aboutsummaryrefslogtreecommitdiff
path: root/apps/sensors/sensors.c
blob: 564ee4f8c4526b8d01834b5107e066459175c072 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
/****************************************************************************
 *
 *   Copyright (C) 2012 PX4 Development Team. All rights reserved.
 *   Author: @author Lorenz Meier <lm@inf.ethz.ch>
 *           @author Thomas Gubler <thomasgubler@student.ethz.ch>
 *           @author Julian Oes <joes@student.ethz.ch>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file sensors.c
 * Sensor readout process.
 */

#include <nuttx/config.h>

#include <pthread.h>
#include <fcntl.h>
#include <sys/prctl.h>
#include <nuttx/analog/adc.h>
#include <unistd.h>
#include <string.h>
#include <stdbool.h>
#include <stdio.h>
#include <errno.h>
#include <float.h>

#include <arch/board/up_hrt.h>
#include <arch/board/drv_lis331.h>
#include <arch/board/drv_bma180.h>
#include <arch/board/drv_l3gd20.h>
#include <arch/board/drv_hmc5883l.h>
#include <arch/board/up_adc.h>

#include <systemlib/systemlib.h>
#include <uORB/uORB.h>
#include <uORB/topics/sensor_combined.h>
#include <uORB/topics/rc_channels.h>
#include <uORB/topics/manual_control_setpoint.h>
#include <uORB/topics/vehicle_status.h>

#include "sensors.h"

#define errno *get_errno_ptr()

#define SENSOR_INTERVAL_MICROSEC 2000

#define GYRO_HEALTH_COUNTER_LIMIT_ERROR 20   /* 40 ms downtime at 500 Hz update rate   */
#define ACC_HEALTH_COUNTER_LIMIT_ERROR  20   /* 40 ms downtime at 500 Hz update rate   */
#define MAGN_HEALTH_COUNTER_LIMIT_ERROR 100  /* 1000 ms downtime at 100 Hz update rate  */
#define BARO_HEALTH_COUNTER_LIMIT_ERROR 50   /* 500 ms downtime at 100 Hz update rate  */
#define ADC_HEALTH_COUNTER_LIMIT_ERROR  10   /* 100 ms downtime at 100 Hz update rate  */

#define GYRO_HEALTH_COUNTER_LIMIT_OK 5
#define ACC_HEALTH_COUNTER_LIMIT_OK  5
#define MAGN_HEALTH_COUNTER_LIMIT_OK 5
#define BARO_HEALTH_COUNTER_LIMIT_OK 5
#define ADC_HEALTH_COUNTER_LIMIT_OK  5

#define ADC_BATTERY_VOLATGE_CHANNEL  10

#define BAT_VOL_INITIAL 12.f
#define BAT_VOL_LOWPASS_1 0.99f
#define BAT_VOL_LOWPASS_2 0.01f
#define VOLTAGE_BATTERY_IGNORE_THRESHOLD_VOLTS 3.5f

/* PPM Settings */
#define PPM_MIN 1000
#define PPM_MAX 2000
/* Internal resolution is 10000 */
#define PPM_SCALE 10000/((PPM_MAX-PPM_MIN)/2)

#define PPM_MID (PPM_MIN+PPM_MAX)/2

static pthread_cond_t sensors_read_ready;
static pthread_mutex_t sensors_read_ready_mutex;

static int sensors_timer_loop_counter = 0;

/* File descriptors for all sensors */
static int fd_gyro = -1;
static int fd_accelerometer = -1;
static int fd_magnetometer = -1;
static int fd_barometer = -1;
static int fd_adc = -1;

static bool thread_should_exit = false;
static bool thread_running = false;
static int sensors_task;

/* Private functions declared static */
static void sensors_timer_loop(void *arg);

#ifdef CONFIG_HRT_PPM
extern uint16_t ppm_buffer[];
extern unsigned ppm_decoded_channels;
extern uint64_t ppm_last_valid_decode;
#endif

/* file handle that will be used for subscribing */
static int sensor_pub;

/**
 * Sensor readout and publishing.
 * 
 * This function reads all onboard sensors and publishes the sensor_combined topic.
 *
 * @see sensor_combined_s
 * @ingroup apps
 */
__EXPORT int sensors_main(int argc, char *argv[]);

/**
 * Print the usage
 */
static void usage(const char *reason);

/**
 * Initialize all sensor drivers.
 *
 * @return 0 on success, != 0 on failure
 */
static int sensors_init(void)
{
	printf("[sensors] Sensor configuration..\n");

	/* open magnetometer */
	fd_magnetometer = open("/dev/hmc5883l", O_RDONLY);

	if (fd_magnetometer < 0) {
		fprintf(stderr, "[sensors]   HMC5883L open fail (err #%d): %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
		fflush(stderr);
		/* this sensor is critical, exit on failed init */
		errno = ENOSYS;
		return ERROR;

