float',   'machineformat', 'ieee-le');
logFormat{21} = struct('name', 'diff_pressure',        'bytes', 4, 'array', 1, 'precision', 'float',   'machineformat', 'ieee-le');
logFormat{22} = struct('name', 'ind_airspeed',         'bytes', 4, 'array', 1, 'precision', 'float',   'machineformat', 'ieee-le');
logFormat{23} = struct('name', 'true_airspeed',        'bytes', 4, 'array', 1, 'precision', 'float',   'machineformat', 'ieee-le');

% First get length of one line
columns = length(logFormat);
lineLength = 0;

for i=1:columns
    lineLength = lineLength + logFormat{i}.bytes * logFormat{i}.array;
end


if exist(filePath, 'file')
    
    fileInfo = dir(filePath);
    fileSize = fileInfo.bytes;
    
    elements = int64(fileSize./(lineLength));
    
    fid = fopen(filePath, 'r');
    offset = 0;
    for i=1:columns
        % using fread with a skip speeds up the import drastically, do not
        % import the values one after the other
        sysvector.(genvarname(logFormat{i}.name)) = transpose(fread(...
            fid, ...
            [logFormat{i}.array, elements], [num2str(logFormat{i}.array),'*',logFormat{i}.precision,'=>',logFormat{i}.precision], ...
            lineLength - logFormat{i}.bytes*logFormat{i}.array, ...
            logFormat{i}.machineformat) ...
        );
        offset = offset + logFormat{i}.bytes*logFormat{i}.array;
        fseek(fid, offset,'bof');
    end
    
    % shot the flight time
    time_us = sysvector.timestamp(end) - sysvector.timestamp(1);
    time_s = time_us*1e-6;
    time_m = time_s/60;
    
    % close the logfile
    fclose(fid);
    
    disp(['end log2matlab conversion' char(10)]);
else
    disp(['file: ' filePath ' does not exist' char(10)]);
end

%% Plot GPS RAW measurements

% Only plot GPS data if available
if cumsum(double(sysvector.gps_raw_position(200:end,1))) > 0
    figure('units','normalized','outerposition',[0 0 1 1])
    plot3(sysvector.gps_raw_position(200:end,1), sysvector.gps_raw_position(200:end,2), sysvector.gps_raw_position(200:end,3));
end


%% Plot optical flow trajectory

flow_sz = size(sysvector.timestamp);
flow_elements = flow_sz(1);

xt(1:flow_elements,1) = sysvector.timestamp(:,1); % time column [ms]


%calc dt
dt = zeros(flow_elements,1);
for i = 1:flow_elements-1
    dt(i+1,1) = double(xt(i+1,1)-xt(i,1)) * 10^(-6);   % timestep [s]
end
dt(1,1) = mean(dt);


global_speed = zeros(flow_elements,3);

%calc global speed (with rot matrix)
for i = 1:flow_elements
    rotM = [sysvector.rot_matrix(i,1:3);sysvector.rot_matrix(i,4:6);sysvector.rot_matrix(i,7:9)]';
    speedX = sysvector.optical_flow(i,3);
    speedY = sysvector.optical_flow(i,4);
    
    relSpeed = [-speedY,speedX,0];
    global_speed(i,:) = relSpeed * rotM;
end



px = zeros(flow_elements,1);
py = zeros(flow_elements,1);
distance = 0;

last_vx = 0;
last_vy = 0;
elem_cnt = 0;

% Very basic accumulation, stops on bad flow quality
for i = 1:flow_elements
    if sysvector.optical_flow(i,6) > 5
        px(i,1) = global_speed(i,1)*dt(i,1);
        py(i,1) = global_speed(i,2)*dt(i,1);
        distance = distance + norm([px(i,1) py(i,1)]);
        last_vx = px(i,1);
        last_vy = py(i,1);
    else
        px(i,1) = last_vx;
        py(i,1) = last_vy;
        last_vx = last_vx*0.95;
        last_vy = last_vy*0.95;
    end
end

px_sum = cumsum(px);
py_sum = cumsum(py);
time = cumsum(dt);

figure()
set(gca, 'Units','normal');

plot(py_sum, px_sum, '-blue', 'LineWidth',2);
axis equal;
% set title and axis captions
xlabel('X position (meters)','fontsize',14)
ylabel('Y position (meters)','fontsize',14)
% mark begin and end
hold on
plot(py_sum(1,1),px_sum(1,1),'ks','LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','g',...
'MarkerSize',10)
hold on
plot(py_sum(end,1),px_sum(end,1),'kv','LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','b',...
'MarkerSize',10)
% add total length as annotation
set(gca,'fontsize',13);
legend('Trajectory', 'START', sprintf('END\n(%.2f m, %.0f:%.0f s)', distance, time_m, time_s - time_m*60));
title('Optical Flow Position Integration', 'fontsize', 15);

figure()
plot(time, sysvector.optical_flow(:,5), 'blue');
axis([time(1,1) time(end,1) 0 (max(sysvector.optical_flow(i,5))+0.2)]);
xlabel('seconds','fontsize',14);
ylabel('m','fontsize',14);
set(gca,'fontsize',13);
title('Ultrasound Altitude', 'fontsize', 15);


figure()
plot(time, global_speed(:,2), 'red');
hold on;
plot(time, global_speed(:,1), 'blue');
legend('y velocity (m/s)', 'x velocity (m/s)');
xlabel('seconds','fontsize',14);
ylabel('m/s','fontsize',14);
set(gca,'fontsize',13);
title('Optical Flow Velocity', 'fontsize', 15);