	} else {
		printf("[sensors]   HMC5883L open ok\n");
	}

	/* open barometer */
	fd_barometer = open("/dev/ms5611", O_RDONLY);

	if (fd_barometer < 0) {
		fprintf(stderr, "[sensors]   MS5611 open fail (err #%d): %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
		fflush(stderr);

	} else {
		printf("[sensors]   MS5611 open ok\n");
	}

	/* open gyro */
	fd_gyro = open("/dev/l3gd20", O_RDONLY);

	if (fd_gyro < 0) {
		fprintf(stderr, "[sensors]   L3GD20 open fail (err #%d): %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
		fflush(stderr);
		/* this sensor is critical, exit on failed init */
		errno = ENOSYS;
		return ERROR;

	} else {
		printf("[sensors]   L3GD20 open ok\n");
	}

	/* open accelerometer */
	fd_accelerometer = open("/dev/bma180", O_RDONLY);

	if (fd_accelerometer < 0) {
		fprintf(stderr, "[sensors]   BMA180: open fail (err #%d): %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
		fflush(stderr);
		/* this sensor is critical, exit on failed init */
		errno = ENOSYS;
		return ERROR;

	} else {
		printf("[sensors]   BMA180 open ok\n");
	}

	/* open adc */
	fd_adc = open("/dev/adc0", O_RDONLY | O_NONBLOCK);

	if (fd_adc < 0) {
		fprintf(stderr, "[sensors]   ADC: open fail (err #%d): %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
		fflush(stderr);
		/* this sensor is critical, exit on failed init */
		errno = ENOSYS;
		return ERROR;

	} else {
		printf("[sensors]   ADC open ok\n");
	}

	/* configure gyro */
	if (ioctl(fd_gyro, L3GD20_SETRATE, L3GD20_RATE_760HZ_LP_30HZ) || ioctl(fd_gyro, L3GD20_SETRANGE, L3GD20_RANGE_500DPS)) {
		fprintf(stderr, "[sensors]   L3GD20 configuration (ioctl) fail (err #%d): %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
		fflush(stderr);
		/* this sensor is critical, exit on failed init */
		errno = ENOSYS;
		return ERROR;

	} else {
		printf("[sensors]   L3GD20 configuration ok\n");
	}

	/* XXX Add IOCTL configuration of remaining sensors */

	printf("[sensors] All sensors configured\n");
	return OK;
}

/**
 * Callback function called by high resolution timer.
 *
 * This function signals a pthread condition and wakes up the
 * sensor main loop.
 */
static void sensors_timer_loop(void *arg)
{
	/* Inform the read thread that it is now time to read */
	sensors_timer_loop_counter++;
	/* Do not use global data broadcast because of
	 * use of printf() in call - would be fatal here
	 */
	pthread_cond_broadcast(&sensors_read_ready);
}

int sensors_thread_main(int argc, char *argv[])
{
	/* inform about start */
	printf("[sensors] Initializing..\n");
	fflush(stdout);
	int ret = OK;

	/* start sensor reading */
	if (sensors_init() != OK) {
		fprintf(stderr, "[sensors] ERROR: Failed to initialize all sensors\n");
		/* Clean up */
		close(fd_gyro);
		close(fd_accelerometer);
		close(fd_magnetometer);
		close(fd_barometer);
		close(fd_adc);

		fprintf(stderr, "[sensors] rebooting system.\n");
		fflush(stderr);
		fflush(stdout);
		usleep(100000);

		/* Sensors are critical, immediately reboot system on failure */
		reboot();
		/* Not ever reaching here */

	} else {
		/* flush stdout from init routine */
		fflush(stdout);
	}

	bool gyro_healthy = false;
	bool acc_healthy = false;
	bool magn_healthy = false;
	bool baro_healthy = false;
	bool adc_healthy = false;

	bool hil_enabled = false;		/**< HIL is disabled by default	*/
	bool publishing = false;		/**< the app is not publishing by default, only if HIL is disabled on first run */

	int magcounter = 0;
	int barocounter = 0;
	int adccounter = 0;

	unsigned int mag_fail_count = 0;
	unsigned int mag_success_count = 0;

	unsigned int baro_fail_count = 0;
	unsigned int baro_success_count = 0;

	unsigned int gyro_fail_count = 0;
	unsigned int gyro_success_count = 0;

	unsigned int acc_fail_count = 0;
	unsigned int acc_success_count = 0;

	unsigned int adc_fail_count = 0;
	unsigned int adc_success_count = 0;

	ssize_t	ret_gyro;
	ssize_t	ret_accelerometer;
	ssize_t	ret_magnetometer;
	ssize_t	ret_barometer;
	ssize_t	ret_adc;
	int 	nsamples_adc;

	int16_t buf_gyro[3];
	int16_t buf_accelerometer[3];
	int16_t buf_magnetometer[7];
	float	buf_barometer[3];

	int16_t	mag_offset[3] = {0, 0, 0};
	int16_t acc_offset[3] = {200, 0, 0};
	int16_t	gyro_offset[3] = {0, 0, 0};

	bool mag_calibration_enabled = false;

	#pragma pack(push,1)
	struct adc_msg4_s {
		uint8_t      am_channel1;	/**< The 8-bit ADC Channel 1 */
		int32_t      am_data1;		/**< ADC convert result 1 (4 bytes) */
		uint8_t      am_channel2;	/**< The 8-bit ADC Channel 2 */
		int32_t      am_data2;		/**< ADC convert result 2 (4 bytes) */
		uint8_t      am_channel3;	/**< The 8-bit ADC Channel 3 */
		int32_t      am_data3;		/**< ADC convert result 3 (4 bytes) */
		uint8_t      am_channel4;	/**< The 8-bit ADC Channel 4 */
		int32_t      am_data4;		/**< ADC convert result 4 (4 bytes) */
	};
	#pragma pack(pop)

	struct adc_msg4_s buf_adc;
	size_t adc_readsize = 1 * sizeof(struct adc_msg4_s);

	float battery_voltage_conversion;
	battery_voltage_conversion = global_data_parameter_storage->pm.param_values[PARAM_BATTERYVOLTAGE_CONVERSION];

	if (-1 == (int)battery_voltage_conversion) {
		/* default is conversion factor for the PX4IO / PX4IOAR board, the factor for PX4FMU standalone is different */
		battery_voltage_conversion = 3.3f * 52.0f / 5.0f / 4095.0f;
	}

#ifdef CONFIG_HRT_PPM
	int ppmcounter = 0;
#endif
	/* initialize to 100 to execute immediately */
	int paramcounter = 100;
	int excessive_readout_time_counter = 0;
	int read_loop_counter = 0;

	/* Empty sensor buffers, avoid junk values */
	/* Read first two values of each sensor into void */
	(void)read(fd_gyro, buf_gyro, sizeof(buf_gyro));
	(void)read(fd_accelerometer, buf_accelerometer, sizeof(buf_accelerometer));
	(void)read(fd_magnetometer, buf_magnetometer, sizeof(buf_magnetometer));

	if (fd_barometer > 0)(void)read(fd_barometer, buf_barometer, sizeof(buf_barometer));

	struct sensor_combined_s raw = {
		.timestamp = hrt_absolute_time(),
		.gyro_raw = {buf_gyro[0], buf_gyro[1], buf_gyro[2]},
		.gyro_raw_counter = 0,
		.gyro_rad_s = {0, 0, 0},
		.accelerometer_raw = {buf_accelerometer[0], buf_accelerometer[1], buf_accelerometer[2]},
		.accelerometer_raw_counter = 0,
		.accelerometer_m_s2 = {0, 0, 0},
		.magnetometer_raw = {buf_magnetometer[0], buf_magnetometer[1], buf_magnetometer[2]},
		.magnetometer_raw_counter = 0,
		.baro_pres_mbar = 0,
		.baro_alt_meter = 0,
		.baro_temp_celcius = 0,
		.battery_voltage_v = BAT_VOL_INITIAL,
		.adc_voltage_v = {0, 0 , 0},
		.baro_raw_counter = 0,
		.battery_voltage_counter = 0,
		.battery_voltage_valid = false,
	};

	/* condition to wait for */
	pthread_mutex_init(&sensors_read_ready_mutex, NULL);
	pthread_cond_init(&sensors_read_ready, NULL);

	/* advertise the sensor_combined topic and make the initial publication */
	sensor_pub = orb_advertise(ORB_ID(sensor_combined), &raw);
	publishing = true;

	/* advertise the manual_control topic */
	struct manual_control_setpoint_s manual_control = { .mode = ROLLPOS_PITCHPOS_YAWRATE_THROTTLE,
						   .roll = 0.0f,
						   .pitch = 0.0f,
						   .yaw = 0.0f,
						   .throttle = 0.0f };

	int manual_control_pub = orb_advertise(ORB_ID(manual_control_setpoint), &manual_control);

	if (manual_control_pub < 0) {
		fprintf(stderr, "[sensors] ERROR: orb_advertise for topic manual_control_setpoint failed.\n");
	}

	/* advertise the rc topic */
	struct rc_channels_s rc;
	memset(&rc, 0, sizeof(rc));
	int rc_pub = orb_advertise(ORB_ID(rc_channels), &rc);

	if (rc_pub < 0) {
		fprintf(stderr, "[sensors] ERROR: orb_advertise for topic rc_channels failed.\n");
	}

	/* subscribe to system status */
	struct vehicle_status_s vstatus;
	memset(&vstatus, 0, sizeof(vstatus));
	int vstatus_sub = orb_subscribe(ORB_ID(vehicle_status));


	printf("[sensors] rate: %u Hz\n", (unsigned int)(1000000 / SENSOR_INTERVAL_MICROSEC));

	struct hrt_call sensors_hrt_call;
	/* Enable high resolution timer callback to unblock main thread, run after 2 ms */
	hrt_call_every(&sensors_hrt_call, 2000, SENSOR_INTERVAL_MICROSEC, &sensors_timer_loop, NULL);

	thread_running = true;

	while (1) {
		pthread_mutex_lock(&sensors_read_ready_mutex);

		struct timespec time_to_wait = {0, 0};
		/* Wait 2 seconds until timeout */
		time_to_wait.tv_nsec = 0;
		time_to_wait.tv_sec = time(NULL) + 2;

		if (pthread_cond_timedwait(&sensors_read_ready, &sensors_read_ready_mutex, &time_to_wait) == OK) {
			pthread_mutex_unlock(&sensors_read_ready_mutex);

			bool gyro_updated = false;
			bool acc_updated = false;
			bool magn_updated = false;
			bool baro_updated = false;
			bool adc_updated = false;

			/* store the time closest to all measurements */
			uint64_t current_time = hrt_absolute_time();
			raw.timestamp = current_time;

			if (paramcounter == 100) {
				// XXX paramcounter is not a good name, rename / restructure
				// XXX make counter ticks dependent on update rate of sensor main loop

				/* Check HIL state */
				orb_copy(ORB_ID(vehicle_status), vstatus_sub, &vstatus);

				/* switching from non-HIL to HIL mode */
				//printf("[sensors] Vehicle mode: %i \t AND: %i, HIL: %i\n", vstatus.mode, vstatus.mode & VEHICLE_MODE_FLAG_HIL_ENABLED, hil_enabled);
				if (vstatus.flag_hil_enabled && !hil_enabled) {
					hil_enabled = true;
					publishing = false;
					int ret = close(sensor_pub);
					printf("[sensors] Closing sensor pub: %i \n", ret);

					/* switching from HIL to non-HIL mode */

				} else if (!publishing && !hil_enabled) {
					/* advertise the topic and make the initial publication */
					sensor_pub = orb_advertise(ORB_ID(sensor_combined), &raw);
					hil_enabled = false;
					publishing = true;
				}


				/* Update RC scalings and function mappings */
				rc.chan[0].scaling_factor = (1 / ((global_data_parameter_storage->pm.param_values[PARAM_RC1_MAX] - global_data_parameter_storage->pm.param_values[PARAM_RC1_MIN]) / 2)
							     * global_data_parameter_storage->pm.param_values[PARAM_RC1_REV]);
				rc.chan[0].mid = (uint16_t)global_data_parameter_storage->pm.param_values[PARAM_RC1_TRIM];

				rc.chan[1].scaling_factor = (1 / ((global_data_parameter_storage->pm.param_values[PARAM_RC2_MAX] - global_data_parameter_storage->pm.param_values[PARAM_RC2_MIN]) / 2)
							     * global_data_parameter_storage->pm.param_values[PARAM_RC2_REV]);
				rc.chan[1].mid = (uint16_t)global_data_parameter_storage->pm.param_values[PARAM_RC2_TRIM];

				rc.chan[2].scaling_factor = (1 / ((global_data_parameter_storage->pm.param_values[PARAM_RC3_MAX] - global_data_parameter_storage->pm.param_values[PARAM_RC3_MIN]) / 2)
							     * global_data_parameter_storage->pm.param_values[PARAM_RC3_REV]);
				rc.chan[2].mid = (uint16_t)global_data_parameter_storage->pm.param_values[PARAM_RC3_TRIM];

				rc.chan[3].scaling_factor = (1 / ((global_data_parameter_storage->pm.param_values[PARAM_RC4_MAX] - global_data_parameter_storage->pm.param_values[PARAM_RC4_MIN]) / 2)
							     * global_data_parameter_storage->pm.param_values[PARAM_RC4_REV]);
				rc.chan[3].mid = (uint16_t)global_data_parameter_storage->pm.param_values[PARAM_RC4_TRIM];

				rc.chan[4].scaling_factor = (1 / ((global_data_parameter_storage->pm.param_values[PARAM_RC5_MAX] - global_data_parameter_storage->pm.param_values[PARAM_RC5_MIN]) / 2)
							     * global_data_parameter_storage->pm.param_values[PARAM_RC5_REV]);
				rc.chan[4].mid = (uint16_t)global_data_parameter_storage->pm.param_values[PARAM_RC5_TRIM];

				rc.function[0] = global_data_parameter_storage->pm.param_values[PARAM_THROTTLE_CHAN] - 1;
				rc.function[1] = global_data_parameter_storage->pm.param_values[PARAM_ROLL_CHAN] - 1;
				rc.function[2] = global_data_parameter_storage->pm.param_values[PARAM_PITCH_CHAN] - 1;
				rc.function[3] = global_data_parameter_storage->pm.param_values[PARAM_YAW_CHAN] - 1;
				rc.function[4] = global_data_parameter_storage->pm.param_values[PARAM_OVERRIDE_CHAN] - 1;

				gyro_offset[0] = global_data_parameter_storage->pm.param_values[PARAM_SENSOR_GYRO_XOFFSET];
				gyro_offset[1] = global_data_parameter_storage->pm.param_values[PARAM_SENSOR_GYRO_YOFFSET];
				gyro_offset[2] = global_data_parameter_storage->pm.param_values[PARAM_SENSOR_GYRO_ZOFFSET];

				mag_offset[0] = global_data_parameter_storage->pm.param_values[PARAM_SENSOR_MAG_XOFFSET];
				mag_offset[1] = global_data_parameter_storage->pm.param_values[PARAM_SENSOR_MAG_YOFFSET];
				mag_offset[2] = global_data_parameter_storage->pm.param_values[PARAM_SENSOR_MAG_ZOFFSET];

				paramcounter = 0;
			}

			paramcounter++;

			/* try reading gyro */
			uint64_t start_gyro = hrt_absolute_time();
			ret_gyro = read(fd_gyro, buf_gyro, sizeof(buf_gyro));
			int gyrotime = hrt_absolute_time() - start_gyro;

			if (gyrotime > 500) printf("GYRO (pure read): %d us\n", gyrotime);

			/* GYROSCOPE */
			if (ret_gyro != sizeof(buf_gyro)) {
				gyro_fail_count++;

				if ((((gyro_fail_count % 20) == 0) || (gyro_fail_count > 20 && gyro_fail_count < 100)) && (int)*get_errno_ptr() != EAGAIN) {
					fprintf(stderr, "[sensors] L3GD20 ERROR #%d: %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
				}

				if (gyro_healthy && gyro_fail_count >= GYRO_HEALTH_COUNTER_LIMIT_ERROR) {
					// global_data_send_subsystem_info(&gyro_present_enabled);
					gyro_healthy = false;
					gyro_success_count = 0;
				}

			} else {
				gyro_success_count++;

				if (!gyro_healthy && gyro_success_count >= GYRO_HEALTH_COUNTER_LIMIT_OK) {
					// global_data_send_subsystem_info(&gyro_present_enabled_healthy);
					gyro_healthy = true;
					gyro_fail_count = 0;

				}

				gyro_updated = true;
			}

			gyrotime = hrt_absolute_time() - start_gyro;

			if (gyrotime > 500) printf("GYRO (complete): %d us\n", gyrotime);

			/* try reading acc */
			uint64_t start_acc = hrt_absolute_time();
			ret_accelerometer = read(fd_accelerometer, buf_accelerometer, sizeof(buf_accelerometer));

			/* ACCELEROMETER */
			if (ret_accelerometer != sizeof(buf_accelerometer)) {
				acc_fail_count++;

				if (acc_fail_count & 0b1000 || (acc_fail_count > 20 && acc_fail_count < 100)) {
					fprintf(stderr, "[sensors] BMA180 ERROR #%d: %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
				}

				if (acc_healthy && acc_fail_count >= ACC_HEALTH_COUNTER_LIMIT_ERROR) {
					// global_data_send_subsystem_info(&acc_present_enabled);
					gyro_healthy = false;
					acc_success_count = 0;
				}

			} else {
				acc_success_count++;

				if (!acc_healthy && acc_success_count >= ACC_HEALTH_COUNTER_LIMIT_OK) {

					// global_data_send_subsystem_info(&acc_present_enabled_healthy);
					acc_healthy = true;
					acc_fail_count = 0;

				}

				acc_updated = true;
			}

			int acctime = hrt_absolute_time() - start_acc;

			if (acctime > 500) printf("ACC: %d us\n", acctime);

			/* MAGNETOMETER */
			if (magcounter == 4) { /* 120 Hz */
				uint64_t start_mag = hrt_absolute_time();
				/* start calibration mode if requested */
				if (!mag_calibration_enabled && vstatus.preflight_mag_calibration) {
					ioctl(fd_magnetometer, HMC5883L_CALIBRATION_ON, 0);
					printf("[sensors] enabling mag calibration mode\n");
					mag_calibration_enabled = true;
				} else if (mag_calibration_enabled && !vstatus.preflight_mag_calibration) {
					ioctl(fd_magnetometer, HMC5883L_CALIBRATION_OFF, 0);
					printf("[sensors] disabling mag calibration mode\n");
					mag_calibration_enabled = false;
				}

				ret_magnetometer = read(fd_magnetometer, buf_magnetometer, sizeof(buf_magnetometer));
				int errcode_mag = (int) * get_errno_ptr();
				int magtime = hrt_absolute_time() - start_mag;

				if (magtime > 2000) {
					printf("MAG (pure read): %d us\n", magtime);
				}

				if (ret_magnetometer != sizeof(buf_magnetometer)) {
					mag_fail_count++;

					if (mag_fail_count & 0b1000 || (mag_fail_count > 20 && mag_fail_count < 100)) {
						fprintf(stderr, "[sensors] HMC5883L ERROR #%d: %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
					}

					if (magn_healthy && mag_fail_count >= MAGN_HEALTH_COUNTER_LIMIT_ERROR) {
						// global_data_send_subsystem_info(&magn_present_enabled);
						magn_healthy = false;
						mag_success_count = 0;
					}

				} else {
					mag_success_count++;

					if (!magn_healthy && mag_success_count >= MAGN_HEALTH_COUNTER_LIMIT_OK) {
						// global_data_send_subsystem_info(&magn_present_enabled_healthy);
						magn_healthy = true;
						mag_fail_count = 0;
					}

					magn_updated = true;
				}

				magtime = hrt_absolute_time() - start_mag;

				if (magtime > 2000) {
					printf("MAG (overall time): %d us\n", magtime);
					fprintf(stderr, "[sensors] TIMEOUT HMC5883L ERROR #%d: %s\n", errcode_mag, strerror(errcode_mag));
				}

				magcounter = 0;
			}

			magcounter++;

			/* BAROMETER */
			if (barocounter == 5 && (fd_barometer > 0)) { /* 100 Hz */
				uint64_t start_baro = hrt_absolute_time();
				*get_errno_ptr() = 0;
				ret_barometer = read(fd_barometer, buf_barometer, sizeof(buf_barometer));

				if (ret_barometer != sizeof(buf_barometer)) {
					baro_fail_count++;

					if ((baro_fail_count & 0b1000 || (baro_fail_count > 20 && baro_fail_count < 100)) && (int)*get_errno_ptr() != EAGAIN) {
						fprintf(stderr, "[sensors] MS5611 ERROR #%d: %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
					}

					if (baro_healthy && baro_fail_count >= BARO_HEALTH_COUNTER_LIMIT_ERROR) {
						/* switched from healthy to unhealthy */
						baro_healthy = false;
						baro_success_count = 0;
						// global_data_send_subsystem_info(&baro_present_enabled);
					}

				} else {
					baro_success_count++;

					if (!baro_healthy && baro_success_count >= MAGN_HEALTH_COUNTER_LIMIT_OK) {
						/* switched from unhealthy to healthy */
						baro_healthy = true;
						baro_fail_count = 0;
						// global_data_send_subsystem_info(&baro_present_enabled_healthy);
					}

					baro_updated = true;
				}

				barocounter = 0;
				int barotime = hrt_absolute_time() - start_baro;

				if (barotime > 2000) printf("BARO: %d us\n", barotime);
			}

			barocounter++;

			/* ADC */
			if (adccounter == 5) {
				ret_adc = read(fd_adc, &buf_adc, adc_readsize);
				nsamples_adc = ret_adc / sizeof(struct adc_msg_s);

				if (ret_adc  < 0 || nsamples_adc * sizeof(struct adc_msg_s) != ret_adc) {
					adc_fail_count++;

					if ((adc_fail_count & 0b1000 || adc_fail_count < 10) && (int)*get_errno_ptr() != EAGAIN) {
						fprintf(stderr, "[sensors] ADC ERROR #%d: %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr()));
					}

					if (adc_healthy && adc_fail_count >= ADC_HEALTH_COUNTER_LIMIT_ERROR) {
						adc_healthy = false;
						adc_success_count = 0;
					}

				} else {
					adc_success_count++;

					if (!adc_healthy && adc_success_count >= ADC_HEALTH_COUNTER_LIMIT_OK) {
						adc_healthy = true;
						adc_fail_count = 0;
					}

					adc_updated = true;
				}

				adccounter = 0;

			}

			adccounter++;



#ifdef CONFIG_HRT_PPM
			bool ppm_updated = false;

			/* PPM */
			if (ppmcounter == 5) {

				/* require at least two channels
				 * to consider the signal valid
				 * check that decoded measurement is up to date
				 */
				if (ppm_decoded_channels > 1 && (hrt_absolute_time() - ppm_last_valid_decode) < 45000) {
					/* Read out values from HRT */
					for (int i = 0; i < ppm_decoded_channels; i++) {
						rc.chan[i].raw = ppm_buffer[i];
						/* Set the range to +-, then scale up */
						rc.chan[i].scale = (ppm_buffer[i] - rc.chan[i].mid) * rc.chan[i].scaling_factor * 10000;
						rc.chan[i].scaled = (ppm_buffer[i] - rc.chan[i].mid) * rc.chan[i].scaling_factor;
					}

					rc.chan_count = ppm_decoded_channels;
					rc.timestamp = ppm_last_valid_decode;

					/* publish a few lines of code later if set to true */
					ppm_updated = true;

					/* roll input */
					manual_control.roll = rc.chan[rc.function[ROLL]].scaled;
					if (manual_control.roll < -1.0f) manual_control.roll = -1.0f;
					if (manual_control.roll >  1.0f) manual_control.roll =  1.0f;

					/* pitch input */
					manual_control.pitch = rc.chan[rc.function[PITCH]].scaled;
					if (manual_control.pitch < -1.0f) manual_control.pitch = -1.0f;
					if (manual_control.pitch >  1.0f) manual_control.pitch =  1.0f;

					/* yaw input */
					manual_control.yaw = rc.chan[rc.function[YAW]].scaled;
					if (manual_control.yaw < -1.0f) manual_control.yaw = -1.0f;
					if (manual_control.yaw >  1.0f) manual_control.yaw =  1.0f;
					
					/* throttle input */
					manual_control.throttle = rc.chan[rc.function[THROTTLE]].scaled/2.0f;
					if (manual_control.throttle < 0.0f) manual_control.throttle = 0.0f;
					if (manual_control.throttle > 1.0f) manual_control.throttle = 1.0f;

					/* mode switch input */
					manual_control.override_mode_switch = rc.chan[rc.function[OVERRIDE]].scaled;
					if (manual_control.override_mode_switch < -1.0f) manual_control.override_mode_switch = -1.0f;
					if (manual_control.override_mode_switch >  1.0f) manual_control.override_mode_switch =  1.0f;

				}
				ppmcounter = 0;
			}

			ppmcounter++;
#endif

			/* Copy values of gyro, acc, magnetometer & barometer */

			/* GYROSCOPE */
			if (gyro_updated) {
				/* copy sensor readings to global data and transform coordinates into px4fmu board frame */

				raw.gyro_raw[0] = ((buf_gyro[1] == -32768) ? -32768 : buf_gyro[1]); // x of the board is y of the sensor
				/* assign negated value, except for -SHORT_MAX, as it would wrap there */
				raw.gyro_raw[1] = ((buf_gyro[0] == -32768) ? 32767 : -buf_gyro[0]); // y on the board is -x of the sensor
				raw.gyro_raw[2] = ((buf_gyro[2] == -32768) ? -32768 : buf_gyro[2]); // z of the board is z of the sensor

				/* scale measurements */
				// XXX request scaling from driver instead of hardcoding it
				/* scaling calculated as: raw * (1/(32768*(500/180*PI))) */
				raw.gyro_rad_s[0] = (raw.gyro_raw[0] - gyro_offset[0]) * 0.000266316109f;
				raw.gyro_rad_s[1] = (raw.gyro_raw[1] - gyro_offset[1]) * 0.000266316109f;
				raw.gyro_rad_s[2] = (raw.gyro_raw[2] - gyro_offset[2]) * 0.000266316109f;

				raw.gyro_raw_counter++;
			}

			/* ACCELEROMETER */
			if (acc_updated) {
				/* copy sensor readings to global data and transform coordinates into px4fmu board frame */

				/* assign negated value, except for -SHORT_MAX, as it would wrap there */
				raw.accelerometer_raw[0] = (buf_accelerometer[1] == -32768) ? 32767 : -buf_accelerometer[1]; // x of the board is -y of the sensor
				raw.accelerometer_raw[1] = (buf_accelerometer[0] == -32768) ? -32768 : buf_accelerometer[0]; // y on the board is x of the sensor
				raw.accelerometer_raw[2] = (buf_accelerometer[2] == -32768) ? -32768 : buf_accelerometer[2]; // z of the board is z of the sensor

				// XXX read range from sensor
				float range_g = 4.0f;
				/* scale from 14 bit to m/s2 */
				raw.accelerometer_m_s2[0] = (((raw.accelerometer_raw[0] - acc_offset[0]) / 8192.0f) * range_g) * 9.81f;
				raw.accelerometer_m_s2[1] = (((raw.accelerometer_raw[1] - acc_offset[1]) / 8192.0f) * range_g) * 9.81f;
				raw.accelerometer_m_s2[2] = (((raw.accelerometer_raw[2] - acc_offset[2]) / 8192.0f) * range_g) * 9.81f;

				raw.accelerometer_raw_counter++;
			}

			/* MAGNETOMETER */
			if (magn_updated) {
				/* copy sensor readings to global data and transform coordinates into px4fmu board frame */

				/* assign negated value, except for -SHORT_MAX, as it would wrap there */
				raw.magnetometer_raw[0] = (buf_magnetometer[1] == -32768) ? 32767 : buf_magnetometer[1];  // x of the board is y of the sensor
				raw.magnetometer_raw[1] = (buf_magnetometer[0] == -32768) ? 32767 : -buf_magnetometer[0]; // y on the board is -x of the sensor
				raw.magnetometer_raw[2] = (buf_magnetometer[2] == -32768) ? -32768 : buf_magnetometer[2]; // z of the board is z of the sensor

				// XXX Read out mag range via I2C on init, assuming 0.88 Ga and 12 bit res here
				raw.magnetometer_ga[0] = ((raw.magnetometer_raw[0] - mag_offset[0]) / 4096.0f) * 0.88f;
				raw.magnetometer_ga[1] = ((raw.magnetometer_raw[1] - mag_offset[1]) / 4096.0f) * 0.88f;
				raw.magnetometer_ga[2] = ((raw.magnetometer_raw[2] - mag_offset[2]) / 4096.0f) * 0.88f;

				/* store mode */
				raw.magnetometer_mode = buf_magnetometer[3];

				raw.magnetometer_raw_counter++;
			}

			/* BAROMETER */
			if (baro_updated) {
				/* copy sensor readings to global data and transform coordinates into px4fmu board frame */

				raw.baro_pres_mbar = buf_barometer[0]; // Pressure in mbar
				raw.baro_alt_meter = buf_barometer[1]; // Altitude in meters
				raw.baro_temp_celcius = buf_barometer[2]; // Temperature in degrees celcius

				raw.baro_raw_counter++;
			}

			/* ADC */
			if (adc_updated) {
				/* copy sensor readings to global data*/

				if (ADC_BATTERY_VOLATGE_CHANNEL == buf_adc.am_channel1) {
					/* Voltage in volts */
					raw.battery_voltage_v = (BAT_VOL_LOWPASS_1 * (raw.battery_voltage_v + BAT_VOL_LOWPASS_2 * (buf_adc.am_data1 * battery_voltage_conversion)));

					if ((buf_adc.am_data1 * battery_voltage_conversion) < VOLTAGE_BATTERY_IGNORE_THRESHOLD_VOLTS) {
						raw.battery_voltage_valid = false;
						raw.battery_voltage_v = 0.f;

					} else {
						raw.battery_voltage_valid = true;
					}

					raw.battery_voltage_counter++;
				}
			}

			uint64_t total_time = hrt_absolute_time() - current_time;

			/* Inform other processes that new data is available to copy */
			if ((gyro_updated || acc_updated || magn_updated || baro_updated) && publishing) {
				/* Values changed, publish */
				orb_publish(ORB_ID(sensor_combined), sensor_pub, &raw);
			}

#ifdef CONFIG_HRT_PPM

			if (ppm_updated) {
				orb_publish(ORB_ID(rc_channels), rc_pub, &rc);
				orb_publish(ORB_ID(manual_control_setpoint), manual_control_pub, &manual_control);
			}

#endif

			if (total_time > 2600) {
				excessive_readout_time_counter++;
			}

			if (total_time > 2600 && excessive_readout_time_counter > 100 && excessive_readout_time_counter % 100 == 0) {
				fprintf(stderr, "[sensors] slow update (>2600 us): %d us (#%d)\n", (int)total_time, excessive_readout_time_counter);

			} else if (total_time > 6000) {
				if (excessive_readout_time_counter < 100 || excessive_readout_time_counter % 100 == 0) fprintf(stderr, "[sensors] WARNING: Slow update (>6000 us): %d us (#%d)\n", (int)total_time, excessive_readout_time_counter);
			}


			read_loop_counter++;
#ifdef CONFIG_SENSORS_DEBUG_ENABLED

			if (read_loop_counter % 1000 == 0) printf("[sensors] read loop counter: %d\n", read_loop_counter);

			fflush(stdout);

			if (sensors_timer_loop_counter % 1000 == 0) printf("[sensors] timer/trigger loop counter: %d\n", sensors_timer_loop_counter);

#endif
		}

		if (thread_should_exit) break;
	}

	/* Never really getting here */
	printf("[sensors] sensor readout stopped\n");

	close(fd_gyro);
	close(fd_accelerometer);
	close(fd_magnetometer);
	close(fd_barometer);
	close(fd_adc);

	printf("[sensors] exiting.\n");

	thread_running = false;

	return ret;
}

static void
usage(const char *reason)
{
	if (reason)
		fprintf(stderr, "%s\n", reason);
	fprintf(stderr, "usage: sensors {start|stop|status}\n");
	exit(1);
}

int sensors_main(int argc, char *argv[])
{
	if (argc < 1)
		usage("missing command");

	if (!strcmp(argv[1], "start")) {

		if (thread_running) {
			printf("sensors app already running\n");
		} else {
			thread_should_exit = false;
			sensors_task = task_create("sensors", SCHED_PRIORITY_MAX - 5, 4096, sensors_thread_main, (argv) ? (const char **)&argv[2] : (const char **)NULL);
		}
		exit(0);
	}

	if (!strcmp(argv[1], "stop")) {
		if (!thread_running) {
			printf("sensors app not started\n");
		} else {
			printf("stopping sensors app");
			thread_should_exit = true;
		}
		exit(0);
	}

	if (!strcmp(argv[1], "status")) {
		if (thread_running) {
			printf("\tsensors app is running\n");
		} else {
			printf("\tsensors app not started\n");
		}
		exit(0);
	}

	usage("unrecognized command");
	exit(1);
}